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Background and Aims. Energy expenditure has been negatively correlated with fat accumulation. However, this association is highly
variable. In the present study we applied a genotype by environment interaction method to examine the presence of Genotype x
by Total Daily Energy Expenditure and Genotype x by Daily Energy Expenditure interactions in the expression of different body
composition traits. Methods and Results. A total of 958 subjects from 294 families of The Portuguese Healthy Family Study were
included in the analysis. TDEE and DEE were assessed using a physical activity recall. Body fat percentages were measured with a
bioelectrical impedance scale. GXTDEE and GxDEE examinations were performed using SOLAR 4.0 software. All BC traits were
significantly heritable, with heritabilities ranging from 21% to 34%. The GXTDEE and GxDEE interaction models fitted the data
better than the polygenic model for all traits. For all traits, a significant GXTDEE and GxDEE interaction was due to variance
heterogeneity among distinct levels of TDEE and DEE. For WC, GXTDEE was also significant due to the genetic correlation
function. Conclusions. TDEE and DEE are environmental constraints associated with the expression of individuals’ BC genotypes,

leading to variability in the phenotypic expression of BC traits.

1. Introduction

The hypothesis that the development of many complex traits
are the result of the interplay between genetic background
and environmental influences has long been postulated [1]
and has been referred to as genotype-by-environment inter-
action (GxE) [2]. Under such a hypothesis it is expected that
genetic effects are dynamically modulated by environmental
exposures.

This concept has been used to study obesity for several
decades [3], and there is a wealth of data confirming that
environmental factors, whether related to nutritional habits
and/or physical activity/exercise patterns, play key roles in the
accumulation of body fat [4, 5]. However, within a population
sharing the same physical activity (PA) habits (in terms
of levels and patterns), interindividual variability in body
composition is widely observed [6].

Genetic epidemiology research suggests that genetic fac-
tors account for 50% to 90% [7] of the total interindividual
variability in body fat accumulation. It remains, however,
to be explained how environmental and behavioral factors,
such as PA, affect the genetic influence on body composition.
Twin-based studies have shown that genetic factors influence
weight changes following different exercise patterns [8-
10]. For example, results from the Swedish Young Male
Twins study [5] indicated that for those twins with genetic
susceptibility for obesity, engaging in an active lifestyle, had a
preventive effect on accumulating fat. Accordingly, Mustelin
et al. [11I] found an inverse additive genetic correlation
between PA and BMI in both genders with correlations
of —0.22 and -0.08 for females and males, respectively.
More recently, an association study identified significant
interactions between individual genes and self-reported PA,
suggesting, for example, that the effect of the FTO rs9939609
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polymorphism on body fat accumulation is exacerbated by
low levels of PA [12]. Also, it has been shown that PA decreases
the impact of FTO gene variants on obesity [13]. In a study
with Danish and Finnish twin samples [14], the results follow
the same trend with an inverse association between PA and
WC and BMI and % body fat as well as evidence that PA
decreases both genetic and environmental variances of BMI
and waist circumference. Moreover, using a GxE model,
McCaftery et al. [15] found that BMI is, on average, lower
among those individuals that engage in vigorous activities
and that vigorous exercise significantly modified the additive
genetic component of BMI, confirming the presence of a GXE
interaction. Using an animal model, Noland et al. [16] found
that even when exposed to a high fat diet, rats with inherited
low oxidative capacity were heavier and hypertriglyceridemic
when compared to high oxidative capacity rats. As such, it is
highly likely that differences in PA patterns and levels may
have different impacts on body composition changes within
the same population. Accordingly, to better explain why some
people become obese while others do not, it is important to
understand how PA interacts with genotype and influences
its association with body fat.

In the present study, using a nuclear family design, we
bring together information on body composition and energy
expenditure aiming (I) to estimate the magnitude of the
genetic effects on body composition (BC) traits and (2)
to examine the Genotype x Total Daily Energy Expendi-
ture (GxTDEE) and Genotype x Daily Energy Expenditure
(GxDEE) interactions that may affect the impact of PA on BC
traits. Our main hypothesis is that the genetic regulation of
BC is affected by distinct levels of PA/EE.

2. Materials and Methods

2.1. Study Population

The Portuguese Healthy Family Study, from the Portuguese
Estudo de Familias Saudaveis Portuguesas (FAMS), investi-
gates the relationship among metabolic syndrome indicators,
physical activity, physical fitness, and body composition in
nuclear Caucasian families. Children and adolescents aged
10 to 18 years were recruited in schools from the north and
central regions of mainland Portugal and were approached
to freely participate in the study with their siblings and
parents. Children with chronic diseases (such as asthma
and diabetes), physical handicaps, or psychological disorders
that might impair their daily routines and physical activities
within schools and/or sports clubs were excluded. Given that
families with 3 or more children are scarce in the Portuguese
population [17], the sample comprises 294 families with only
one or two siblings (see Table 1). The ethics committee of the
Faculty of Sport, University of Porto, approved the study and
written informed consent, and assent was obtained from all
subjects.

2.2. Data Collection

2.2.1. Physical Activity. Using a 3-day physical activity recall
[18], a trained technician interviewed each subject, recording
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the dominant activity for each 15-min period during 24 h by
using a list of categorized activities. Categories from 1 to 9
refer to increasing levels of energy expenditure (METs) of
each activity in which category 1 indicates very low energy
expenditure such as sleeping or resting in bed and category
9 refers to highly demanding physical work such as high-
intensity sports. Approximate median energy cost for each
of the nine categories in kcal/kg/15 min was used to compute
the daily energy expenditure (DEE) for each individual. The
number of 15-min periods for each category was first summed
over the 3-day period and weighted by its own median energy
cost. DEE was then calculated by summing over the median
energy cost of all nine categories and dividing by 3 days.
TDEE was then computed by multiplying DEE by subjects’
body weights. This method has been previously validated for
children and adults [18].

2.2.2. Anthropometric Measurements. The standardized pro-
cedures of Lohman et al. [19] were used to measure height
with a Siber Hegner anthropometer (GMP instruments),
and body composition was measured with a bioelectric
impedance scale (TANITA BC-418 MA; Segmental Body
Composition Analyser Tanita, Corporation, Tokyo, Japan).
Two body composition traits were estimated—%body fat
(%FAT) and %trunk fat (%TFAT). This impedance scale
has been validated previously with Dual-Energy X-ray
Absorptiometry—DXA [20], a gold standard method for
body composition measurement. Body mass index (BMI) was
calculated as weight (kg)/height (m?). Waist circumference
was measured at the end of a normal expiration just above
the iliac crest, using a nonelastic Holtain tape.

2.2.3. Statistical Analysis. Univariate quantitative genetic
procedures as implemented in SOLAR [21] under a special
class of the multivariate linear model, namely, the variance
components (VC) approach, were used to estimate additive
genetic and environmental VCs for each of the BC traits.
Prior to all modeling, TDEE, age, age’, sex, age-by-sex,
and age’-by-sex were used as covariates in a preliminary
VC model. Residuals were thus derived for each trait and
were normalized using an inverse normal transformation, as
previously advocated [22, 23]. Heritability estimates (h?) were
computed using a maximum likelihood approach to estimate
variance components under the standard polygenic model as
implemented in SOLAR v.4.3.1 software [21].

Hypothesis Testing. In order to assess the influence of distinct
levels of energy expenditure in body composition genetic
regulation we established two main hypotheses.

(1) The genetic background of body composition traits is
dependent on changes in total daily energy expendi-
ture [TDEE (kcal/day)];

(2) The genetic background of body composition traits
is dependent on changes in daily energy expenditure
[DEE (kg/kcal/day)].

To test for GXTDEE and GxDEE interactions, basic
initial hypotheses were formulated regarding the vari-
ance/covariance relationship of a BC indicator between
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TABLE 1: Sample descriptive characteristics (means + standard deviations).

Fathers (n = 180)

Mothers (n = 253)

Sons (n = 265) Daughters (1 = 260)

Age (yrs) 454 +5.2 435+45 147+ 2.8 144+28
Height (cm) 170.0 £ 6.7 158.6 +5.7 162.2 +12.9 156.3 + 9.7
Weight (kg) 80.1+13.2 66.9 £10.2 58.0 £16.2 53.6 +12.7
TDEE (kcal/day) 3561.8 £ 962.7 2788.4 + 527.6 2280.6 £774.4 2024.9 + 568.4
DEE (kg/kcal/day) 4425+ 8.8 41.92+£6.3 3915+ 74 39.03 +£10.6
BMI (kg/mz) 277 £4.1 26.6 +3.9 215+ 4.1 21.7 £3.9
%FAT 23.0£5.7 33.7+5.9 20.0 £ 6.5 27.8+6.2
%TFAT 24.6 £ 6.5 299 +£70 16.9 £ 6.8 225+76
WC (cm) 92.3+10.6 81.0 £9.0 72.8 £10.4 68.4 + 8.6

TDEE: total daily energy expenditure; DEE: daily energy expenditure; BMI: body mass index; %FAT: fat percentage; % TFAT: trunk fat percentage; WC: waist

circumference.

family members with different levels of energy expenditure.
With regard to GXTDEE and GxDEE interactions, the funda-
mental null hypothesis is that the expression of a polygeno-
type (i.e., aggregate of all genotypes related to the expression
of a phenotype) is independent of TDEE and/or DEE levels.
It can be shown from first principles that if there are no
GxTDEE and/or GxDEE interactions, the same BC indicator
measured in subjects with different levels of TDEE and/or
DEE will have a genetic correlation of 1.0 and the genetic
variance will be homogeneous across all levels of TDEE
and/or DEE [24, 25]. On the contrary, if GXxTDEE and/or
GxDEE interactions are present, the genetic correlation will
be significantly less than 1.0 and/or the genetic variance will
not be the same among all levels of TDEE and/or DEE.

The foregoing requires that we model the variance and
correlation as functions of TDEE and/or DEE levels. For the
genetic variance function (and similarly for the environmen-
tal variance function), we modeled the variance using an
exponential function to ensure positivity, which is required
since any variance is a squared term [24, 25]: a; = exp[ocg +
yg(EE)], where oy and Yy are parameters to be estimated.
An additional justification for the exponential function is
suggested by the alternative name of this approach, namely,
the log-linear model of the variance: In 0; = o, + Y,(EE).
That is, on taking the natural logarithm of the variance
modeled as an exponential function, we have the equation
of a straight line. In this form, the variance homogeneity
null hypothesis obviously holds for a slope-term equal to 0:
Yy = 0. For the genetic correlation function, we modeled
the genetic correlation as an exponential decay function
of the pairwise differences in TDEE and/or DEE levels:
Py = exp(—A|EE; — EEj|), where A is a parameter to be
estimated as a function of the difference in TDEE and/or
DEE levels between any two individuals i and j. Here, we
also have an elegant reexpression of the interaction null
hypothesis, in this case regarding the genetic correlation, in
that a genetic correlation equal to 1 is equivalent to A = 0.
This is because for A = 0, we have p; = exp(-AEE; -

EE;|) = e’ = 1. At the same time we employed a similar
variance function for the residual environment variance as
a function of the TDEE and/or DEE environments because
it guards against bias in the detection of additive genetic
variance heterogeneity. Allowing for variance heterogeneity

(i.e., model the variance as a function) in only the additive
genetic variance would lead to a bias in the relevant parameter
estimate because it is possible in theory for there to be
heterogeneity in the residual environmental variance as well.
Thus, allowing for heterogeneity in both the additive genetic
variance and residual environmental variance can be said
to guard against this bias. Also, since our statistical genetic
model assumes from the outset that the genetic and residual
environmental effects are uncorrelated we did not posit a
corresponding environmental correlation function. Allowing
for a residual environmental correlation function on the same
environmental variable as that for the genetic correlation
function would violate the said assumption.

For reasons detailed in Diego et al. [24], the likelihood
ratio test statistics (LRTS) to test Vg = 0 and A = 0 are,
respectively, distributed as y? and are as follows: a chi-square
random variable with 1 degree of freedom (d.f.) and ((1/2) Xg +
(1/2) Xf), a50: 50 mixture of chi-square random variable with
a point-mass at 0, denoted by Xg , and a chi-square with 1d.f.
Prior to examination of these hypotheses, however, we first
confirmed if the overall GxTDEE and/or GxDEE interaction
models provided a better fit to the data than the standard so-
called polygenic model. The LRT for these comparisons can
be shown to be distributed as ((1/2))(% + (1/2)X§) [26]. Under
the null hypothesis, the GXTDEE and/or GxDEE models can
be thought of as reparameterized models, where the additive
genetic variance is equal to exp(alphaG) and the residual
environmental variance is equal to exp(alphaE). Taking this
into account, on comparison with the polygenic model, the
full GXTDEE and/or GxDEE models have three additional
parameters, namely, the gamma parameters for the additive
genetic and residual environmental variance functions and
the lambda parameter for the genetic correlation function.
The two gamma parameters give rise to LRTs that are each
distributed as y7, and the lambda parameter gives rise to an
LRT that is distributed as the mixture ((1/2) Xg +(1/2) Xf ). The
sum of these chi-squares gives ((1/2))(% + (1/2)X§).

3. Results

The basic descriptive data for TDEE, DEE, and BC traits in
fathers, mothers, sons, and daughters are presented in Table 1.
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TABLE 2: Family structures.

FM4 FM3 FM2 FM1 FM M3 M2

M1 M F3 F2 F 2 1

Total

n 3 21 105 41 4 7 44
% 102 7.14 35.71 13.95 1.36 2.38 14.97

24 2 2 7 1 16 17 294

8.16 0.68 0.68 2.38 0.34 5.44 5.78 100

FM4: father + mother + 4 offspring; FM3: father + mother + 3 offspring; FM2: father + mother + 2 offspring; FMI: father + mother + 1 offspring; FM: father +
mother; M3: mother + 3 offspring; M2: mother + 2 offspring; M1: mother + 1 offspring; M: mother; F3: father + 3 offspring; F2: father + 2 offspring; F: father;

2: two siblings; 1: one sibling.

TABLE 3: Heritability estimates (hz), standard-errors, and cor-
responding 95% confidence intervals (95% CI) of the different
phenotypes in The Portuguese Healthy Family Study.

Trait h* (95% CI) Std. error P value
BMI 0.25 (0.14, 0.37) 0.07 <0.001
%EFM 0.25(0.14, 0.37) 0.07 <0.001
%TFM 0.21(0.10, 0.32) 0.07 <0.001
WC 0.34 (0.22, 0.45) 0.07 <0.001

BMI: body mass index; %FM: fat percentage; %TFM: trunk fat percentage;
WC: waist circumference.

Information from 294 families comprising 180 fathers, 253
mothers, 265 sons, and 260 daughters was included. The
average family size was 3.3 subjects (Table 2). Total daily
energy expenditure follows the expected trend with fathers
presenting the highest values, followed by mothers, sons, and
daughters, which can be explained by the greater weight of
fathers and mothers. These differences are heavily diminished
for daily energy expenditure, which does not account for the
individuals’ weight. However, significant differences were still
observed between all classes of relatives for DEE [F(3,795) =
16.126, P < 0.001]. As expected, %FAT was higher in females
than in males. Sons and daughters’ average BMIs were very
similar.

Heritability estimates (h*) presented in Table 3 were all
highly significant (P < 0.001), ranging from 0.21 (95% CIL:
0.14, 0.37) for %TFAT to 0.34 (95% CI: 0.22, 0.45) for WC
meaning that the phenotypic expression of BC traits is in part
due to moderate-to-strong additive genetic factors, which is
a compelling argument to pursue further specific analysis of
their genetic architecture.

The polygenic model was compared to the GxTDEE
and/or GxDEE interaction models by means of a log-
likelihood ratio test (see Table 4). The GXTDEE and GxDEE
interaction models were significantly better than the poly-
genic model for all the BC traits implying that the GXTDEE
and/or GxDEE models fit the data better than the poly-
genic model for each of these four traits. This means that
interindividual variability in the phenotypic expression of
these body composition traits is to some degree explained
by an interaction between genotype and energy expenditure.
As such, different genotype architectures lead to distinct
expressions of body composition under the same energy
expenditure levels. In Table5 we present the parameter
estimates relevant to interpreting GXE interaction, namely,
the gamma and lambda parameters.

TABLE 4: Results of log-likelihood ratio tests (LRT) and respective P
values contrasting a polygenic model versus a GXTDEE and GXxDEE
model for each of the body composition traits.

Trait Polygenic LnL LnL LRT P value
GxTDEE

BMI —387.781 —338.660 98.243 <0.0001

%FM —386.643 -370.572 32.144 <0.0001

%TFM —387.543 —-380.396 14.294 0.002

wC —-380.061 -319.731 120.660 <0.0001
GxDEE

BMI —387.781 -356.720 62.124 <0.0001

%FM —386.630 —378.016 17.227 <0.0001

%TFM —387.432 —380.609 13.646 0.002

WwC —379.868 —344.650 70.436 <0.0001

BMI: body mass index; %FM: fat mass percentage; % TFM: trunk fat mass
percentage; WC: waist circumference; LnL: log-likelihoods; LRT: likelihood
ratio test.
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FIGURE 1: Genotype x Daily Energy Expenditure genetic variance.
BMI: body mass index; FM%: fat mass percentage; TFM%: trunk fat
mass percentage; WC: waist circumference.

Verification of GXTDEE and/or GxDEE interactions was
made by comparing both full models to their constrained
alternatives for BMI, % FAT, % TFAT, and WC.

The significant results for variance heterogeneity and
genetic correlation are shown in Figures 1 and 2. All traits
were significantly influenced for both GXTDEE and GxDEE
models. The significance of the GxDEE model was due to the
rejection of the genetic variance (a;) (Figure 1) homogeneity
hypothesis, whereas the significance of the GxTDEE model
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TABLE 5: Lambda and Gamma parameter estimates for each of the body composition traits under the GXTDEE and the GxDEE models.
Trait Lambda” Gamma” Lambda LRT Gamma LRT
GxTDEE

BMI 0.0008 (0.0004, 0.0017) — 6.243 —
%FM 0.0014 (0.0008, 0.0026) — 11.597 —
%TFM 0.0012 (0.0006, 0.0026) — 7.031 —
WwC 0.00009 (0.0005, 0.0014) 0.0006 (0.0004, 0.0007) 11.909 12.711
GxDEE
BMI — 0.0896 (0.0733, 0.1076) — 13.261
%FM — 0.0731 (0.0525, 0.0949) — 12.116
%TFM — 0.0755 (0.0527, 0.0989) — 9.950
wC — 0.0868 (0.0710, 0.1043) — 27.063

*Maximum likelihood parameter estimate followed by the lower and upper bounds for a 95% confidence interval computed following standard methods. BMI:
body mass index; %FM: fat mass percentage; % TFM: trunk fat mass percentage; WC: waist circumference; LRT: likelihood ratio test.
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FIGURE 2: Genotype x Total Daily Energy Expenditure genetic variance (a) and genetic correlation (b). BMI: body mass index; FM%: fat mass
percentage; TFM%: trunk fat mass percentage. Genetic correlation function refers to the genetic correlation for the same trait under different

TDEE environments.

was due to the rejection of the null hypotheses of a genetic
correlation (p,) equal to 1 (Figure 2). The only exception was
WC in which the genetic variance (0;) homogeneity hypothe-
sis was also rejected under the GXTDEE model (Figure 2(b)).
This means, for instance, despite variance homogeneity for
BMI, %FAT, and %TFAT under the GxTDEE model, that a
significant interaction with TDEE was still present because
the genetic correlation of these traits under distinct TDEE
levels was not equal to 1. For example, if the genetic correla-
tion between BMI under TDEE of 2500 kcal/day and a TDEE
0f1500 kcal/day is 0.6, then we may speculate that if the TDEE
environments differ then different genes are being activated
and are being responsible for body composition expression.
The null hypothesis of homogeneity in the genetic variance
implies a straight line graph (i.e., slope equal to 0) at the
level of the natural logarithm of the heritability given that
the variances are modeled as exponential functions. Thus,

Figure 2(a) shows that the genetic variance does vary as a
function of the energy expenditure environment. Specifically,
the genetic variance increases with increasing levels of energy
expenditure, which means that the higher the TDEE values,
the greater the differences in the set of genes activated that
are responsible for WC expression. As for Figures 1 and 2(b),
the null hypothesis of a genetic correlation equal to 1 is
graphically depicted by the horizontal line where the genetic
correlation function equals 1. This means that under the
null hypothesis the genetic correlation is not to be regarded
as a function of differences in the environmental measure.
Exponential curves that decay away from the null value
simply indicate that the genetic correlation is in these cases
a function of differences in the environmental measure.
Figure 3 shows the simultaneous representation of the
variance and correlation functions for WC, demonstrating
that GXTDEE interaction for WC s a joint function of genetic
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variance heterogeneity and a genetic correlation different
than one. In the figure, pairwise differences refer to the
differences between subjects in their TDEE levels.

4. Discussion

This study, based on a Portuguese sample of families, aimed
to quantify the genetic variance of different BC traits as
well as to examine the GXTDEE and GxDEE interactions in
modulating the manifestation of these traits in family mem-
bers. Our results not only confirm the importance of genetic
factors in governing the expression of these BC traits, with
all h* being significant, but also most importantly showed
the importance of both GxTDEE and GxDEE interactions
in fat accumulation. To the extent of our knowledge this
is the first effort to apply a GxE interaction analysis, using
a nuclear family-design study, to test the hypothesis that
individual differences in phenotypic expression of BC traits
are conditioned by their EE levels; that is, the interindividual
variability in different body composition traits is genetically
driven and mediated by physical activity exposure.

Body composition heritability estimates reported here
were all statistically significant which is in agreement with
previous results [27-32]. Waist circumference was the most
heritable of the four traits (K> = 0.34), and its value is
comparable to the estimates of 0.38 found in the Linosa study
[32] and 0.39 found in a study with 533 nuclear families from
Spain [28]. The heritability of BMI (h* = 0.25) is lower than
those from Spain (h* = 0.44 [28]). The same tendency was
observed for body fat with our moderate heritability estimate
of 0.25 contrasting with 0.69 in a Swedish sample [33], 0.48
in Nigeria, 0.54 in Jamaica, 0.57 in USA [31], and 0.64 for
males and 0.56 for females in a Chinese sample [34]. These
discrepancies are usually attributable to different sampling
strategies and sample sizes, distinct statistical approaches
used to estimate /%, and use of distinct adjustments (different
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covariates). For instance, in our study, all of the #* estimations
were controlled for the effect of TDEE which might explain
this discrepancy of results. In summary, this wealth of
data merely affirms the well-known dictum that heritability
estimates are sample specific. Although our h* estimates are
somewhat lower than the ones previously reported, we still
have from 1/5 to 1/3 of residual variance of BC traits explained
by genetic factors, which is a compelling argument to further
examine the underlying genetic architecture.

Over the years, researchers have been keen on studying
the associations of different environmental exposures with
BC [35]. This has mostly been done using a regression-based
approach for the detection of phenotypic-level associations
between traits among family members [34, 36]. Despite
its usefulness in quantifying the degree and sign of the
association between distinct BC phenotypes, correlations
provide little information regarding the putative mechanisms
that underlie such associations. GXE interaction analysis
holds the promise of verifying if the association between an
environmental factor (e.g., EE) and body fat accumulation
is genetically driven, which may be of importance in under-
standing why people respond differently to physical exercise
intervention programs [37].

In the present report, we chose to analyze the potential
effects of EE on genotype determination of body composition
traits in two different ways: assess the effects of (i) total
daily energy expenditure (kcal/min) and (ii) daily energy
expenditure (kg/kcal/min). The rationale behind the two
different approaches is that TDEE is an absolute measure
that is known to be significantly influenced by the effects of
age on BMI [38], mainly due to the greater weight of older
subjects that is here well observed since there are substantial
differences in TDEE between generations, meaning that the
differences track with age. Thus, the further analysis of
GxDEE allows avoiding the bias related with the influence of
greater weight on energy expenditure and a possible age effect
on the results of GxTDEE.

The results showed that all BC traits were signifi-
cantly influenced by both GxDEE and GxTDEE interactions
through the rejection of the hypothesis of the genetic cor-
relation being equal to 1 or/and the hypothesis of variance
homogeneity. This means that the genotype effects are not
exactly the same under different energy expenditure condi-
tions, as they are not fully correlated between distinct DEE
and/or TDEE environments. Generally, distinct trends were
observed for the two models as the GXxDEE interaction was
significant due to the rejection of the genetic variance (ng)
homogeneity hypothesis and the GxXTDEE interaction due to
the rejection of the null hypotheses of a genetic correlation
(py) equal to 1. Waist circumference was the only trait to be
significantly influenced by the two hypotheses and only under
the GXTDEE model.

As regards the GXDEE model and the expression of WC
under the GXTDEE model, the results presented here show
that the genetic variance increases with increasing levels of
DEE (and TDEE for WC), which may lead us to speculate
that there are genes involved in the expression of body
composition traits that are only “triggered” at higher levels
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of DEE. This particular set of results is not in line with the
majority of the previous studies on the interaction between
energy expenditure and obesity, in which increasing EE levels
have been found to diminish the genetic effects on obesity-
related traits. However, the research by Lappalainen et al. [39]
also failed to find an association between exercise and the
effect of FTO gene on weight changes, in a 4-year followup
of 522 overweight or obese subjects randomized to control
and lifestyle intervention groups. This evidence poses an
argument for the necessity of continuing efforts to unravel the
effects of EE at a genetic level that might influence different
BC traits. The results under the GXTDEE model indicate
that the greater the differences in TDEE levels, the lower
the genetic correlations, meaning that the genes influencing
body composition traits differ under different TDEE levels.
So, in contrast with the GxDEE model, the significance of this
model is due to the influence of different genes under distinct
levels of TDEE and not to an increase in the additive effects
of genes under higher levels of DEE. Previously, physical
inactivity was found to upregulate the expression of a number
of genes in skeletal muscle tissue in a mice model, which
leads to a speculation that the same may be true for obesity
markers [40, 41]. In humans, physical inactivity before and
after bed rest has been associated with higher levels of tumor
necrosis factor o (TNF-«) [42], which is a potent mediator of
gene expression related to inflammation by activating nuclear
factor kappaB (NF«B) signalling [43, 44]. On the basis of
these data, individuals at different ends of the spectrum of
physical activity would be expected to express different sets of
genes, one set more associated with subclinical inflammation
and the other set less so. In turn, these different sets of
genes being expressed across the physical activity spectrum
would result in a decay of the genetic correlation away from
complete correlation.

GxEE influence on body composition traits has also been
studied using DNA analysis [45, 46]. For example, Li et al.
[45] genotyped 12 SNPs in obesity-susceptibility loci 0£ 20,430
individuals from the EPIC-Norfolk cohort and reported that
each additional BMI-increasing allele significantly increased
the risk of obesity in the whole population, but significantly
(Pinteraction = 0-015) more in inactive individuals [OR = 1.158
(Clysy, = 1.118-1.199)] than in active individuals [OR = 1.095
(Clysy, = 1.068-1.123)]. However, in the active group this
increase was only 379 g, leading to the conclusion that being
active may reduce the genetic predisposition to obesity by
40%. Also, the FTO gene was found, when comparing active
to nonactive individuals, to have a diminished influence on
BMI (0.25 BMI increase per risk allele in active individuals
versus 0.44 BMI increase per risk allele in nonactive indi-
viduals) and WC (0.64 cm increase per risk allele in active
individuals versus 1.04 cm increase per risk allele in nonactive
individuals) [46]. More recently, in a robust meta-analysis of
218,166 adults and 19,268 children the results showed that the
association between FTO and obesity is diminished by 27%
from the effect of PA [13].

This issue is highly challenging and important consid-
ering that in many countries researchers and policy makers
are trying to deal with the obesity epidemic and associated
morbidities not only from a health standpoint but also from

a financial view given the public burden in costs of obesity
related morbidities [47, 48]. This epidemic has been mostly
connected to a fast changing environment (referred to as
“obesogenic”) characterized by inducing low levels of energy
expenditure and persuasive ways of increasing caloric intake
that together constitute a difficult challenge to our genome
[45, 46], but our results highlight that genetic adaptabil-
ity to energy expenditure environments is probably more
important than the environment itself. This has been proven
previously in a highly cited experimental study with MZ
twins [8] in which the variance in response to an overfeeding
program of 100 days was three times greater between-pairs
than within-pairs for BC traits. The same trend was observed
when MZ twins were subjected to an exercise protocol over
a 93-day period. Once again, and under controlled nutrient
intake, the differences in weight loss were more pronounced
between-pairs than within-pairs [10]. Both of these studies
substantiate that the more genetically similar individuals are,
the more similar they react to the same environment.

We think that our results add to the efforts in trying to
disentangle these matters and help to substantiate the latter
arguments by suggesting that the phenotypic expression of
BC traits is the result of joint effects of genes, EE levels
(environment), and their interactions.

Despite the relevance of the present results, some limita-
tions should be acknowledged. Firstly, the sample used may
not be representative of the general Portuguese population.
Secondly, the method chosen to estimate BC traits, in our
case bioelectrical impedance analysis, even though having
been previously validated with DXA [20], is not free from
bias in its results although the precision of the equipment
is +1%. Nevertheless, this method has been widely used as
a BC analyzer in many studies [49-51]. Also, our sample is
made of 294 families, which compares with 319 families from
the Viva la Familia Study [30] but is somewhat smaller than
533 families from Spain [28]. However, we feel that the joint
effects of the size of our sample, the use of state of the art
statistical procedures, and the novelty of the analysis in PA
genetic epidemiology research are strengths of the present
study that warrant consideration.

5. Conclusions

In conclusion, the present results showed that the genetic
expression of BC traits is significantly influenced by energy
expenditure levels. Accordingly, physical activity may be con-
sidered an environmental variable that promotes interindi-
vidual differences in BC traits through genetic mediation.
This is valuable information for health practitioners. More
efforts should be devoted to not only identify specific loci
that control different BC traits but also test if these loci are
regulated or not by different PA levels.

Acronyms

BMI: Body mass index
%TFM: Trunk fat mass percentage
%FM: Fat mass percentage



TDEE: Total daily energy expenditure

DEE: Daily energy expenditure

EE:  Energy expenditure

GxE: Genotype by environment
interaction

PA:  Physical activity

BC:  Body composition

WC:  Waist circumference.
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