
Frontiers in Immunology | www.frontiersin.

Edited by:
Robson Coutinho-Silva,

Federal University of Rio de Janeiro,
Brazil

Reviewed by:
Luigi Cari,

University of Perugia, Italy
Rui Li,

University of Pennsylvania,
United States

*Correspondence:
Girolamo Pelaia
pelaia@unicz.it

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 06 September 2020
Accepted: 03 November 2020
Published: 30 November 2020

Citation:
Pelaia C, Crimi C, Vatrella A, Tinello C,

Terracciano R and Pelaia G (2020)
Molecular Targets for Biological

Therapies of Severe Asthma.
Front. Immunol. 11:603312.

doi: 10.3389/fimmu.2020.603312

REVIEW
published: 30 November 2020

doi: 10.3389/fimmu.2020.603312
Molecular Targets for Biological
Therapies of Severe Asthma
Corrado Pelaia1, Claudia Crimi2, Alessandro Vatrella3, Caterina Tinello4,
Rosa Terracciano5 and Girolamo Pelaia6*

1 Respiratory Medicine Unit, University “Magna Græcia” of Catanzaro, Catanzaro, Italy, 2 Department of Clinical and
Experimental Medicine, University of Catania, Catania, Italy, 3 Department of Medicine, Surgery and Dentistry, University of
Salerno, Salerno, Italy, 4 Pediatrics Unit, Provincial Outpatient Center of Catanzaro, Catanzaro, Italy, 5 Department of
Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy, 6 Department of Health
Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy

Asthma is a heterogeneous respiratory disease characterized by usually reversible bronchial
obstruction, which is clinically expressed by different phenotypes driven by complex
pathobiological mechanisms (endotypes). Within this context, during the last years several
molecular effectors and signalling pathways have emerged as suitable targets for biological
therapies of severe asthma, refractory to standard treatments. Indeed, various therapeutic
antibodies currently allow to intercept at different levels the chain of pathogenic events
leading to type 2 (T2) airway inflammation. In addition to pro-allergic immunoglobulin E (IgE),
that chronologically represents the first molecule against which an anti-asthma monoclonal
antibody (omalizumab) was developed, today other targets are successfully exploited by
biological treatments of severe asthma. In particular, pro-eosinophilic interleukin 5 (IL-5) can
be targeted by mepolizumab or reslizumab, whereas benralizumab is a selective blocker of
IL-5 receptor. Moreover, dupilumab behaves as a dual receptor antagonist of pleiotropic
interleukins 4 (IL-4) and 13 (IL-13). Besides these drugs that are already available in medical
practice, other biologics are under clinical development such as those targeting innate
cytokines, also including the alarmin thymic stromal lymphopoietin (TSLP), which plays a key
role in the pathogenesis of type 2 asthma. Therefore, ongoing and future biological therapies
are significantly changing the global scenario of severe asthma management. These new
therapeutic options make it possible to implement phenotype/endotype-specific treatments,
that are delineating personalized approaches precisely addressing the individual traits of
asthma pathobiology. Such tailored strategies are thus allowing to successfully target the
immune-inflammatory responses underlying uncontrolled T2-high asthma.

Keywords: T2-high asthma, IgE, IL-4, IL-5, IL-13, monoclonal antibodies
INTRODUCTION

Asthma is a very diffuse chronic respiratory disease whose main pathologic features include airway
inflammation and remodelling, which are responsible for variable airflow limitation and bronchial
hyperresponsiveness (1–3). More than 300 million people currently suffer from asthma worldwide,
and this number is probably destined to undergo further increases during the next years (4, 5).
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In most subjects with asthma a good disease control can be
achieved using standard inhaled treatments. However, about 5–
10% of patients included in the global population of asthmatic
individuals experience various subtypes of inadequately
controlled and difficult-to-treat asthma (6). In this regard,
severe asthma was jointly defined by both European
Respiratory Society (ERS) and American Thoracic Society
(ATS) as a condition controlled by high dosages of inhaled
corticosteroids (ICS)/long-acting b2-adrenergic agonists
(LABA) combinations, which can also require the addition of
other drugs (i.e. tiotropium, leukotriene modifiers, oral
corticosteroids); even worse, severe asthma might remain
uncontrolled despite such massive inhaled and systemic
treatments (7). Hence, within the overall spectrum of subjects
with asthma, severe asthmatic patients are characterized by the
most urgent unmet medical needs and can be eligible to add-on
biological therapies (8). The latter mainly consist of already
licensed monoclonal antibodies targeting specific molecules
involved in the pathobiology of type 2 (T2-high) eosinophilic,
allergic and non-allergic asthma, including immunoglobulins
E (IgE), interleukin-5 (IL-5) and its receptor, as well as
interleukin-4 (IL-4) receptor (9–11). Other experimental
biologics target upstream innate cytokines such as thymic
stromal lymphopoietin (TSLP) (12, 13). Conversely, current
pharmacotherapeutic pipelines are very scarce with regard to
investigational drugs directed against molecular targets
implicated in the pathogenesis of T2-low, mostly neutrophilic
severe asthma. Therefore, a careful characterization of the
biological mechanisms (endotypes) underlying the different
phenotypes plays a key role in driving the clinical choice of the
most appropriate add-on therapy for each individual patient
with severe asthma (14, 15).

On the basis of the above considerations, the aim of
this review article is to outline the cellular and molecular
pathophysiology of severe asthma, in order to provide a logical
premise for the subsequent discussion of the current and future
biological strategies that can be used to treat the patients with
uncontrolled disease.
PATHOBIOLOGY OF SEVERE ASTHMA

Asthma is a heterogeneous disease, originating from complex
interactions between genetic and environmental factors, which
consists of several different phenotypes sustained by cytokine-
based biological mechanisms known as endotypes (16, 17). The
inflammatory endotypes include eosinophilic, neutrophilic,
mixed and paucigranulocitic cellular patterns (2, 18–22). In
particular, T2-high eosinophilic inflammation is quite common
in patients with either allergic or non-allergic asthma, and can
frequently characterize severe and fatal disease (23–27).

T2-high eosinophilic allergic asthma, occurring especially in
children and adolescents, develops as a consequence of an
intricate cross-talk between innate and adaptive immune
responses (28). In particular, allergic asthma is triggered by
dust mites, tree pollen and animal dander, which within the
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airways are captured by dendritic cells that internalize and
process these aeroallergens, and also transport them to thoracic
lymph nodes. Here, dendritic cells expose on their surface the
processed allergen peptides and, within the context of specific
HLA class II molecules of the major histocompatibility complex
(MHC class II), operate antigen presentation to the T-cell
receptors of naïve CD4+ T lymphocytes, thus inducing their
polarization towards the T helper 2 (Th2) lineage (1). This event
is driven by interleukin-4 (IL-4) produced by mast cells and
basophils, and is also dependent on selective reciprocal
recognition of specific co-stimulatory molecules located on the
plasma membranes of dendritic cells (CD80/B7.1, CD86/B7.2,
OX40 ligand, ICOS ligand) and T lymphocytes (CD28, OX40,
ICOS), respectively (29, 30). As a result of such a complex
process of differentiation and activation, mature Th2 cells
secrete large quantities of IL-4, IL-13, and IL-5. IL-13 and
especially IL-4 induce Ig class switching by stimulating B
lymphocytes to synthesize allergen-specific immunoglobulins
E (IgE), which bind to high-affinity (FcϵRI) and low-
affinity (CD23/FcϵRII) receptors present on both immune/
inflammatory and structural cells of the respiratory tract (31–
34). These adaptive immune pathways are crucially integrated by
innate immune mechanisms involving important functions of
airway epithelial cells and innate lymphoid cells, as well as
further contributions of dendritic cells (35, 36). Indeed,
aeroallergens, respiratory viruses, cigarette smoking and
airborne pollutants induce bronchial epithelial cells to produce
the innate cytokines thymic stromal lymphopoietin (TSLP),
interleukin-25 (IL-25) and interleukin-33 (IL-33), that in turn
potentiate Th2-mediated adaptive immune responses and
promote the release of IL-4, IL-13, and IL-5 from Th2
lymphocytes and group 2 innate lymphoid cells (ILC2) (37).
Another relevant cellular source of IL-4 is represented by T
follicular helper cells (Tfh), whose development in lung-draining
lymph nodes depends on TSLP-induced activation of dendritic
cells expressing OX40 ligand (38). Dendritic cells also secrete
CCL17 and CCL22 chemokines, that selectively interact with
CCR4 receptors expressed by mature Th2 lymphocytes, thus
promoting their migration from thoracic lymph nodes to the
airways (39).

In regard to the functions of Th2 cytokines, IL-4 drives IgE
biosynthesis, IL-13 mainly contributes to mucus production,
airway remodelling and bronchial hyperresponsiveness, and IL-
5 is the key inducer of eosinophil differentiation, activation and
survival (17, 40). In addition to Th2 lymphocytes, IL-5 is also
produced by mast cells, natural killer T cells, eosinophils
themselves and especially ILC2, the latter being the main
cellular orchestrators of non-allergic eosinophilic asthma (40–
42), frequently characterized by a late onset in adulthood. IL-5 is
responsible for eosinophil maturation, and in asthmatic patients
this eosinophilopoietic action occurs not only in the bone
marrow, but also in bronchial mucosa (43–45). Indeed, IL-5
concentrations and the numbers of both mature eosinophils and
eosinophil progenitors are increased in induced sputum from
asthmatic subjects. High IL-5 levels can be also detected in
serum, especially when obtained from patients with severe
November 2020 | Volume 11 | Article 603312
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asthma (46). Moreover, IL-5 exerts an inhibitory effect on
eosinophil apoptosis, and the numbers of apoptotic eosinophils
are negatively correlated with sputum IL-5 concentrations in
stable asthma, as well as during disease exacerbations (47, 48).
IL-5 also contributes to eosinophil recruitment within asthmatic
airways, thereby cooperating with eosinophil chemoattractants
such as eotaxins (49). Furthermore, in patients with T2-high
asthma IL-5 stimulates the interaction of eosinophils with
periostin, an extracellular matrix protein whose expression
resulted to be up-regulated during eosinophil migration
towards airways (50). Especially in severe asthma, IL-5-
activated eosinophils also contribute to bronchial structural
changes via the release of powerful pro-remodelling mediators
such as transforming growth factor-b (TGF-b) (51, 52).

T2-low asthma is often characterized by airway neutrophilia,
particularly in patients suffering from severe disease forms (53).
In this regard, the Th17 subset of CD4+ T lymphocytes seems to
play a pivotal pathogenic role (54–56). Th17 cells produce IL-
17A and IL-17F, whose expression was shown to be significantly
up-regulated in bronchial biopsies from patients with severe
asthma (57). Th17 cell development depends on the coordinate
actions of IL-1b, IL-6, and TGF-b, which are essential for
induction of differentiation of this cellular immunophenotype
(58–60). In addition, IL-21 produced by Th17 cells themselves
plays a key role as autocrine amplifier of Th17 response (60, 61).
Mature Th17 lymphocytes also express the specific receptor of
IL-23, a cytokine which is required to stabilize the Th17
phenotype and to maintain Th17 cells in a state of effective
activation (60–62). Cigarette smoke and diesel exhaust particles
can induce airway neutrophilia, which was shown to be
associated with Th17-dependent severe asthma (63, 64).
Infectious agents also seem to be able to trigger Th17-mediated
severe asthma, and this effect may involve the assembly of the
inflammasome, an intracellular multiprotein complex which
activates caspase-1, a protease that converts pro-IL-1b in its
active form, thus enabling it to induce Th17 cell differentiation
(65, 66). Inflammasome activation was also shown to be
implicated in obesity-associated bronchial hyperresponsiveness
(67). In severe asthma, Th17 cell polarization and neutrophilic
airway inflammation can also be promoted by neutrophil
extracellular traps (NETs), consisting of anti-microbial
complexes of extracellular DNA, histones and granular
proteins extruded from neutrophils that become anuclear cells
known as cytoplasts (68–70). In addition to Th17 lymphocytes,
other cellular sources of IL-17 include invariant NK T cells, gd T
cells, cytotoxic T cells, and especially group 3 innate lymphoid
cells (ILC3) (71, 72). High numbers of ILC3 were found in
bronchoalveolar lavage fluid (BALF) from adults with severe
asthma, as well as in blood of obese asthmatic children (72, 73).
Once secreted from Th17 lymphocytes, ILC3 and other cell
types, IL-17A and IL-17F induce bronchial epithelial cells and
sub-epithelial airway fibroblasts to release potent neutrophil
chemoattractants including IL-8 (CXCL8) and CXCL1/GRO-a
(74–76]. IL-17-mediated neutrophilic asthma is often associated
with a relevant insensitivity to the therapeutic actions of
corticosteroids, which indeed exert an anti-apoptotic effect on
Frontiers in Immunology | www.frontiersin.org 3
neutrophils, thus prolonging their survival (77). In addition to
Th17 lymphocytes, also IL-12-dependent Th1 cells can
contribute to the pathobiology of severe neutrophilic asthma
(59, 78). In fact, Th1 lymphocyte numbers and the levels of their
cytokines such as interferon-g (IFN-g) and tumor necrosis
factor-a (TNF-a) are enhanced in severe asthmatic patients
(59, 79).

The mixed eosinophilic/neutrophilic inflammatory phenotype
is often associated with severe asthma. In particular,
circulating Th2/Th17 cell clones producing both IL-4 and IL-
17A were found in asthmatic patients (80). Moreover, high
numbers of dual-positive Th2/Th17 lymphocytes secreting
large quantities of IL-4 and IL-17 were detected in BALF from
patients with severe asthma (81). Indeed, these BALF
lymphocytes were shown to concomitantly express two
transcription factors such as GATA3 and RORgt (81), which
are essential for differentiation of Th2 and Th17 cells,
respectively. Such observations corroborated the results of
previous studies performed in mice, which had demonstrated
that Th2/Th17 lymphocytes were involved in the induction of
severe forms of experimental asthma (82). Hence, additional
studies are needed to further characterize the cellular phenotypes
of dual Th2/Th17 lymphocyte subsets, and to better understand
if IL-4 and IL-17 produced by these cells could eventually exert
additive or synergistic effects, especially in the pathobiology of
severe asthma (83).

In addition to eosinophilic, neutrophilic, and mixed
granulocytic inflammatory profiles, also paucigranulocytic
histopathological patterns have been found in airway biopsies
from asthmatic patients (84, 85). The cellular pathophysiology of
this particular asthmatic phenotype, characterized by the lack of
increased counts of eosinophils or neutrophils in either sputum
or blood, has not been clearly elucidated. However, it appears
that paucigranulocytic asthma is featured by an uncoupling of
bronchial obstruction from inflammation, possibly due to
structural changes mainly resulting in non-inflammatory
thickening of airway smooth muscle layer (86).
LICENSED BIOLOGICAL THERAPIES OF
SEVERE ASTHMA

There are currently five approved monoclonal antibodies for
add-on biologic treatment of severe asthma. They include
omalizumab, mepolizumab, reslizumab, benralizumab, and
dupilumab (Figure 1).

Omalizumab has been the first licensed biologic drug for
clinical use in the management of severe asthma. This
recombinant humanized monoclonal antibody, originally
developed in mice, binds to the two Cϵ3 domains of the
constant portion of IgE, thus forming IgE/anti-IgE immune
complexes that prevent IgE interactions with both high-affinity
FcϵRI and low-affinity FcϵRII/CD23 membrane receptors (87,
88). As a consequence, omalizumab inhibits all IgE-dependent
cellular and molecular events involved in the immune/
inflammatory cascade underlying allergic asthma. Systematic
November 2020 | Volume 11 | Article 603312

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pelaia et al. Biological Therapies of Severe Asthma
reviews and pooled analyses of randomized controlled trials have
clearly shown that omalizumab was able to significantly decrease
the rate of asthma exacerbations, and this therapeutic effect was
observed up to 48–60 weeks of treatment (89, 90). Such a
favourable clinical outcome has been further corroborated by
several worldwide real-life studies (91). In addition to confirming
the positive impact of omalizumab on asthma exacerbations,
emergency room accesses and hospitalizations, real-world
experiences have also demonstrated relevant improvements
in symptom control, quality of life, and intake of oral
corticosteroids (OCS), as well as a lower loss of working and
school days (91–93). Despite some discordant published data
regarding the effects of omalizumab on lung function (15), many
real-life studies have shown that this anti-IgE monoclonal
antibody can induce significant and persistent increases in
forced expiratory volume in the first second (FEV1), lasting 5,
7, and even 9 years (94–96). Moreover, it was also recently
reported that omalizumab can effectively improve both clinical
manifestations and computed tomography (CT) images of nasal
polyps associated with severe allergic asthma (97). All these
beneficial outcomes achieved by patients undergoing add-on
therapy with omalizumab explain the high degree of adherence
to this biologic drug (98). The real-life therapeutic effectiveness
of omalizumab coexists with a long-term, very good safety and
tolerability profile (99).

Mepolizumab is a humanized IgG1/kmonoclonal antibody of
murine origin which binds with high affinity to human IL-5, thus
Frontiers in Immunology | www.frontiersin.org 4
preventing its interaction with the a subunit of IL-5 receptor (IL-
5Ra) (100). The efficacy of mepolizumab was firstly evidenced by
Nair et al. and by Haldar et al., who showed in a few frequent
exacerbators with severe eosinophilic asthma that this biologic
drug significantly reduced disease exacerbations, as well as blood
and sputum eosinophils (101, 102). These positive effects of
mepolizumab were later confirmed by the phase IIb/III DREAM
(Dose Ranging Efficacy And safety with Mepolizumab) trial,
carried out by Pavord et al. in a much larger number of patients
(103). Moreover, MENSA (MEpolizumab as adjunctive therapy
iN patients with Severe Asthma) and SIRIUS (SteroId ReductIon
with mepolizUmab Study) trials, performed by Ortega et al., and
Bel et al., respectively, documented that in subjects with severe
eosinophilic asthma mepolizumab lowered asthma exacerbation
rate, improved quality of life and symptom control, and also
slightly increased FEV1 (104, 105). In addition, the SIRIUS study
demonstrated that mepolizumab exerted an effective OCS
sparing action, thereby decreasing prednisone intake by 50%
(105). Furthermore, the phase IIIb MUSCA trial, carried out by
Chupp et al., corroborated the significant results achieved by
patients undergoing add-on mepolizumab therapy with regard to
improvement of health-related quality of life (106). All these
randomized controlled studies also reported a very good pattern
of drug safety and tolerability. Besides such controlled trials,
uncontrolled, open-label, and real-life investigations are
providing further information about the therapeutic properties
of mepolizumab. Indeed, some real-world data suggest that in
FIGURE 1 | Molecular targets of current and future biological therapies of severe type 2 asthma. The targets of approved add-on biologic treatments (highlighted in
blue color) of severe asthma include IgE (omalizumab), IL-5 (mepolizumab and reslizumab), IL-5 receptor (benralizumab), and IL-4/IL-13 receptor complex
(dupilumab). Moreover, experimental drugs (highlighted in dark magenta color) such as tezepelumab, REGN3500 and fevipiprant target TSLP, IL-33 and the CRTH2
receptor of PGD2, respectively. This original figure was created by the authors using “BioRender.com”.
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clinical practice mepolizumab effectiveness can be even greater
than that one observed in randomized controlled trials, and these
better results might be dependent on the higher numbers of
baseline blood eosinophils detectable in patients enrolled in real-
life experiences (107, 108). The latter have shown that
mepolizumab is very effective in both non allergic and allergic
patients with severe eosinophilic asthma, also in case of
switching from omalizumab to mepolizumab because of an
inadequate disease control provided by anti-IgE treatment
(109–111). With regard to lung function, it is noteworthy that
in real-life setting mepolizumab was able not only to
increase FEV1, but also to improve airflow limitation at level of
small airways (112). Mepolizumab was capable of inducing
beneficial therapeutic effects also in severe nasal polyposis, thus
improving subjective symptoms and endoscopic nasal polyp
score, as well as leading to a decreased need for surgical
polypectomy (113).

Another anti-IL-5 biologic drug is reslizumab, a humanized
IgG4/k monoclonal antibody of rat origin, whose clinical and
functional effects have been assessed in many randomized
trials (114, 115). The first phase II trial was conducted by
Kips et al., who demonstrated that reslizumab reduced both
sputum and blood eosinophil counts, as well as transiently
increased FEV1 (116). A further phase II study, performed by
Castro et al. in patients with severe eosinophilic asthma,
showed that reslizumab induced a significant FEV1 increase,
associated with a non-significant tendency towards an
improvement in asthma control, particularly in asthmatic
subjects with high blood eosinophil numbers and coexistent
nasal polyposis (117). Subsequently, two phase III trials carried
out by Castro et al. in patients with severe asthma and blood
eosinophil counts higher than 400 cells/mL, evidenced that
reslizumab lowered the annual asthma exacerbation rate by
more than 50%, improved asthma control and incremented
FEV1 (118). Such findings were further confirmed by Brusselle
et al., especially in subjects with late-onset eosinophilic asthma
(119). Moreover, Bjermer et al. observed that the positive
effects of reslizumab on lung function were not limited to the
large airways, as shown by FEV1 increases, but also extended to
the small airways resulting in significant enhancements of mid-
expiratory flow at 25–75% of forced vital capacity (FEF25-75)
(120). Similar to omalizumab and mepolizumab, also
reslizumab displays a more than satisfactory profile of safety
and tolerability (114).

Differently from mepolizumab and reslizumab, benralizumab
is characterized by a dual mechanism of action. Indeed, this
humanized afucosylated IgG1/k monoclonal antibody of murine
origin binds through its Fab fragments to IL-5Ra, thereby
impeding the assembly of the ternary molecular complex
consisting of IL-5, IL-5Ra, and the bc subunits of IL-5
receptor (121, 122); as a consequence, IL-5 cannot exert its
biological effects on target cells (eosinophils, basophils, ILC2).
Moreover, via the constant Fc portion benralizumab interacts
with the surface FcgRIIIa receptor of natural killer cells, thus
triggering eosinophil apoptosis operated by antibody-dependent
cell-mediated cytotoxicity (ADCC), a mechanism that is
Frontiers in Immunology | www.frontiersin.org 5
remarkably potentiated by afucosylation (121, 122). In regard
to the randomized clinical trials, phase III SIROCCO and
CALIMA studies have demonstrated that benralizumab
significantly reduced the annual rate of severe eosinophilic
asthma exacerbations, and also bettered asthma symptom
control and increased FEV1 (123, 124). Chipps et al. performed
a pooled analysis of SIROCCO and CALIMA trials, thus showing
that benralizumab was effective as adjunctive biological therapy
in both allergic and non-allergic patients with severe eosinophilic
asthma (125). The BISE trial confirmed the positive impact of
benralizumab on lung function, whereas the ZONDA study
showed that benralizumab significantly decreased daily OCS
intake (126, 127). Furthermore, the BORA trial documented
that benralizumab use was associated with long-term safety and
tolerability (128). All these findings, regarding clinical and
functional outcomes, have been corroborated, and even
extended and amplified by recent real-life experiences. The
latter are providing convincing evidence referring to the safety
and efficacy of benralizumab, detected in both atopic and non-
atopic subjects with eosinophilic uncontrolled asthma, with
regard to relevant improvements in asthma exacerbations, OCS
consumption, symptom control, airflow limitation, lung
hyperinflation, and nasal polyposis (129–132).

Dupilumab is a fully human IgG4 monoclonal antibody,
which specifically recognizes and occupies the a subunit of IL-
4 receptor, thereby inhibiting the biological actions of both IL-4
and IL-13 (133). Indeed, these two cytokines not only exert
overlapping effects related to IgE class switching, eosinophil
chemotaxis and airway hyperresponsiveness, but also share
common receptor mechanisms and signalling pathways, based
on activation of IL-4Ra coupled to the JAK/TYK transduction
machinery (10, 133). Therefore, dupilumab behaves as a dual
receptor antagonist of IL-4 and IL-13 (134). In an initial phase
IIa trial, Wenzel et al. randomly assigned to either dupilumab or
placebo 104 patients with persistent, moderate-to-severe
eosinophilic asthma, thus showing that dupilumab significantly
lowered the asthma exacerbation rate by 87%, and also enhanced
FEV1 by more than 200 mL, despite ICS/LABA withdrawal
(135). A subsequent larger, phase IIb study carried out in
uncontrolled adult asthmatics confirmed the positive impact of
dupilumab on asthma exacerbations and lung function,
especially but not only in subjects with high blood eosinophil
counts (136). More recently, the phase III LIBERTY ASTHMA
QUEST trial showed that in asthmatic patients with blood
eosinophil numbers ≥ 300 cells/mL, dupilumab was able to
decrease asthma exacerbations by more than 65%, as well as to
increase FEV1 by more than 200 mL (137). Corren et al.
performed a post hoc analysis of the LIBERTY ASTHMA
QUEST study, thereby demonstrating that the above beneficial
effects of dupilumab can be indifferently detected in both allergic
and non-allergic asthmatics (138). Furthermore, the LIBERTY
ASTHMA VENTURE trial highlighted the significant OCS-
sparing action of dupilumab (139). Overall, dupilumab is quite
safe and well tolerated, even if in some patients this biologic drug
can induce conjunctivitis or a marked blood eosinophilia (10),
which however tends to resolve spontaneously in a few months,
November 2020 | Volume 11 | Article 603312
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without apparent consequences in most cases. Dupilumab
is also very effective for treatment of relevant asthma
comorbidities such as atopic dermatitis and nasal polyposis
(140, 141).

The molecular targets, mechanisms of action and therapeutic
effects of the above mentioned drugs are summarized in Table 1.
TARGETS OF EMERGING BIOLOGICAL
THERAPIES IN CLINICAL DEVELOPMENT

In addition to the currently available biological therapies of
severe asthma, the recent advances in our understanding of the
pathobiology of this complex disease are allowing to disclose new
potential targets for future anti-asthma treatments. In particular,
besides the downstream effectors of type 2 airway inflammation
such as IgE, IL-5, IL-4/13 and their receptors, other very
interesting pathogenic molecules include upstream activators
of cellular pathways leading to T2-high asthma. Within
this context, a key role is played by the innate cytokines
known as alarmins, including TSLP, IL-33, and IL-25 (142).
So far, the most extensively studied alarmin as suitable
target for novel biological therapies of asthma has been TSLP
(13, 143).

TSLP bioactivities are involved in several pathogenic aspects
of type 2 asthma. Indeed, by up-regulating OX40 ligand
expression, TSLP acts as a powerful inducer of dendritic cell
activation (144). Upon TSLP-mediated stimulation, dendritic
Frontiers in Immunology | www.frontiersin.org 6
cells drive naïve Th lymphocytes towards differentiation into
active Th2 cells producing IL-4, IL-5, and IL-13 (145). Moreover,
TSLP up-regulates the expression of such cytokines at level of
other cellular sources, including basophils, mast cells, and
especially ILC2 (142, 146, 147). In regard to these latter cells,
TSLP also promotes their survival and steroid resistance (147,
148). TSLP appears to be also implicated in T2-low asthma
pathobiology. In fact, this alarmin can induce dendritic cells to
drive the commitment of naïve Th cells towards a Th17
immunophenotype (149).

Tezepelumab is an anti-TSLP fully human monoclonal antibody
(Figure 1), which prevents TSLP binding to its receptor complex
(150). Tezepelumab was firstly tested in patients with mild allergic
asthma by Gauvreau et al., who noted that this anti-TSLP antibody
reduced allergen-induced FEV1 decreases, as well as post-allergen
increases in blood/sputum eosinophils and FeNO (151). A
subsequent phase IIb trial was carried out by Corren et al., who
showed that tezepelumab decreased the annualized asthma
exacerbation rate by 60–70% and enhanced pre-bronchodilator
FEV1, independently of blood eosinophil numbers (152).
Furthermore, tezepelumab lowered the most relevant biomarkers
of T2-high asthma, including IgE serum concentrations, blood
eosinophil counts and FeNO levels (152). Ongoing phase II and
III trials are evaluating the safety profile of tezepelumab, as well as its
eventual efficacy in decreasing airway inflammation and OCS intake
(142). So far, tezepelumab has not yet been investigated in regard to
its potential therapeutic effects in patients with T2-low asthma.

IL-33 cooperates with TSLP in promoting type-2 immune/
inflammatory responses (153). In particular, IL-33 induces
airway hyperresponsiveness by stimulating IL-13 release from
ILC2 and mast cells (154, 155). Several phase II trials are
underway with the aim of evaluating some biologic drugs
which target IL-33 or its ST2 receptor (142). In particular, it
has been shown that the anti-IL-33 monoclonal antibody
REGN3500 (Figure 1) was able to improve the control of
severe asthma, but its therapeutic effects did not result to be
better than those induced by dupilumab (142). Moreover, when
tested in association with this IL-4/IL-13 dual receptor
antagonist, the anti-asthma actions of such two biologicals
were comparable to those exerted by dupilumab alone (142).

Although IL-25 plays a relevant pathogenic role in allergic
inflammation, to our knowledge no anti-IL-25 monoclonal
antibody is currently in clinical development for add-on
treatment of severe asthma.

Another key mediator of type-2 asthma is prostaglandin D2

(PGD2), mainly produced by mast cells (156). PGD2 exerts its
pro-inflammatory actions via stimulation of CRTH2
(chemoattractant receptor-homologous molecule expressed on
Th2 cells) receptor, expressed by Th2 lymphocytes, ILC2 and
eosinophils (156). Binding of PGD2 to CRTH2 can be blocked by
fevipiprant (Figure 1), a selective receptor antagonist which is
not a monoclonal antibody, but rather a small compound used as
an oral drug (156). Despite the partially promising results of
some preliminary studies carried out in asthmatic patients,
however fevipiprant seems to induce only a weak FEV1

increase, similar to the functional effect of the leukotriene
TABLE 1 | Licensed biological therapies for severe asthma.

Licensed
biological
therapies

Targets Molecular mechanisms of
action

Effects in the control
of severe asthma

Omalizumab IgE Generation of IgE/anti-IgE
immune complexes that
inhibit IgE-mediated allergic
cascade

↓ Exacerbations
↑ Quality of life and
symptom control
↑ FEV1

Mepolizumab IL-5 Prevention of IL-5 binding to
IL-5Ra

↓ Blood and sputum
eosinophils
↓ Exacerbations
↑ Quality of life and
symptom control
↓ OCS intake
↑ FEV1

Reslizumab IL-5 Prevention of IL-5 binding to
IL-5Ra

↓ Blood and sputum
eosinophils
↓ Exacerbations
↑ Quality of life and
symptom control
↑ FEV1

Benralizumab IL-5Ra Blockade of IL-5Ra
ADCC-induced eosinophil
apoptosis

↓ Blood eosinophils
↓ Exacerbations
↑ Quality of life and
symptom control
↓ OCS intake
↑ FEV1

Dupilumab IL-4Ra Dual receptor antagonism of
IL-4/IL-13

↓ Exacerbations
↓ OCS intake
↑ FEV1
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receptor antagonist montelukast (157, 158). Further studies are
thus needed, even if the therapeutic potential of fevipiprant for
asthma therapy currently appears to be quite uncertain.

The molecular targets, mechanisms of action and therapeutic
effects of the above mentioned drugs are summarized in Table 2.

With regard to the potential molecular targets of biological
therapies for type 2-low neutrophilic asthma, the main focus of
current studies is the pathogenic axis connecting IL-1b, IL-23, and
IL-17. In particular, the IL-1 receptor antagonist anakinra and the
anti-IL-1b monoclonal antibody canakinumab are currently under
clinical investigation in phase I/II trials enrolling patients with mild
asthma (159, 160). In addition, further phase II studies are
evaluating, in patients with severe type 2-low asthma, the efficacy
and safety of the anti-IL-23 antibody risankizumab, as well as of an
anti-IL-17A monoclonal antibody (159, 160). However, a previous
trial carried out in moderate-to-severe asthmatics, aimed to
investigate the effects of the anti-IL-17 receptor monoclonal
antibody brodalumab, did not show any improvement in asthma
symptom control and lung function (161).
CONCLUSIONS

Ongoing progress in our knowledge of the pathobiological
mechanisms underlying the various cellular and molecular
phenotypes of severe asthma has made it possible to unveil
Frontiers in Immunology | www.frontiersin.org 7
suitable targets for add-on biological therapies. Several approved
anti-IgE, anti-IL-5, anti-IL-5 receptor, and anti-IL-4/IL-13
receptor monoclonal antibodies are currently prescribed by
clinicians. These drugs are helping patients with severe, allergic
or non-allergic eosinophilic T2-high asthma, to significantly
improve symptom control, lung function and global health
status, and especially to lessen their susceptibility to suffer
from frequent and often serious disease exacerbations.
Moreover, new promising monoclonal antibodies, mainly
targeting the innate cytokines known as alarmins, are in
advanced clinical development. However, patients with severe
T2-low asthma are largely excluded from the therapeutic benefits
achievable by people who experience T2-high severe disease.
Therefore, in the coming years strong research efforts should be
finalized to develop novel biological treatments for severe
neutrophilic or paucigranulocytic asthma, thus hoping that
patients expressing such uncontrolled phenotypes may pursue
in the near future better health conditions than the current ones.
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