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Abstract: Using polyethylene as carbon precursor, we have fabricated cost-effective carbon fibers with a
sheath-core structure via conjugate melt spinning. Low-density polyethylene (LDPE) and high-density
polyethylene (HDPE) were used as the sheath and core of the fiber, respectively, while sulfonation
with sulfuric acid was conducted to enable the crosslinking of polyethylene. We demonstrated
that carbonization and activation of the sheath-core-structured polyethylene fiber can result in a
well-developed microporous structure in the sheath layer, and due to the core-sheath structure,
the resulting activated carbon fibers exhibit a high tensile strength of ~455 MPa, initial modulus of
~14.4 GPa, and Brunauer-Emmett-Teller (BET) surface area of ~1224 m2/g. Finally, activated carbon
fibers with a hollow, sheath-core, and porous were successfully fabricated by controlling the degree
of crosslinking of the LDPE/HDPE sheath-core fiber.

Keywords: activated carbon fiber; polyethylene precursor; hollow carbon fiber; sheath-core activated
carbon fiber

1. Introduction

Activated carbon fiber is an important nano-porous carbon material used in filter applications
because of its excellent adsorption properties. It has an intrinsic porous structure with low meso
porosity and no macro porosity. Therefore, it has also been employed for heavy metal removal, as an
adsorbent for hazardous volatiles, and for vapor sensing and gas storage [1–5]. The production of
activated carbon fiber is not very different from that for carbon fiber. To date, many kinds of activated
carbon fibers have been developed using carbon precursor fibers, such as polyacrylonitrile (PAN),
pitch, rayon, and phenolic. These activated carbon fibers exhibit proper nano-porous structures and
have been used for filtering hazardous volatile gases and very fine dusts-pollutants which have recently
attracted global attention due to air pollution [6–11].

However, the typical cost of activated carbon fiber is much higher than that of other microporous
materials, because of the cost of the precursor material and manufacturing process. This limit
widespread usage of carbon fiber and activated carbon fibers. Therefore, recently, many efforts have
focused on developing low-cost carbon fiber using low-cost precursor materials. One promising
precursor material is polyethylene, which has the advantages of a very low cost and easy processing
via conventional melt spinning [12–17].
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Recently, some studies have reported successful manufacturing of carbon fiber from a polyethylene
precursor. To prepare carbon fiber using a polyethylene precursor, sulfonation with sulfuric acid is
typically performed to stabilize the precursor. This results in slightly poorer mechanical properties
compared to conventional carbon fibers. Nevertheless, it provides novel routes for carbon fiber
processing with a low-cost precursor. However, there have been almost no studies on developing
activated carbon fiber using a polyethylene precursor. A polyethylene-based activated carbon fiber
would be an important absorbent material with low cost and versatility [18–25].

On the other hand, the poor mechanical properties of most activated carbon fibers with a
microporous structure make it very difficult to handle or treat for various applications. Lack of
mechanical strength limits their usage in an unloaded state. Therefore, the fibers cannot be easily
applied for a fabric structure which requires extensional properties and mechanical endurance [26,27].

In the current study, we fabricated activated carbon fiber using polyethylene fiber via conjugate
spinning. Thus, a sheath-core structure of the precursor fiber was obtained, yielding better mechanical
properties than those of conventional monoaxial activated carbon fibers. Two types of polyethylene,
high-density (HDPE) and low-density (LDPE), were used as the core and sheath materials, respectively.
HDPE in the core can maintain the mechanical strength of the fiber, while LDPE, with its low compactness
in the sheath, can be activated easily. This unique bilateral fiber structure makes it possible to obtain a
fully activated sheath layer and less-activated core layer with proper mechanical strength. In this study,
the effects of the draw ratio of the precursor fiber on the sulfonation based stabilization process were
investigated. After carbonization and activation of the polyethylene fiber, the nano-porous structure
with a high pore area in resulting carbon fibers was analyzed. Finally, the mechanical properties
of the prepared activated carbon fiber were tested to evaluate the effectiveness of the sheath-core
fiber structure.

2. Materials and Methods

2.1. Materials

LDPE (XJ700, Lotte Chemical Co., Daejeon, Korea) was chosen as the sheath component and
HDPE (2600F, Lotte Chemical Co., Daejeon, Korea) was used for the core of the sheath-core fibers.

2.2. Preparation of Sheath-Core Fibers

LDPE/HDPE sheath-core fibers were prepared by conjugate melt-spinning at 205 ◦C at a take-up
speed of 850 m/min, as shown schematically in Figure 1a. The content ratio of LDPE/HDPE in the
sheath-core fiber was set to 50:50 by weight percent, as seen the scanning electron microscopy (SEM)
image, Figure 1b. The drawing treatment of LDPE/HDPE sheath-core fibers was performed using a
self-made drawing machine, at draw ratios of 1.2, 1.3, 1.5, and 1.6 at 95 ◦C.
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2.3. Cross-Linking, Carbonization, and Activation of Sheath-Core Fibers

The obtained precursors were stabilized through a dipping treatment in sulfuric acid (H2SO4, 95%,
Samchun Co., Seoul, Korea) as shown in Figure 2a. Figure 2b shows the shape of the sulfated fibers
under loads of 0, 0.25 and 0.5 MPa. When a load of 0.5 MPa was applied, it was confirmed that the
fiber was cut. Therefore, in this study, sulfuric acid treatment was carried out with a load of 0.25 MPa.
Uniaxially aligned LDPE/HDPE sheath-core fibers were stabilized by dipping, with a load of 0.25 MPa
applied at different temperatures and times, as shown in Table 1. Carbonization was performed in
nitrogen atmosphere at a final temperature of 900 ◦C and a heating rate of 5 ◦C/min. The process
time at the maximum temperature was set as 5 min to complete carbonization. After completion of
carbonization, the furnace was turned off and maintained in nitrogen atmosphere. This condition
of inert atmosphere was maintained until the temperature inside the furnace reactor reached room
temperature. Activated sheath-core carbon fibers were prepared by chemical activation. Activation of
the cross-linked LDPE/HDPE sheath-core fibers was carried out by dipping for 24 h using a 1–4 M KOH
solution and drying for 12 h in a convection oven at 100 ◦C.
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Table 1. Sulfuric acid treatment conditions of LDPE/HDPE sheath-core fiber.

Temperature (◦C) 120, 130, 140, 150

Time (Min) 60, 90, 120, 150
Loading (MPa) 0.25

2.4. Characterization of Sheath-Core Fibers

The thermal transition behavior of the LDPE/HDPE sheath-core fibers was measured by differential
scanning calorimetry (DSC, Mettler-Toledo DSC1) in the temperature range of 25–250 ◦C at a heating
rate of 10 ◦C/min in nitrogen atmosphere. The melting enthalpy was measured and the aromatization
index (AI) was calculated to identify the level of cross-linking, using the following Equation (1) [18,28]:

Aromatization index (%) = (
∆H0

∆H/∆H0
) × 100 (1)

where ∆H0 is the melting enthalpy of the pristine sample and ∆H is the melting enthalpy of the
cross-linked sample.

The effects of the temperature characteristics of the cross-linking processes were investigated
using thermogravimetric analysis (TGA, Mettler-Toledo TGA/DSC1). In TGA, all cross-linked samples
were heated from 25 ◦C to 800 ◦C at a heating rate of 10 ◦C/min in a nitrogen atmosphere.
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The surface and cross-sectional morphological features of the LDPE/HDPE sheath-core fibers
after cross-linking and carbonization were characterized by SEM (S4700, HITACHI, Daejeon, Korea).
To obtain cross-sectional SEM images, the samples were immersed in a liquid nitrogen bath for 5 min
and then sectioned using a diamond cutter.

A Fourier transform infrared (FT-IR) spectrophotometer (Bruker Optic GmbH, ALPHA-P,
Daejeon, Korea) equipped with an attenuated total reflectance (ATR) accessory was used to examine
the surface composition changes in the fibers attributed to cross-linking treatment. The spectra were
recorded in the transmission mode in the range of 3500–500 cm−1, with a spectral resolution of 4 cm−1,
and accumulation of 128 scans for a high signal-to-noise ratio.

The tensile mechanical tests were carried out using a universal tensile testing machine (Model 4467,
Instron) at a crosshead speed of 1 mm/min for the cross-linked sheath-core fibers and carbon fibers
(ASTM D3822).

The Brunauer–Emmett–Teller (BET) method was applied to determine the total surface
area, while the pore size distribution and micropore volume were estimated by applying the
Barret–Joyner–Halenda (BJH) method and the non-local density functional theory (NLDFT) over the
adsorption isotherm.

3. Results and Discussion

3.1. Characterization of LDPE/HDPE Sheath-Core Fibers

Figure 3 shows the cross-sectional SEM images of the LDPE/HDPE sheath-core fibers prepared
at different draw ratios. It is observed that the diameters of the sheath fibers as well as core fibers
decrease with increasing draw ratio. We note that the interface between HDPE core and LDPE shear
is smooth and compact, and the LDPE sheath is well packed in the sheath-core fibers manufactured
at a draw ratio of 1.2–1.5, whereas the interface becomes less uniform in those manufactured at the
higher draw ratio of 1.6, which may be attributed to the interfacial instability at high drawing speeds.
Nonetheless, the ratio of core radius to shear layer thickness remains the same at about 0.5 for all draw
ratios studied.
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Next, the tensile mechanical properties of the LDPE/HDPE sheath-core fibers manufactured
at different draw ratios were investigated. The tensile strength and initial modulus of the fibers
increases with increasing the draw ratio up to 1.5, as shown in Figure 4. Beyond a ratio of 1.5,
however, both tensile strength and modulus decrease, possibly due to the less uniform core and sheath
morphology and less circular cross section of the fibers. Therefore, LDPE/HDPE sheath-core fibers
manufactured at the draw ratio of 1.5 were used to obtain the activated carbon fibers.
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3.2. Characterization of Cross-Linked LDPE/HDPE Sheath-Core Fibers

The LDPE/HDPE sheath-core fibers were cross-linked by sulfuric acid. Figure 5 shows the SEM
images of the cross-section of the cross-linked LDPE/HDPE sheath-core fibers manufactured at different
cross-linking temperatures (120–150 ◦C) and time (60–150 min). The range of cross-linking temperature
was determined based on the melting behavior of two components: the melting transition temperature
(Tm) of the LDPE sheath component in the sheath-core fibers was in the range of 96–110 ◦C, which was
lower than that (123–133 ◦C) of the HDPE core component. For the cross-linked sheath-core fibers
manufactured at cross-linking temperatures of 120 and 130 ◦C under a constant load of 0.25 MPa for
120 min (Figure 5(a1,a2)), good interaction among the sheath-core fibers as well as good structure of the
sheath-core component was achieved. However, the LDPE sheath part melts at 140–150 ◦C, to which
the core exhibit defects in the final sheath-core fiber (Figure 5(a3,a4)). For cross-linked sheath-core
fibers manufactured at different cross-linking durations of 60–150 min under a constant cross-linking
temperature of 130 ◦C and load of 0.25 MPa (Figure 5(b1–b4)), good interaction and shape of the
sheath-core fibers are attained below 120 min, whereas the structure of the LDPE sheath part exhibits
visible fractures above 150 min (Figure 5(b4)).

Figure 6 shows the DSC heating thermograms of the LDPE/HDPE sheath-core fibers cross-linked
for 60–150 min under constant pressure and temperature of 0.25 MPa and 130 ◦C, respectively. In the
first DSC heating curves at the bottom, double-melting endotherms are observed for the untreated
LDPE/HDPE sheath-core fiber. The lower endotherm at ~102 ◦C is associated with the melting of
the sheath-part LDPE, whereas the higher endotherm at ~128 ◦C is associated with the melting of
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the core-part HDPE. For the sheath-core fiber cross-linked for greater than 60 min, only a single
endothermic peak appears at ~130 ◦C, because the cross-linking of LDPE has completed. The lower
melting enthalpy for the sheath-core fiber cross-linked for 150 min is attributed to the increased
cross-linking of the HDPE core part in the LDPE/HDPE sheath-core fiber, compared to that cross-linked
for 60 min. This indicates that the LDPE/HDPE sheath-core fiber is rendered infusible by the sulfuric
acid treatment.Polymers 2020, 12, x FOR PEER REVIEW 6 of 13 
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Table 2 lists the aromatization index (AI) values calculated from the melting enthalpy experiments.
During the acid treatment at 130 ◦C, the melting enthalpy of core-part HDPE decreased from 215.6 J/g
to 120.9, 69.1 and 0 J/g at a cross-linking time of 60, 90, 120, and 150 min, respectively, corresponding to
AI values of 43.9%, 67.95% and 100%. The melting enthalpy of sheath-part LDPE decreased from
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48.5 J/g to 3.9, and 0 J/g at a cross-linking time of 60, 90, 120, and 150 min, respectively, corresponding
to AI values of 91.88% and 100%. The LDPE sheath part becomes completely infusible after 60 min,
while the HDPE core part becomes infusible at an AI of 100% at 120 min. Therefore, from this result,
it was confirmed that the crosslinking of the HDPE core part required a longer sulfonation time than
the LDPE sheath part. As demonstrated in the later section, this difference in crosslinking behavior by
sulfonation of LDPE and HDPE can be utilized in fabricating hollow porous carbon fibers.

Table 2. Aromatization index values of LDPE/HDPE sheath-core fibers for various crosslinking time at 130 ◦C.

Crosslinking Time (min) 0 60 90 120 150

Crosslink
percentage (%)

HDPE 0 43.9 67.95 100 100
LDPE 0 91.88 100 100 100

Next, FTIR was used to characterize the changes of chemical structure of the LDPE/HDPE
sheath-core fibers during cross-linking. Figure 7 shows the FTIR spectra of the LDPE/HDPE sheath-core
fibers cross-linked for 60–150 min at 130 ◦C. Bands at 3000–2850 cm−1, 1384–1475 cm−1, and 710–750 cm−1

appear in all samples, and can be attributed to the stretching of the C–H bond in methylene groups and
the C–H long-chain bond in LDPE and HDPE, respectively. With increasing duration of cross-linking,
the peak for the –CH2 bond at 1465 cm−1 shifts to 1280–1080 cm−1 and 1040 cm−1, respectively. The peak
intensities near 724 cm−1 (C–H stretching vibrations) was prominent in the pure LDPE/HDPE
sheath-core structure. In succession, these were found to reduction with increasing sulfonation time.
The peak intensities diminished evidently with enhanced duration and sulfonate group incorporation
in the sulfonated LDPE/HDPE sheath-core fibers. This shows that sulfonation was achieved by O=S=O
stretching vibrations. Therefore, the H-branch on the LDPE and HDPE chain was substituted for the
sulfonic acid group of –HSO3 and bound to another H-branch to form the sulfone of SO2. In addition,
with increasing duration of cross-linking, the composition of carbon and hydrogen decreased while
the composition of oxygen and sulfur increased. The decrease in composition of carbon and hydrogen
indicates a decrease in the number of C–H bonds, whereas the increase in the absorption for a sulfone
group (SO2) refers to an increase in the composition of oxygen and sulfur (see Supplementary Table S1).
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Figure 8 shows the increasing weight retention with increasing cross-linking duration. TGA curves
indicate that the decomposition temperatures for all LDPE/HDPE sheath-core fibers cross-linked via
sulfuric acid lie in the range of 490–550 ◦C. The thermal stability, based on the polymer decomposition
temperature and integral procedural decomposition temperature, as well as the carbonization yield
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increases with increasing cross-linking duration. The cross-linking reaction improves the decomposition
stability and heat exhaustion, resulting from the most densely cross-linked structure at 150 min. This also
enhances gel structures in the LDPE/HDPE sheath-core fibers, resulting in high carbonization yields.
The LDPE/HDPE sheath-core fibers cross-linked at 150 min exhibit the highest weight retention (47.72%)
among all the fibers. In addition, the flammability of the stabilized samples was determined by a
separate burning test that samples were put on flame from a blow torch. The samples that do not
burn in general can be carbonized without burning at higher temperature. As shown in burning test
images in Supplementary Figure S1, the LDPE/HDPE sheath-core fibers cross-linked at 120–150 min
did not burn, whereas the LDPE/HDPE sheath-core fibers cross-linked at 0–90 min burned in the
flame. This also confirms that after 120 min of sulfonation, the LDPE/HDPE sheath-core fibers were
effectively cross-linked.
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Figure 9 shows the change in density of LDPE/HDPE sheath-core fibers for various cross-linking
times at 130 ◦C. It is observed that an increase in cross-linking time resulted in an increase in density
from 0.9365 to 1.5191 g/cm3 for LDPE/HDPE sheath-core fibers until cross-linking duration of 120 min.
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3.3. Characterization of Carbonized and Activated LDPE/HDPE Sheath-Core Fibers

The external pore structures of the carbonized and activated LDPE/HDPE sheath-core carbon
fibers are presented via SEM images in Figure 10. It is observed that the morphological features of
KOH-activated LDPE/HDPE sheath-core carbon fibers are strongly influenced by KOH concentration
(Figure 10a–d). The structure and distribution of pores are very non-uniform possibly due to the fast
reaction of KOH. SEM images of the carbonized LDPE/HDPE sheath-core fibers at 1 molarity also
indicate the presence of relatively smooth surface and few pores (Figure 10a). On the other hand,
the activated LDPE/HDPE sheath-core carbon fibers at 2–4 molarity exhibit surfaces containing macro,
meso, micro pores, with increased macro pores at high KOH concentration. As the KOH concentration
increases, highly cracked and collapsed surfaces are obtained, indicating the violent reaction between
KOH and surface carbon with increasing KOH amount. This demonstrates that proper KOH treatment
can lead to the creation of micro pores and high surface areas.
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To quantify the effect of KOH on the pore structure and surface area, we present the BJH
incremental pore area distributions of the activated LDPE/HDPE sheath-core carbon fibers at four
different KOH concentration in Figure 11. The nitrogen isotherm for the activated LDPE/HDPE
sheath-core carbon fibers provided important information on the specific surface area and pore. It is
observed that KOH chemical activation of the carbon fiber increases the surface area and porosity.
The activated LDPE/HDPE sheath-core carbon fibers at 3–4 molarity exhibit better properties, with a
BET surface area of 1224.36 m2/g and 1170.66 m2/g, respectively, compared with those at 1–2 molarity
(661.55 m2/g and 889.38 m2/g, respectively). Thus, these results indicate that these carbon fibers
activated by KOH are predominantly populated with micro pores. However, it was confirmed that
when the molar ratio of KOH activation is very high, not only micro pores but also meso and macro
pores are formed. Surface area analysis by BET show that the carbon fibers activated with 1 molarity to
4 molarity KOH had various surface properties in terms of the surface area and pores.

Results for the tensile mechanical tests of the LDPE/HDPE sheath-core carbon fibers after activation
are presented in Figure 12. Generally, tensile strength increases by carbonization and decreases after
activation. The decrease in tensile strength with activation exhibits different strengths depending on
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the pore size and shape formed on the fiber surface. However, the strength of 455 MPa obtained by
conjugate spinning of the sheath-core structure in the current study is regarded to be significantly
higher than a single polyethylene based activated carbon fiber [29]. This improvement in tensile
strength after carbonization and activation can be attributed to the bicomponent structure of the
fiber, with a HDPE core and LDPE sheath, compared to conventional single-structured carbon fiber.
This unique bilateral fiber structure enables the full activation of the sheath layer with lesser activation
of the core layer, to provide suitable mechanical strength.
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Finally, Figure 13 shows cross section SEM images after carbonization and activation of the
sulfonated LDPE/HDPE sheath-core fibers for time of 60–120 min under 0.25 MPa at 130 ◦C. As a result,
cross sections of activated carbon fibers having three different structures were confirmed. It should be
noted that for the LDPE/HDPE sheath-core carbon fibers sulfonated at cross-linking time of 60 min
(Figure 13a), a cross section of the activated carbon fiber having a large hollow structure was observed.
The difference in cross-linking in HDPE core and LDPE sheath and thus incomplete cross-linking of
the HDPE core and inner region of the LDPE sheath went through thermal decomposition during
the carbonization process to form a large pore structure. On the other hand, as the sulfonation time
increased to 90 min, the hollow structure became smaller due to the enhanced degree of cross-linking
of the entire LDPE sheath while cross-linking of the core HDPE is still incomplete. In the case of
activated sheath-core carbon fibers with 100% crosslinking of both LDPE sheath and HDPE core for
120 min sulfonation, a hollow structure was not observed as shown in Figure 13c, and the coherent
core structure that could contribute to the improvement of tensile properties was observed.
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4. Conclusions

In summary, activated LDPE/HDPE sheath-core carbon fibers were manufactured by carbonization
and activation with a KOH solution after cross-linking via sulfonation at various temperatures
(120–150 ◦C) and durations (60–150 min) under a load of 0.25 MPa. LDPE/HDPE (50/50 wt.%/wt.%)
sheath-core fibers were fabricated via melt-conjugate spinning at different draw ratios from 1.2 to
1.6. The activated carbon fibers with the sheath-core structure spun at a draw ratio of 1.5 were
characterized by considering the orientation, cross-linking, carbonization, and activation of the
LDPE/HDPE sheath-core fibers. Consequently, the tensile properties and specific surface area of the
activated LDPE/HDPE sheath-core carbon fibers were found to be maximized when cross-linking
was carried out at 130 ◦C and 0.25 MPa for 120 min. At this condition, a small pore size, high BET
surface area, high AI, and high carbonized yield were achieved, as confirmed by SEM, FTIR, DSC,
TGA, and BET analyses. In addition, the tensile properties of the activated carbon fibers were
improved by the presence of HDPE in the core, which eventually contributed to enhancing the final
mechanical properties of the activated LDPE/HDPE sheath-core carbon fibers. Overall, the activated
carbon fibers exhibited a high tensile strength of ~455 MPa, initial modulus of ~14.4 GPa, and BET
surface area of ~1224.36 m2/g. The resulting LDPE/HDPE sheath-core activated carbon fibers could be
utilized for various applications such as environmental (air purification filter, water treatment filter),
chemical (recovery of organic solvents and compounds), military defense (gas masks and fire-resistant
clothing), and next-generation battery materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/12/2895/s1,
Figure S1: Burning test images of the sulfonated LDPE/HDPE sheath-core fibers for time of 60–120 min under
0.25 MPa at 130 ◦C.; Table S1: Elementary composition of the LDPE/HDPE sheath-core fibers for various
crosslinking times at 130 ◦C.
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