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Abstract: Affective and substance-use disorders are associated with overweight and obesity-related
complications, which are often due to the overconsumption of palatable food. Both high-fat diets
(HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing
and metabolic functions. However, it is not known how they interact at the behavioural level, and
whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we
describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We
also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover,
the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants
is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on
behaviour and underlying brain processes, which are largely dependent on the developmental period.
However, apart from the studies investigating maternal exposure to HFDs, most of the published
results involve only male rodents. Future research should also examine the biological impact of HFDs
in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is
a crucial requirement of translational research and using rodent models can significantly advance the
important search for risk-related biomarkers and the development of clinical intervention strategies.
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1. Introduction

The rates of overweight and obesity are rising in children and adults in most parts
of the world, representing a major global health challenge [1]. Excessive weight and
obesity are partly due to a sedentary lifestyle combined with a high-calorie diet (i.e., a diet
rich in sugars and fat, also referred to as a “Western diet”) [2] and can be associated with
compulsive eating, binge eating disorders, as well as eating addiction [3,4]. Overweight and
obesity increase the risk of developing metabolic diseases (e.g., heart disease, stroke, high
blood pressure, diabetes), but also cancer and chronic diseases [5]. Although overweight-
and obesity-related metabolic complications can be reduced in a subset of individuals by
changes in lifestyle (i.e., balanced diet, healthy eating habits, regular physical exercise),
pharmacotherapies and/or surgical procedures, the vast majority of patients exhibit only
transient weight loss, which is followed by rebound effects [6,7].

In addition to physical complications, overweight and obesity have a strong impact
on mental health [8,9]. In particular, they increase the risk for developing depressive and
anxiety disorders as well as substance-use disorders (SUD) (e.g., illegal drugs, nicotine or
alcohol) [10–14]. The latter disorders have a high prevalence in the population worldwide
and result in a high degree of comorbidity themselves [15–17].
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In recent years, there has been increasing interest in understanding the shared neurobi-
ological substrates of obesity and SUD [18]. In both disorders, the saliency of a specific type
of reward (food or drug) becomes exaggerated, leading to overeating or compulsive drug
abuse, respectively [19]. Food and drug reward activate overlapping brain nuclei [20–22],
which complicates research designed to understand the neurobiological underpinnings of
behaviours motivated by rewards in obesity and SUD [23,24].

A theoretical mechanism that has dominated the field for many years is the dysreg-
ulation of the brain reward pathways involving the dopamine (DA) system [25], which
responds to drugs of abuse and is critical in the development of SUD [26,27]. The con-
sumption of palatable food leads to the activation of the DA reward circuitry [28]. Addi-
tionally, limiting the intake of rodent chow diet increased the sensitivity to cocaine and
amphetamine, two psychostimulant drugs widely used and abused that increase dopamin-
ergic transmission [29–31]. Furthermore, limiting the access to a high-calorie diet produced
dopaminergic adaptations similar to those observed in responses to rewarding stimuli
in the nucleus accumbens (NAc), a brain area involved in reward processing and drug
addiction [32,33].

In brain imaging studies, obese patients present a downregulation of striatal DA func-
tion [34], with individuals with the largest body mass index having the lowest dopamine
receptor 2 (D2R) availabilities [34,35]. The reduction in D2R availability was associated
with the reduced metabolism of various prefrontal brain regions [35]. Because variations in
striatal D2R availability have been linked to changes in the reinforcing value of both food
and drugs of abuse [34,36], it has been proposed that obese patients and drug addicts may
share neuroadaptations in dopaminergic pathways. These neuroadaptations may regulate
neuronal systems associated not only with reward and motivation, but also with inhibitory
control, salience attribution, and emotional reactivity. Furthermore, obese patients exhib-
ited greater activation of brain regions involved in reward and attention in response to
palatable food images or consumption compared to normal-weight subjects [37,38]. Thus,
these neuroadaptations may produce a reduced state of reward, which is then possibly
compensated for by the overconsumption of palatable food and/or the abuse of drugs [39].

Multiple intertwined genetic, psychosocial, and neuro-immuno-endocrine factors
have been proposed to contribute to the association of obesity and SUD, including the
gut–brain axis, inflammation and oxidative stress [40–44]. In particular, much evidence
shows that overweight and obesity are associated with alterations in oxidative stress
and mitochondrial functions in peripheral organs and in the brain [45–48]. In parallel,
drugs of abuse have been shown to increase oxidative stress occurring in dopaminergic
neurotransmission [49–53]. A better knowledge of the precise neurobiological mechanisms
contributing to the comorbidity of obesity and SUD, and their independent association with
depressive and anxiety disorders, is needed. This could help understand how palatable
food and drugs of abuse disrupt the reward circuit and lead to changes in compulsive and
affective behaviours. This may also inform novel therapeutic targets and preventive efforts
for obesity and SUD.

2. Aim of the Present Review

In this context, the aims of this narrative review are the following.
First, we recapitulate some of the predominant behavioural changes caused by expo-

sure to palatable food and in combination with psychostimulant drugs (i.e., cocaine and
amphetamine) in juvenile, adolescent, and adult rodents. Because of the high prevalence of
obesity in pregnant women [54] and the short- and long-term negative consequences of
poor nutrition during pregnancy and lactation on both the mother and child [55], we also
examine the impact of palatable food in dams and their offspring.

Second, we describe the neurobiological mechanisms that may contribute to disrup-
tions in behaviour and metabolic functions by palatable food in rodents. At the molecular
level, we focus on brain energetics, mitochondrial function, oxidative stress, neuroplasticity
and neuro-inflammation. A more detailed analysis of the molecular mechanisms involv-
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ing the microbiota–gut–brain axis falls outside the scope of the current review (for more
information see [56–59] and discussion Section 7.2.2).

Finally, we attempt to address the issue of whether the consumption of high-energy
diets and psychostimulant drugs leads to overlapping changes in brain metabolism and
plasticity that alter emotional states and thus modulate subsequent behaviours.

3. Important Considerations on the Use of High-Fat Diet Treatments in Rodents

Over the past century, diet-induced obesity models have been used in rodents to
investigate the body and brain alterations that occur during the progression of obesity and
in the presence or in the absence of predetermined genetic alterations [60]. They include
various approaches (i.e., diets rich in fat and/or sugar, genetic models, pharmacological
models) and produce, in various degrees, alterations in energy metabolism resembling those
found in obese patients. For example, high-energy diets markedly increase body weight and
adiposity, and induce a pre-diabetic phenotype (e.g., hyperglycaemia, hyperinsulinemia,
insulin resistance, glucose intolerance). Moreover, they produce hormonal dysregulation,
hypothalamic neuropeptidergic adaptations and low-grade inflammation [61–65].

For the behavioural level, the current literature is filled with examples in which
long-term exposure to high-energy diets alters cognitive performance and modulates emo-
tionality [66–72]. The latter can be defined as the measure of emotional behaviour related
to undirected escape, avoidance of specific stimulus or area, immobility and sympathetic
nervous system activation (e.g., heart rate, urination, defecation) [73]. However, there are
numerous discrepant findings, for instance in rodent models of depression [69]. The main
theoretical premise behind the inconsistencies concerns variations in experimental designs
(e.g., diet content and duration, exposure period; sex, age, species and genetic background
of the animals used; behavioural tests).

Recent criticism of the preclinical (mainly rodent) literature indicates that the com-
monly used commercial high-energy diets may not necessarily model the dietary habits
associated with overweight and obesity in humans [74]. For instance, rodent high-fat diets
(HFDs) typically contain either ≈45% or 60% kcal from fat and are characterised by varying
fatty acid composition [62,74]. Because the currently recommended total fat intake for adult
humans ranges from 20 to 30% [75,76] and the average European/American diets contain
approximately 28.5 to 46.2% kcal from fat [74,77,78], the use of rodent HFD containing
≈45% kcal from fat seems the most appropriate diet from a translational point of view.

Here, we aimed to reduce the heterogeneity of findings between studies and parallel
the fat content found in the average European/American diets. Thus, we compare the
behavioural effects of HFD treatments containing ≈25–50% kcal from fat (predominantly
45%) with control (CON) diets providing 3–18% fat (usually 10%). Studies that used a
rodent HFD containing a very high amount of fat (≈60% kcal), which rapidly produce
extreme obesity [62] and increase pup cannibalism in dams [79], were excluded from the
present review.

With the exception of the studies on maternal HFD and a few other studies, all re-
viewed studies used male mice or rats. To assess biological parameters indicative of
metabolic dysfunction, the negative impact of the HFD treatment on energy metabolism
was almost systematically verified (e.g., body weight gain, increased calorie intake, hy-
perglycaemia, hyperinsulinemia, dyslipidaemia, peripheral inflammation) (see details in
Supplementary Table S1).

4. Impact of a High-Fat Diet Treatment on Emotionality, Cognition and
Reward-Related Behaviour

The impact of HFD treatment on rodent behaviour is summarized in Table 1.
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Table 1. Literature overview of the impact of a high-fat diet treatment on emotionality, cognition and
reward-related behaviours in rodents, taking into account the developmental period. Description:
Studies are organised by the developmental period (i.e., before puberty or early adolescence, during
late adolescence or in adulthood) in which the high-fat diet (HFD) treatment was applied. For the
effects of a maternal HFD treatment, studies are organised by the developmental period (i.e., before
puberty or early adolescence, during late adolescence or in adulthood) in which the offspring were
tested. All studies reviewed used male (♂) mice (m) or rats (r), otherwise indicated by the female (♀)
symbol. The numbered references refer to the bibliography section.

Outcomes & Ref.
Behavioural Test Assessement ↑

(Increased)
↓

(Decreased)
↔

(Not Changed) Conclusion

Maternal HFD treatment (pre-partum)
Testing in adult offspring

EPM Anxiety ♂♀(pooled) [83r] ↔
(not changed)

OFT Locomotion/exploration ♂♀(pooled) [83r] ↔
(not changed)

OBT Learning & memory ♂♀(pooled)
[83r]

↓
(decreased)

Maternal HFD treatment (pre- and post-partum)
Testing in juvenile offspring

EZM Anxiety ♂♀[86r] ↔
(not changed)

FST Passive stress-coping ♂♀[86r] ↑
(increased)

AC Locomotion/exploration ♂♀[86r, 87r] ↔
(not changed)

RW Volontary exercise ♀[85r] ♂[85r] ∆
(sign. changes)

SPT Anhedonia ♂♀[86r] ↔
(not changed)

NORT Learning & memory ♂♀[86r] ↔
(not changed)

AC AMPH locomotion [87r] ↓
(decreased)AC AMPH sensitization [87r]

Maternal HFD treatment (pre- and post-partum)
Testing in adolescent offspring

AC Locomotion/exploration ♀[88r] ↔
(not changed)

ACQ
COC- self-administration

♀[88r] ↔
(not changed)EXT ♀[88r]

RST ♀[88r]
Maternal HFD treatment (pre- and post-partum)

Testing in adult offspring

EZM Anxiety ♂♀(pooled) [83r] ↔
(not changed)

AC/OFT Locomotion/exploration ♂♀(pooled) [83r, 145r] ↔
(not changed)

OBT Learning & memory ♂♀(pooled) [83r] ⊗
(inconcl.)MWM [89r]

Juvenile HFD treatment
EPM/ETM/MBT/

OFT/DaLi Anxiety [92r, 100r, 101m,
103r, 104m] [104m] [93m, 94m, 95m, 99m, 102m,

104m]
⊗

(inconcl.)

FST Passive stress-coping [92r] [95m, 105r] [101m, 102m, 106r] ⊗
(inconcl.)

OFT/CA Locomotion/exploration
[93m, 94m, 95m, 100r, 101m,

102m,103r]
↔

(not changed)
HBT [101m]

FUST/SIT Anhedonia [102m] ↔
(not changed)

NORT/RAM/HWM/ Learning & memory
[93m, 94m,
95m, 96m]

↓
(decreased)

MWM/PAT [92r, 109m]
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Table 1. Cont.

Outcomes & Ref.
Behavioural Test Assessement ↑

(Increased)
↓

(Decreased)
↔

(Not Changed) Conclusion

EXP
COC/AMPH-ind. CPP

[112m *$] [108r *, 109m,
112m *$]

♂♀[107m *, 108r, 109m,
110m *] ∆

(sign. changes)EXT ♂♀[107m *, 110m *, 112m *]
RST [99m] [110m *] [107m *, 112m *]

ACQ/RST COC self-administration [107m *] ↑
(increased)

OFT/AC COC/AMPH locomotion [99m, 113r]
∆

(sign. changes)
AC AMPH sensitization [113 r] [108r]

EPM COC-ind. anxiety [107m *]
FST COC-ind. immobility [106r]

HFD treatment in late adolescence
EPM/EZM/MBT/OFT/

NSF/DaLi Anxiety [114r, 115m,
118m, 177m] [116m, 120m] ↑

(increased)

FST/TST Passive stress-coping [117m] [102m, 116m, 118m] ⊗
(inconcl.)

OFT/TM Locomotion/exploration [117m, 119m] ↓
(decreased)

SPT/SxB/FUST
Anhedonia

[116m] [102m] ⊗
(inconcl.)SIT [116m] [120m]

SRT [116m]
NORT/MWM/BM Learning & memory [116m, 121m, 122m] ↔

(not changed)OBT [122m]
Adult HFD treatment

OFT Anxiety [126m] ↔
(not changed)

OFT/YM Locomotion/exploration [127m] [126m] ⊗
(inconcl.)

SPT Anhedonia [125r] ↔
(not changed)

TWAT Learning & memory [126m] ↔
(not changed)

OFT/AC COC/AMPH locomotion [129r] [128r] ∆
(sign. changes)EPM COC-ind. anxiolysis [128r]

FST COC-ind. active coping [128r]

Abbreviations: AC: activity cage; ACQ: acquisition; AMPH: amphetamine; BM: Barnes maze test; COC: cocaine;
CPP: conditioned place preference test; DaLi: dark–light box test; EPM: elevated plus-maze test; ETM: elevated
T-maze test; EZM: elevated zero-maze test; EXP: expression; EXT: extinction; FST: forced swim test; FUST: female
urine sniffing test; HBT: hole board test; HFD: high-fat diet; HWM: Hebb Williams maze test; m: mice; ind.: induced;
MBT: marble burying test; MWM: Morris water maze test; NORT: novel object recognition test; NSF: novelty-
suppressed feeding test; OBT: operant bar-pressing task; OFT: open-field test; PAT: passive avoidance task; r: rats;
RAM: radial arm maze test; RST: reinstatement; RW: running wheel; SIT: social interaction test; SPT: sucrose
preference test; SRT: social recognition test; SxB: sexual behaviour; TM: T-maze test; TST: tail suspension test;
TWAT: two-way avoidance task; YM: Y-maze test. Symbols: * limited access to a high-fat diet; $: outcomes
differing based on the housing conditions.

4.1. Impact of a Maternal High-Fat Diet Treatment in Dams

HFD consumption during pre- and post-partum periods, two metabolically chal-
lenging periods, produced mixed changes in the gestational body weight, but generally
increased adiposity and induced hyperleptinemia in dams (see Supplementary Table S1).
The behavioural profile of the dams showed that maternal HFD had a negative impact on
maternal behaviour, especially regarding nest building and pup licking/grooming [80,81].

Interestingly, one study showed that maternal HFD had no significant impact on
nursing behaviour in breeding dams. However a reduction in the quality of maternal care
was observed in dams from generation F3, which were selectively bred for diet-induced
obesity or diet-induced resistance [82].

So far, few studies have investigated the link between obesity-related factors and
increased risk for maternal diseases as well as the importance of inherited predisposition to
HFD-induced obesity. Further work is therefore needed to understand how obesity during
pregnancy and lactation influence the maternal metabolic and behavioural adaptations
necessary to bring about new life.
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4.2. Impact of a Maternal High-Fat Diet Treatment in Offsspring

To our knowledge, very few studies examined the impact of HFD treatment (containing
≈ 25–45% kcal from fat) applied to breeding dams during pregnancy and lactation on the be-
havioural and metabolic phenotypes of the offspring (see Table 1, Supplementary Table S1).

The offspring of mothers fed a HFD during pregnancy showed impaired learning in
an operant conditioning paradigm when tested in adulthood [83]. This was indicated by an
increased number of sessions required to press an operant lever and obtain a reward [83].
However, mice from HFD-fed dams and CON-fed dams did not significantly differ regard-
ing their motivation to obtain a reward and their appetitive and/or consummatory drive
(i.e., a similar number of rewards was received) [83]. They also did not significantly differ
regarding locomotion and anxiety-related behaviour [83]. Because of the very limited data
available regarding the long-term behavioural consequences of a HFD during prenatal
development, further work is required to draw any conclusion.

A few studies investigated the effects of a HFD during the pre- and post-partum
periods on the offspring’s development, behaviour and cognition. Juvenile offspring of
mothers fed a HFD during pregnancy and lactation showed an increased preference for a
1% corn oil solution [84], changes in voluntary running wheel activity [85] and increased
passive stress-coping behaviour [86]. No significant differences between the offspring of
HFD-fed dam and CON-fed dams were seen in locomotion, anhedonia and learning and
memory [86,87]. Regarding psychostimulant-related behaviour, the offspring displayed
reduced amphetamine-induced locomotion and sensitization [87].

Compared to offspring of CON-fed mothers during pregnancy and lactation, adoles-
cent offspring of mothers fed a HFD treatment during pregnancy and lactation showed no
significant differences in locomotion and the rewarding or motivational effects of cocaine
in the cocaine self-administration paradigm [88]. When tested in adulthood, a few studies
failed to also detect an effect on a maternal HFD treatment on behavioural phenotypes,
notably locomotion, anxiety-related behaviour and cognitive performance [83,89].

It is important to mention that the maternal HFD produced long-term changes in the
reactivity of the hypothalamic–pituitary–adrenal axis, the core mediator of neuroendocrine
stress responses [90]. In addition, cognitive deficits could be identified by a post-weaning
exposure to HFD treatment [89], suggesting that a second hit stressor may be necessary to
unmask programmed behavioural defects of the early nutritional environment.

4.3. Impact of a High-Fat Diet Treatment during the Onset of Puberty and Early Adolescence
4.3.1. Cognition and Emotionality

The consumption of a HFD during the onset of puberty and early adolescence period
(here referred to as “juvenile HFD”, involving 4–6-week-old mice and 3–9-week-old rats [91]
produced long-term negative consequences on hippocampus-dependent cognition (see
Table 1). This was observed in several tasks assessing spatial memory, recognition memory
and fear-aggravated memory [92–96]. Similar to the effects of a metabolic challenge (i.e.,
exposure to HFD), chronic exposure to physical and/or psychosocial stressors early in
life produced long-term impairments in learning and memory in rodents, specifically for
the spatial domain [97,98]. However, the biological and signalling pathways leading to
alterations in cognitive performance for the different types of stress may differ.

Regarding emotionality, a juvenile HFD treatment did not reliably increase anxiety-
related behaviour in various paradigms [92,93,95,99–104]. It also had no major impact on
locomotion and stress-coping style in the forced swim test [92–95,100–103,105,106] (see
Table 1).

4.3.2. Psychostimulant-Related Behaviour

Concerning psychostimulant-related behaviour (see Table 1), the outcomes of a ju-
venile HFD treatment were dependent on its schedule of availability. When given ad
libitum, a juvenile HFD treatment weakened cocaine- and amphetamine-related memo-
ries in the conditioned place preference (CPP) paradigm, especially for the lower drug
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doses administered [99,107–109]. When time-restricted access was provided, juvenile HFD
treatment leading to binge eating enhanced the acquisition and reinstatement of cocaine
self-administration [107]. The results of these studies suggest that palatable food can mod-
ulate psychostimulant-rewarding and reinforcing properties under certain patterns of food
administration. In particular, they highlight that animals that develop a pattern of binge
eating on palatable food are more vulnerable to psychostimulant drugs (referred to as
cross-sensitization) [111]. The neurobiological mechanisms by which HFD treatments and
psychostimulant drugs act to promote compulsive behaviour warrant further investigation.

One crucial factor to consider is the importance of the social housing conditions of
the animals. In fact, a juvenile intermittent HFD treatment led to binge eating in single-
housed mice and reduced their cocaine-induced CPP, but increased cocaine-induced CPP in
group-housed animals that did not show binge-eating behaviour [112]. This study suggests
that palatable food may work as an alternative reward to psychostimulant drugs and
stimulates the same brain pathways as psychostimulants do. However, the mechanisms by
which social housing conditions modulate the rewarding properties of HFD treatment are
presently unclear.

Regarding the behaviour of animals during the exposure to psychostimulant drugs
(see Table 1), a juvenile HFD treatment was found to modulate the behavioural sensiti-
zation to amphetamine [108,113] and had a minor impact on cocaine-induced anxiolytic
and “antidepressant” effects [106,107]. During cocaine withdrawal, HFD treatment facili-
tated the extinction of cocaine-induced CPP, increased cocaine-induced locomotion, and
produced anxiolytic and antidepressant effects [99,106]. Interestingly, preventing access to
the HFD treatment increased anxiety-related behaviour, cocaine-induced locomotion and
cocaine-induced CPP for a subthreshold cocaine dose [107], suggesting that withdrawal
from HFD could potentiate psychostimulant-rewarding properties.

The long-term consequences of chronic consumption of (and withdrawal from) palat-
able foods during the early adolescence period remain unclear but might lead to alterations
of the brain reward system that have been associated with obesity and metabolic disorders.

4.4. Impact of a High-Fat Diet Treatment during Late Adolescence and Young Adulthood

Turning to the experimental evidence on the impact of HFD treatment during late
adolescence and young adulthood (i.e., in 6–9-week-old mice and 9–10-week-old rats [91]),
(see Table 1), the summarized data show that an adolescent HFD treatment increased
anxiety-related and anhedonia-like responses, without reliably affecting stress-coping
style [114–118]. It also reduced locomotion, exploration but not social behaviours [116,117,119,120].
In contrast to HFD treatment in juveniles, HFD treatment in adolescents had no major
impact on hippocampus-dependent learning and memory [116,121,122]. Similar results of
increased emotionality and reduced reward responsiveness have been reported in rodents
exposed to physical and/or psychosocial stressors during adolescence [123,124].

4.5. Impact of a High-Fat Diet Treatment in Adulhood

HFD treatment in adulthood (beyond the age of 9 weeks in mice and 10 weeks in rats)
reduced the hedonic response in the sucrose preference test [125], but it did not produce
major behavioural alterations concerning anxiety, locomotion/exploration, and learning
and memory [126,127]. However, with such a small number of studies, caution must be
applied, as these findings might not reflect the overall impact of an adult HFD treatment
on emotionality, cognition and reward-related behaviour in rodents.

HFD treatment in adults altered cocaine-induced locomotor and antidepressant ef-
fects [128], and increased amphetamine-induced locomotion, but without inducing a be-
havioural sensitization to amphetamine [129]. Interestingly, withdrawal from amphetamine
significantly increased body weight gain and produced hyperphagia in HFD-fed animals,
suggesting that HFD consumption may alleviate reward deficits mediated by psychostimu-
lant withdrawal. Because the increase in food consumption in amphetamine-withdrawn
rats was specific to the laboratory chow rather than the HFD [129], further work is needed
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to determine how psychostimulant drugs and HFD interact to produce long-lasting sensiti-
zation of reward-related behaviours.

4.6. Conclusions

In light of the reported findings, it is conceivable that the strong effects of HFD
treatment on cognitive performance and reward-related behaviour were seen in both
juvenile and adolescent rodents. Indeed, during the pre-pubertal phase and adolescence,
rodents undergo dramatic hormonal, neurobiological and behavioural changes [130–132].
In particular, the limbic system (notably the hippocampus and amygdala) as well as
cortical regions involved in emotional and learning processing undergo structural and
functional maturation [133]. Data from several studies have identified these periods
as critical time windows during which stress exposure produces short- and long-term
effects on emotionality and cognition [134–137], as well as associated neural structure and
function [138–140]. In humans, adolescence is considered a window of vulnerability to
pathological development [141,142]. Adolescents are particularly sensitive to reward and
often increase their consumption of palatable foods, such as a high-fat diet [143], which
could lead to obesity.

Because pre-puberty and adolescence are critical periods of neurobehavioural reor-
ganization necessary for life-long cognitive processes and reward processes, the possible
mechanisms underlying the marked vulnerability to the detrimental effects of HFD treat-
ment may involve changes in energy metabolism and neuronal plasticity. Such mechanisms
are discussed in the next section.

5. Impact of a High-Fat Diet Treatment on Molecular Correlates of Energy Metabolism
and Plasticity

As reviewed above, poor dietary choices during crucial stages of development can
have a detrimental impact on emotionality, cognition and reward-related behaviours.
Therefore, what are the effects of HFDs on underlying brain mechanisms?

The impact of HFD treatment on energy metabolism, molecular correlation of mito-
chondrial dysfunction (e.g., redox imbalance, oxidative damage and inflammation) and
neuroplasticity in rodents is summarized in Table 2. Data are sorted by brain area and
developmental period (see details in Supplementary Table S1).

5.1. Impact of a High-Fat Diet Treatment on the Cerebral Cortex
5.1.1. Energy Metabolism

Regardless of the time at which it was applied, HFD treatment had a minor im-
pact on glucose, amino acid and phospholipid metabolism in the cortex [105,119,127].
However, it seemed to have induced a slight molecular insulin resistance, as indicated
by increased insulin level and a lack of activation response of key players of the in-
sulin/phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β)
cascade [119].

5.1.2. Mitochondria-Related Functions and Oxidative Stress

The data gathered show that HFD treatment in both juveniles and adults had a minor
impact on cortical mitochondrial bioenergetics (i.e., expression of mitochondrial respiratory
chain complexes, respiratory spare capacity, ATP production) [105,144] and the cell redox
state [121,127,144]. One study in HFD-fed juvenile animals found a significant decrease
in the level of superoxide dismutase (SOD), the first line of defence against oxidative
stress, and the anti-oxidant glutathione (GSH) [144]. This was associated with enhanced
lipid peroxidation, indicated by increased level of malondialdehyde, and modest neuro-
inflammation shown by the variations in the expression of some cytokines (e.g., tumour
necrosis factor alpha and interleukins 1β) [144]. Two other studies in HFD-fed juvenile or
adolescent animals observed no significant changes in the level of GSH and hydroxynonenal
(HNE), another indicator of lipid oxidation [121,127]. No significant changes were seen in
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the expression of glial fibrillary acidic protein (GFAP) and IBA1 (allograft inflammatory
factor 1), a marker of activated microglia [127].

Interestingly, alterations in the redox balance were found in cortical synaptic mito-
chondria from HFD-fed animals, which also showed alterations in several mitochondrial
respiration parameters (i.e., reduced basal respiration, ATP production, proton leak and
increased degree of coupling) [144]. Thus, it is possible that HFD treatment produced
detrimental effects particularly localized at the synapses.

5.1.3. Neuroplasticity and Neuroinflammation

Because synaptic mitochondria regulate synaptic transmission, variations in synaptic
mitochondrial respiration accompanied by increased oxidative stress would be expected
to be associated with changes in neurotransmission and neuroplasticity. However, HFD
treatment had only a minor impact on synaptic plasticity in the cortex [115,121,127,144].
As for maternal HFD treatment, it had no significant impact on dopaminergic markers
in the prefrontal cortex of juvenile offspring [87]. It is noteworthy that HFD treatment in
adolescents modulated the expression of brain-derived neurotrophic factor (BDNF), a major
regulator of synaptic transmission and plasticity [144]. Additionally, it reduced the synaptic
BDNF protein synthesis and the phosphorylation of BDNF upstream factor cyclic AMP-
responsive element-binding protein (CREB) in cortical synaptosomal fractions [144], again
highlighting the marked effects of HFD treatment on BDNF-related molecular plasticity at
the synaptic level.

5.2. Impact of a High-Fat Diet Treatment on the Hippocampus
5.2.1. Energy Metabolism

In the hippocampus, a critical brain area for learning and memory, HFD treatment had
a minor influence on glucose metabolism and insulin signalling, and no significant impact
on glucose transport, amino acid and phospholipid metabolism [105,119,122,127]. As
observed for the cerebral cortex, an HFD in adolescence might be associated with a minor
molecular insulin resistance, as shown by the lack of activation response of Akt [119]. It
might also be associated with reduced glycolysis processes, as suggested by the significant
increase in the expression of glucose-6-phosphate and the reduced activity of the pyruvate
dehydrogenase enzyme [105].

5.2.2. Mitochondria-Related Functions and Oxidative Stress

The available evidence shows no major impact of HFD treatment in juveniles and
adults on oxidative capacity and redox balance of the hippocampus. Indeed, mixed changes
were seen in the protein expression of some respiratory chain complexes and no signifi-
cant impact was found on citrate synthase activity and ATP production or anti-oxidant
level [94,121,127]. It also revealed contrasting signs of lipid peroxidation, astrogliosis,
microgliosis and discrepant changes in cytokines release [94,103,117,121,126,127].

5.2.3. Neuroplasticity and Neuroinflammation

In contrast to observations made in the cortex, HFD treatment had a major impact
on hippocampal neurotransmission and synaptic plasticity in all periods examined, but
especially during adolescence. For example, HFD treatment significantly affected sero-
tonergic transmission [117,118]. HFD treatment reduced the expression of BDNF, as well
as that of key synaptic proteins involved in vesicle trafficking and receptor anchoring;
it also reduced the number of dendritic spines and produced some changes in the cyto-
architecture of the hippocampus [117,121,122,127]. Similarly, maternal HFD treatment
decreased the length of dendritic spines (without affecting the spine density) and altered
astrocyte morphology [89,145].
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5.3. Impact of a High-Fat Diet Treatment on the Hypothalamus
5.3.1. Energy Metabolism

Unfortunately, studies that examined the impact of HFD treatment on the hypothala-
mus during adolescence are lacking. Regarding HFD treatment in juveniles and adults, a
close look at the data indicates that it did not affect hypothalamic glucose, amino acid or
phospholipid metabolism [127,146,147]. Nonetheless, it potentially produced alterations
in insulin signalling, as indicated by increased insulin receptor expression in the arcuate
nucleus (ARC), an area of particular importance to energy homeostasis [146,147].

Table 2. Literature overview of the impact of a high-fat diet treatment on molecular correlates of
energy metabolism and plasticity in the brain of rodents. Description: Studies are organized by period
in which the high-fat diet (HFD) treatment was applied (i.e., before puberty, during adolescence or in
adulthood). For the effects of a maternal HFD treatment, studies are organised by the developmental
period (i.e., before puberty or early adolescence, during late adolescence or in adulthood) in which
the offspring were tested. The numbered references refer to the bibliography section.

Outcomes
Brain Area & Ref. Overall

Function ↑
(Increased)

↓
(Decreased)

↔
(Not Changed)

Maternal HFD treatment
Testing in offspring

PFC
[87] Neuronal func. Level of DA, DOPAC

HC
[89,145]

Neuronal func. Dendritic spine length Dendritic spine density
DCX-positive cells

Neuroinflam. Astrocyte process
number and total length

AMY
[145] Neuronal func. Dendritic spine length Dendritic spine density

NAc
[84,87] Neuronal func.

Level of DA, DOPAC
Ddr2 mRNA
Htr1a mRNA

TH density fibres
Expression of TH, DAT,
D1/2R

STR
[85,87] Neuronal func. Expression of TH, DAT,

D1/2R
VTA

[84,87] Neuronal func. Htr1a mRNA TH positive neurons §
Th mRNA §

TH positive neurons §
Th mRNA §

Juvenile HFD treatment

Glucose metab. Glucose transport,
glycolysis

Insulin signaling Insulin level Insulin sensitivityCC
[105]

OXPHOS Expression of ETC CIV-V Spare respiratory
capacity

Expression of ETC CI-III,
basal OCR, State 3 OCR,
level of ATP

Glucose metab. Glycolysis Glucose transport

Insulin signaling Insulin level and
sensitivity

OXPHOS Expression of ETC CI-II Expression of ETC CI-V,
level of ATP

MT biogenesis Expression of PGC1α,
PPARγ

Oxidative stress Lipid peroxidation Anti-oxidant defenses
(SOD, GPX)

Neuronal func. Dendritic spines,
expression of SYP Expression of BDNF

HC
[103–105]

Neuroinflam. Level of IL10,
micro/astrogliosis Level of IL6 Level of IL6, IL1β, TNFα,

microgliosis
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Table 2. Cont.

Outcomes
Brain Area & Ref. Overall

Function ↑
(Increased)

↓
(Decreased)

↔
(Not Changed)

Insulin signaling Ins mRNA Mtor, Irs1 mRNA

OXPHOS Expression of ETC CI-V,
level of ATP

Oxidative stress
Anti-oxidant defenses
(SOD, CAT), lipid
peroxidation

HYP
[104,147,148]

Neuroinflam. Microgliosis Tgfβ mRNA, microgliosis
AMY

[103,104] Neuroinflam. Level of TNFα,
microgliosis Level of IL6

Insulin signaling Mtor mRNA
NAc

[107,108,113] Neuronal func. Expression of D1R Expression of DAT
Basal DA release; level of
DA, DOPAC; expression
of TH, DAT, D1/2R

VTA
[113] Neuronal func.

Spontaneous/bursting
DA activity
Expression of TH, DAT

HFD treatment in late adolescence
Insulin signaling Insulin sensitivity

Oxidative stress
Anti-oxidant defenses
(GSH, GSSG), lipid
peroxidation

Neuronal func. Ddr2 mRNA Gabbr1/2 mRNA Expression of BDNF, SYP
Drd1 mRNA

CC
[115,117,119,121]

Neuroinflam. Il1β, Il2 mRNA Il10, Il4, Il6, Tnfα, Tgfβ,
Ifnγ mRNA

Insulin signaling Insulin sensitivity

Oxidative stress
Anti-oxidant defenses
(GSH, GSSG), lipid
peroxidation

Neuronal func.
Nissl staining, Bdnf
mRNA, level of 5-HT;
Htr1a, Slc6a4, Ido2 mRNA

CA1 pyramidal layer
thickness, CA1 LTP,
expression of PSD95,
BDNF, SYP

HC
[117–119,121]

Neuroinflam. Il1β, Il2, Il6, Il17 mRNA Il10 mRNA Il4, Tnfα, Tgfβ, Ifnγ
mRNA

HYP [149] Neuroinflam. IL1β mRNA, astrogliosis
Adult HFD treatment

Glucose metab. Level of glucose, lactate
AA/PL metab. Level of PEA Level of Gln, Glu, GABA

OXPHOS State 3 OCR, Spare
respiratory capacity

Oxidative stress Lipid peroxidation Anti-oxidant defenses
(GSH, GSSG, SOD)

Anti-oxidant defenses
(GSH, As)

Neuronal func. Expression of BDNF
Level of NAA,
expression of PSD95, SYP,
SYN, VGLUT1/2, VGAT

CC
[127,144]

Neuroinflam. Level of TNFα, IL1β Micro/astrogliosis
Glucose metab. Level of glucose, lactate

AA/PL metab. Level of Gln, Glu, GABA,
PEA

Oxidative stress Anti-oxidant defenses
(GSH, As)

Neuronal func. Expression of SYN,
VGLUT1, VGAT

Level of NAA, expression
of PSD95, SYP, VGLUT2

HC
[126,127]

Neuroinflam. Tnfα, mRNA,
microgliosis
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Table 2. Cont.

Outcomes
Brain Area & Ref. Overall

Function ↑
(Increased)

↓
(Decreased)

↔
(Not Changed)

Glucose metab. Level of glucose, lactate
Insulin signaling Ins mRNA

AA/PL metab. Level of Gln, Glu, GABA,
PEA

Oxidative stress Anti-oxidant defenses
(GSH, As)

Neuronal func. Expression of
VGLUT1/2, VGAT

Level of NAA, expression
of PSD95, SYP, SYN

HYP
[127,146]

Neuroinflam. Level of TNFα, IL1β, IL6,
astrogliosis Microgliosis

Abbreviations: 5-HT: serotonin; AA: amino-acid; AMY: amygdala; As: ascorbate; ATP: adenosine triphosphate;
BDNF/Bdnf : protein/gene coding for brain-derived neurotrophic factor; CA1: region 1 of the cornu ammonis;
CAT: catalase; CC: cerebral cortex; D1R/Drd1: protein/gene coding for dopamine receptor 1; D2R/Drd2: pro-
tein/gene coding for dopamine receptor 2; DA: dopamine; DAT: dopamine transporter; DCX: doublecortin;
DOPAC: 3,4-dihydroxyphenylacetic acid; ETC CI-V: electron transport chain complex I-V; GABA: gamma-
aminobutyric acid; Gabbr1/2: gene coding for gamma-aminobutyric acid type B receptor subunit 1 or 2; Gln: glu-
tamine; Glu: glutamate; GPX: glutathione peroxidase; GSH: glutathione; GSSG: oxidised glutathione; HC: hip-
pocampus; HFD: high-fat diet; Htr1a: gene coding for 5-hydroxytryptamine receptor 1A; HYP: hypothalamus;
Ido2: gene coding for indoleamine 2,3-dioxygenase 2; Ifnγ: gene coding for interferon; IL/Il: protein/gene coding
for interleukin; Ins: gene coding for insulin; Irs1: gene coding for insulin receptor substrate 1; LTP: long-term po-
tentiation; metab.: metabolism; MT: mitochondria; Mtor: gene coding for mechanistic target of rapamycin kinase;
NAA: N-acetyl aspartate; NAc: nucleus accumbens; Neuroinflam: neuro-inflammation; Neuronal func.: neuronal
function; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; PEA: palmitoylethanolamide;
PFC: prefrontal cortex; PL: phospholipid; PGC1α: peroxisome proliferator-activated receptor gamma coactivator
1-alpha; PPARγ: peroxisome proliferator-activated receptor gamma; PSD95: postsynaptic density protein 95;
Slc6a4: gene coding for sodium-dependent serotonin transporter; SOD: superoxide dismutase; STR: striatum;
SYN: syntaxin; SYP: synaptophysin; Tgfβ: gene coding for transforming growth factor beta; TH/Th: protein/gene
coding for tyrosine hydroxylase; TNFα/Tnfα: protein/gene coding for tumour necrosis factor; VGAT: vesicular
GABA transporter; VGLUT1/2: vesicular glutamate transporter 1 or 2; VTA: ventral tegmental area. Sym-
bols: §: outcomes differing based on the age of animals at the time of testing.

5.3.2. Mitochondria-Related Functions and Oxidative Stress

HFD treatment in juveniles had no significant impact on hypothalamic mitochondrial
respiration and energy storage during oxidative phosphorylation. This was shown by
the absence of significant changes in the activity of respiratory chain complexes and ATP
production [147,148]. It also had no significant impact on the cell redox state [147,148]. For
instance, it did not alter the expression of first-line antioxidant defences, SOD, catalase
(CAT) and GSH [147]. Additionally, it did not alter the total anti-oxidant status and did not
increase oxidative damage to lipids [147,148].

HFD treatment in juveniles produced slight alterations in hypothalamic mitochondrial
morphology [147,150]. A decreased mitochondrial surface area was reported in the par-
aventricular nucleus of the hypothalamus (PVN), although no significant changes were
seen in the mitochondria type, aspect ratio and surface density coverage [147]. Thaler and
colleagues (2012) found divergent mitochondria ultrastructure in pro-opiomelanocortin
(POMC) neurons of the ARC. In this study, the morphological examination of mitochondria
displayed homogenous, compact electron-dense lumens with well-organised, parallel-
oriented cristae in mitochondria in chow-fed rats but not in HFD-treated rats [150].

5.3.3. Neuroplasticity and Neuroinflammation

In the hypothalamus, HFD treatment in adults was found to produce astrogliosis
as well as reduce the protein expression of vesicular glutamate transporter and GABA
transporters, possibly reducing the availability of excitatory and inhibitory vesicles for
neurotransmission [127,149]. However, no significant impact of HFD treatment was seen
on the expression of synaptic proteins, neuronal integrity and microgliosis [104,127,147].
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5.4. Impact of a High-Fat Diet Treatment on the VTA-NAc DA System
5.4.1. Impact of a High-Fat Diet Treatment

To our surprise, there has been little research on the impact of HFD treatment on
brain metabolism and plasticity within brain regions that are potentially involved in the
behavioural overlap of consumption of HFD and psychostimulant-related behaviour.

For example, maternal HFD treatment had a significant impact on the basal func-
tionality of the ventral tegmental area (VTA)–nucleus accumbens (NAc) DA pathway,
which plays a critical role in reward-relevant behaviours and emotional behaviours, es-
pecially following stress exposure [151]. For example, juvenile offspring from HFD-fed
dams showed a significant increase in the level of the DA neurotransmitter and in 3,4-
Dihydroxyphenylacetic acid (DOPAC, a metabolite of DA) in the NAc [87]. No significant
changes were seen in the expression of the DA transporter (DAT), DA receptors and ty-
rosine hydroxylase (TH), the rate-limiting step in this synthesis of DA [87]. In the VTA,
juveniles from HFD-fed dams exhibited changes in the expression of TH and the number
of TH-positive neurons [87]. Further studies are therefore needed to determine how HFD
treatment produces neuro-adaptations in the mesolimbic DA system during the pre- and
the post-partum periods to influence reward-related behaviours.

By contrast to observations in offspring from HFD-fed dams, HFD treatment applied
during early life had a minor impact on the VTA-NAc DA pathway. For example, HFD
treatment produced no significant changes in DA neuronal function of the VTA, DA release
in the NAc, and it generated contrasting variations in the expression of DAT and DA
receptors [108,113]. Further work is therefore needed to characterise the impact of HFD
treament impact the activity of the mesolimbic DA system.

5.4.2. Combined Effecs of a High-Fat Diet Treatment with Psychostimulant Drugs

When combined with psychostimulant drugs, HFD treatment significantly increased
the activity of VTA DA neurons in response to amphetamine; it also potentiated NAc
DA release and induced the recruitment of postsynaptic DA receptors, which resulted in
increased amphetamine-induced locomotor activity in HFD-fed animals [113]. In the NAc
and the striatum, a juvenile HFD treatment modulated the expression of the cannabinoid
receptor 1 and the opioid mu receptor 1 [107,110], which may reflect variations in the
release of endogenous peptides. Together, the results provided in these studies suggest that
the neuroadaptations in the brain reward pathway in HFD-fed animals may contribute to
the changes observed in psychostimulant-related behaviour.

5.5. Conclusions

Taken together, the reviewed data from the literature call for further studies aiming at
understanding the relationship between the effects of HFD treatment in different devel-
opmental periods on behavioural endpoints and the changes in neurotransmission and
molecular plasticity in specific brain areas. In addition, further work is crucially needed
to characterise the impact of HFD treatment on VTA–NAc signalling elements that play
pivotal roles in reward/reinforcement circuits of the mesolimbic system. Because the
homeostatic and reward circuits are often studied separately, the impact of HFD treatment
on reward circuits is a question that remains mostly unanswered.

6. Combined Impact of High-Fat Diet and Stress Exposure in Rodents

As reviewed above, HFD treatment (25–50% kcal from fat, predominantly 45%) in
rodents produced some impairments in emotionality, cognition and reward-related be-
haviour, which were accompanied by distinctive neuroanatomical and molecular changes
according to the period in which the HFD treatment was applied (see summary in Figure 1).
However, these observations were made under basal, non-stressed conditions.
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Figure 1. Overview of the impact of a high-fat diet (HFD) treatment on behavioural pheno-
types (i.e., emotionality, cognition and reward-related behaviour) in rodents, as well as associated
brain mechanisms. Treatment with a HFD leads to alterations in energy metabolism (i.e., glucose
metabolism, insulin signalling), molecular correlates of mitochondrial functions (e.g., OXPHOS,
oxidative stress and neuroinflammation) and neuronal function (i.e., neurotransmission, synaptic
plasticity) in a subset of brain areas, depending on the developmental period at which the HFD is
administered. Abbreviations: AMY: amygdala; CC: cerebral cortex; HC: hippocampus; HFD: high-fat
diet; HYP: hypothalamus; NAc: nucleus accumbens.

Because both poor dietary choices and stress can lead to disruptions in emotional
behaviour, cognitive performance and reward-related behaviour, it is important to consider
their effects combined.

The analysis of the literature examining the impact of HFD treatment in animals ex-
posed to chronic stress and showing depression-related phenotypes reveals mixed findings.
Some studies reported that adolescent stress and ad libitum HFD interacted to produce a
greater vulnerability to the detrimental effects of HFD on emotionality and reward sensitiv-
ity in male rodents exposed to psychological stressors. For example, exposure to predator
odour threat increased anxiety-related behaviours in HFD-fed rats and reduced brain
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volume, especially the hippocampal volume, compared to HFD-fed unstressed rats [152].
In another study, HFD-fed mice subjected to a vicarious social defeat stress, wherein one
mouse witnesses the physical defeat of a conspecific from the safety of an adjacent compart-
ment (i.e., uncoupling of emotional and physical stress), showed increased social avoidance
and reduced hedonic response [153].

Some studies reported that the interaction of stress and HFD reduced the vulnerability
to the unfavourable effects of HFD on behaviour and energy metabolism in male rodents ex-
posed to combined psychological and physical stressors. For example, HFD-fed adult mice
exposed to social defeat stress showed a reduced body weight gain compared to HFD-fed
unstressed mice despite a significant increased caloric intake, an effect due to increased en-
ergy expenditure and especially increased fat oxidation [154]. As another example, limited
access to HFD treatment reduced the anxiety-related behaviour of adolescent rats subjected
to social defeat stress as well as changed their behaviour during the direct confrontation
with residents [155]. Together, these two studies confirm the stress-buffering/comfort
properties of palatable food against stressors [156].

It is important to mention that a few studies fail to observe an interaction of stress and
diet in rodents. For instance, HFD-fed male mice exposed to early life stress in the form of
neonatal maternal separation or to unpredictable chronic mild stress showed, in adulthood,
no significant differences in metabolic parameters [157] or self-care behaviour and hedonic
response [158] compared to HFD-fed unstressed mice.

Taken together, these studies highlight that the chronic activation of the stress re-
sponse in rodents interfered with HFD treatment to produce behavioural and metabolic
impairments that depended on the type and the duration of stress exposure. Interestingly,
HFD treatment could reduce the antidepressant efficacy of fluoxetine, a selective serotonin
reuptake inhibitor, on stress-induced depression-like behaviour [153,158]. These data sug-
gest that diet plays a role in antidepressant efficacy and parallel some clinical findings
showing poor responsiveness to antidepressant therapy in patients suffering from obesity
and related metabolic disorders [159,160].

7. Discussion
7.1. Overview of the Impact of a High-Fat Diet Treatment on Behaviour and Brain in Rodents

In the present review, we have provided an overview of important behavioural and
molecular correlates of HFD-induced impairments in rodents (see Figure 1). While the
use of varying diets, developmental stages, and behavioural tests make the comparison
between studies difficult, HFD treatment generally produced a long-lasting detrimental
impact on emotionality, cognition and psychostimulant-related behaviours (see summary
in Table 1). In addition, HFD treatment produced marked alterations in neuroplasticity and
neuro-inflammation, but only slight impairments in energy metabolism and mitochondrial
functions (see summary in Table 2). However, only a few studies have measured the
effects of HFD treatment on brain energy metabolism and plasticity in the attempt to link
behavioural alterations with molecular phenotypes. In addition, when molecular studies
were performed, they were limited to one brain area or a small number of brain regions.
Therefore, the molecular, cellular, and neural mechanisms underlying the HFD-induced
alterations in emotionality, cognition and reward-related behaviour remain to be elucidated.

7.2. Limitations
7.2.1. Lack of Systematic Assessment of the Metabolic Status

One important point to consider is that the assessment of dietary-induced alterations in
the peripheral metabolic status was not systematic (see Supplementary Table S1). Therefore,
it is unclear whether the HFD-induced changes in brain and behaviour result from the
dietary manipulation (i.e., the diet, the diet composition or the high caloric density) or
are instead the consequence of metabolic dysfunctions that develop with weight gain,
adiposity and peripheral/central metabolic changes. In fact, a few studies observed that
HFD treatment induced alterations in behaviour without producing adverse metabolic
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effects. For example, both ad libitum and restricted HFD treatments produced major
changes in psychostimulant-related behaviours without increasing the body weight and
altering the insulin and leptin signalling [107,108,110,161].

While the verification of the body weight gain has performed almost consistently, few
studies have investigated whether HFD treatment produced insulin resistance, as measured
by elevated fasting plasma glucose and insulin, and the measure of leptin levels has also
not been routinely done (see Supplementary Table S1). Because insulin and leptin have a
critical role not only in whole-body energy homeostasis but also in regulating neuronal
structure and function (e.g., through regulation of synaptic plasticity and trafficking of
neurotransmitter receptors) [162,163], further work is needed to link behavioural alterations
with changes in insulin and leptin signalling in brain areas associated with emotionality,
cognition and reward. Because of the close interaction of mitochondria, leptin and insulin
signalling in the brain, a better understanding of the underlying mechanisms by which
insulin and leptin resistance modify mitochondrial functions may help identify novel
therapeutic strategies to combat obesity and associated comorbidities.

7.2.2. Lack of Evaluation of the Neuroendocrine and Immune Systems

It is also important to highlight that relatively little is known about the impact of
HFD treatment on neuroendocrine function and peripheral mediators of inflammation
from the studies reviewed. In fact, contrasting effects of HFD treatment were found on
corticosterone release in offspring of HFD-fed dams [89,90,145,164] and HFD treatment
had no major impact on corticosterone release in HFD-fed animals [102,107,112,120,127].
In addition, discrepant findings were found on peripheral measures of oxidative stress and
inflammation [101,114,144,147]. Further investigation is needed to determine whether and
by which mechanisms HFD treatment could disturb hypothalamic–pituitary–adrenal axis
function and produce systemic immune dysregulation.

Although the description of the effects of HFD treatment on gut microbiota falls out of
the scope of this review, it appears important to highlight the importance of this topic. It is
well documented that the food consumed affects the bacteria composition within the gut
microbiome, which plays a crucial role in food absorption, nutrient and energy extraction
as well as low-grade inflammation [56]. In particular, high-calorie diets and specific dietary
components play a role in shifting the microbiota composition (e.g., alteration of gut
integrity, community profiling or metabolite production, inflammation) [56]. Such changes
in gut microbiome composition have been recently shown to contribute, in rodents, to
diet-induced anxiety- and depression-like behaviour as well as cognitive impairments,
especially in hippocampus-dependent tasks [57]. Thus, understanding the roles of the
gut microbiota in emotionality, cognition and reward may hold exciting prospects for the
treatment of obesity and associated comorbidities (e.g., SUD).

7.2.3. Lack of Studies on the Sensitivity to Drugs of Abuse and
Dopaminergic Neurotransmission

Surprisingly, the impact of HFD on psychostimulant-related behaviours has been very
scarcely studied, despite the substantial evidence that obesity and SUD share common
biological substrates [18]. Only a few rodent studies have investigated the HFD-induced
alterations in addiction-relevant behaviours and the associated cellular and molecular
mechanisms in reward-related areas (see Table 1 and Supplementary Table S1). Conse-
quently, much remains to be investigated with respect to the behavioural evidence and
underlying mechanisms of the interaction between HFD and psychostimulant drugs. Im-
portantly, both the schedule of HFD consumption and the social housing conditions (single-
versus group-housed animals) seem to modulate the outcomes of psychostimulant-related
behaviours. A recent study suggested that the post-weaning housing condition could mod-
ulate the susceptibility to HFD-induced body weight gain, adiposity and thermoregulation
in male mice [? ], highlighting the need to consider the housing density in the interpretation
of the behavioural and metabolic data.
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Interestingly, some neuroadaptations produced by HFD treatment parallel those ob-
served with cocaine (see summary in Supplementary Table S2). For example, cocaine
exposure produced slight changes in glucose and phospholipid metabolism as well as neu-
rotransmission and increased oxidative stress in the NAc [165,166]. In addition, similar to
observations made with HFD treatment [144], cocaine exposure increased oxidative stress
and reduced mitochondrial activity in isolated synaptosomes from the whole brain [167].
Moreover, it produced significant changes in the gene expression pattern of electron trans-
port chain complexes in the cingulate cortex, which connects the prefrontal cortex and
the limbic system [168,169]. Because the mitochondrial DNA (mtDNA) copy number
was reported to be increased in the prefrontal cortex and hippocampus of rats with a
history of cocaine self-administration [169], perhaps the variation in mtDNA compensated
a decreased number of mitochondria or mitochondrial synthesis in order to maintain a
normal level of mitochondrial transcription to provide ATP [170]. A history of cocaine
self-administration induced neuroplasticity in the NAc through alterations in the pattern of
genes important in several mitochondrial functions (e.g., mitochondrial transcription and
replication, mitochondrial dynamics and energy production) [165,171,172]. The possible
mechanisms underlying the changes in molecular correlates of mitochondrial dysfunction
by cocaine have yet to be determined, but they may occur in response to the massive DA
release due to cocaine binding to transporter sites of monoamines, as well as from the
oxidative potential of cocaine metabolites [49].

Importantly, cocaine oppositely modulated the accumbal mitochondrial morphology
and the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator
1-alpha (Pgc1α), a master regulator of mitochondrial biogenesis, and dynamin-1 like (Drp1),
a regulator of mitochondrial division, in dopamine receptor D1-expressing medium spiny
neurons (D1-MSNs) and dopamine receptor D2-expressing MSNs (D2-MSNs) [165,171,172].
Because cocaine has been reported to produce contrasting effects on dendritic spine density,
excitatory plasticity, signalling processes and transcriptional activity in D1-MSNs and
D2-MSNs [173,174], further work is needed to understand the importance of mitochondria
in cocaine behavioural plasticity in specific neuronal subtypes.

7.2.4. Lack of Studies on Sex Differences

Apart from the studies investigating the effects of a maternal HFD treatment in dams
and/or their offspring, male rodents have typically been used to examine the behavioural
and molecular effects of HFD treatment. Thus, only very few studies have examined the
effects of HFD treatment in female rodents. Therefore, sex differences were not explicitly
addressed in this review. One study found an increased anxiety-related behaviour in HFD-
fed female mice [175], but the experimental design lacked a direct comparison between the
sexes. Another study found no signs of molecular alterations in the hypothalamus of HFD-
fed female and male rats [148]. Interestingly, Rodenas-Gonzalez and colleagues observed
that certain patterns of HFD treatment blocked the reinstatement of cocaine-induced CPP in
male mice but not in female mice, suggesting that female animals might be less sensitive to
the protective effects of HFD treatment [110]. Given the global gender disparities in stress-
related disorders [176] as well as obesity and metabolic diseases [177–179], more studies
in female rodents are imperative to determine the possible sex differences in response to
dietary intervention.

7.2.5. Remaining Challenges in Translating Rodent High-Fat Diet Treatments to
Human Obesity

Finally, it is worth mentioning that we have reviewed preclinical studies that used
a forced exposure of rodents to HFD treatment. While such dietary manipulation allows
studying the behavioural, physiological and neural responses to unhealthy diets, this devi-
ates from the human situation where individuals can make food choice. In addition, it does
not mimic the importance of the high caloric intake in the form of fluids in humans. Studies
that examined how HFD composition, pattern and form (i.e., solid/liquid) affects behaviour
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and associated brain function and plasticity are lacking. Available studies show that rodents
given free choice to consume a high-energy diet typically show hyperphagia, snacking
behaviour and increased food-motivated behaviour, leading to accelerated behavioural and
metabolic alterations similar to those observed in human obesity [180–186]. Interestingly,
strong sex differences in food choice were observed in adult mice that were exposed to an
early life stress paradigm (i.e., limited nesting and bedding material) combined with acute
stress exposure in adulthood [187]. The preference for fat in female mice was accompanied
by sex differences in the physiological stress response as well the brain circuits regulating
food intake and reward [187]. Given the importance of the issue of sex differences in stress
responses, further research is warranted and clearly needed to determine the sex-specific
motivational aspects of HFD feeding and the underlying precise mechanistic bases.

8. Conclusions

In conclusion, our in-depth analysis of the published literature revealed that high-
energy diets had a pronounced impact on emotionality, cognition and reward-related
behaviour as well as underlying brain processes that depended on the developmental
period. Because most of the studies reviewed involved only male rodents (apart from
those examining the effects of a maternal HFD treatment in dams and/or their offspring),
future research should extend these observations to female rodents. This would help to
elucidate the sex-specific mechanisms linking stress and obesity. Profound knowledge
about the molecular mechanisms linking stress and obesity is crucially needed in transla-
tional research using rodent models and can significantly advance the important search for
risk-biomarkers and the development of clinical intervention strategies.
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