
INTRODUCTION

Parkinson’s disease (PD) is the second most common neurode-
generative disease, next to Alzheimer’s disease and it affects 1%~2% 
of the population older than age 65 years [1]. The major symptoms 
of PD are related to movements such as resting tremor, rigidity, 
bradykinesia, postural instability and gait difficulty, although non-

movement symptoms are also observed. Two main pathological 
hallmarks of PD are the degeneration of dopaminergic neurons in 
substantia nigra pars compacta and the formation of intraneuro-
nal inclusions called Lewy Bodies (LB) [2]. The major risk factors 
of PD are oxidative stress and mitochondrial dysfunction which 
are often caused by exposure to certain environmental factors 
such as pesticides [3]. In addition, old age is considered as a risk 
factor for PD because aging gradually increases these risk factors 
[4]. Because of the rapid increase of the world’s aging population, 
the number of PD patients and the social and economical burdens 
associated with PD are also rapidly increasing.

The incidence of PD is mostly sporadic, although in 5%~10% 
of cases, it is genetically inherited. More than 20 PARK loci have 
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Review Article

LRRK2 (Leucine-Rich Repeat Kinase 2) is a gene whose specific mutations cause Parkinson’s disease (PD), the most common neu-
rodegenerative movement disorder. LRRK2 harbors GTPase and kinase activities, two enzyme activities that play critical roles in the 
regulation of cellular signal transduction. Among the several LRRK2 pathogenic mutations, the most prevalent G2019S mutation 
increases its kinase activity when compared with the wild-type (WT), suggesting that LRRK2 kinase substrates are potential culprits 
of PD pathogenesis. Although there were several studies to identify LRRK2 kinase substrates, most of them mainly employed in vitro 
kinase assays. Therefore, it remains uncertain whether the identified substrates were real physiological substrates. However, efforts 
to determine physiological LRRK2 kinase substrates have recently identified several members of the Rab GTPase family as physi-
ological LRRK2 kinase substrates. A conserved threonine or serine in the switch II domain of certain Rab GTPase family members 
(Rab3A/B/C/D, Rab5A/B, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) has been pinpointed to be phosphorylated by LRRK2 
in cells using sophisticated phosphoproteomics technology in combination with LRRK2-specific kinase inhibitors. The Rab GTPas-
es regulate vesicle trafficking, suggesting that LRRK2 may be a regulator of such vesicle trafficking, confirming previously suggested 
LRRK2 functions. However, how the consequence of the LRRK2-mediated Rab phosphorylation is related to PD pathogenesis is not 
clear. This review briefly summarizes the recent results about LRRK2-mediated Rab phosphorylation studies.
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been mapped as loci corresponding to such inherited forms of 
PD (i.e., familial Parkinson’s disease; FPD) [5, 6]. In the mid ‘90s, 
α-synuclein (SCNA) was reported as the first PD gene to cause 
PD upon its mutation to A53T or A30P [7, 8] and, subsequently, 
duplication and triplication of SCNA were also reported in some 
PD families [9-11], suggesting that the α-synuclein protein level is 
critical for PD pathogenesis. It is worthy to note that α-synuclein is 
mainly localized in the presynaptic terminals [12] and it is a major 
component of LB along ubiquitin [13]. Since the report of SNCA, 
several other genes have been reported as PD-causative genes with 
either an autosomal dominant or recessive mode of inheritance. 
A recent GWAS (genome-wide associated study) has identified 
17 novel PARK loci in addition to the >24 PD risk loci already 
known [5]. In 2004, two groups reported LRRK2/dadarin (OMIM 
#607060), as an autosomal dominant PD gene corresponding to 
the PARK8 locus [14, 15] which was originally mapped on chro-
mosome 12 through a study of a Japanese PD family [16].

LRRK2 as a PD causative gene

LRRK2 is a large protein of 2527 amino acids containing two 
functional enzymatic domains, the GTPase and the Ser/Thr kinase 
domains, and several protein-protein interaction domains such 
as the armadillo, ankyrin, leucine-rich repeat (LRR) and WD40 
domains (Fig. 1) [17, 18]. LRRK2 is a member of the ROCO family 
that contains LRR, ROC (Ras of complex), COR (carboxyl termi-
nal of ROC), and kinase domains [18, 19]. In humans, a homolog 
of LRRK2, LRRK1, is present as another member of the ROCO 
family, in addition to LRRK2 [20]. Although more than 30 DNA 
sequence variations of LRRK2 have been reported [21], only a few 

(N1437H, R1441H/C/G, Y1699C, G2019S, I2020T) was clearly 
identified as pathogenic mutations with two risk factors for spo-
radic PD (G2385R & R1628P) [6, 22-24]. Most of the pathogenic 
mutations are present in the functional domains, i.e., the ROC, 
COR, and Ser/Thr protein kinase (MAPKKK) domains, implying 
the crucial pathogenic functions of these domains for PD patho-
genesis. 

Among the several pathogenic LRRK2 mutations, the G2019S 
mutation is the most prevalent mutation and its identification [25-
27] has been thought to be as important as the discovery of the 
SNCA pathogenic mutations because of the following reasons: 
(1) the G2019S mutation occurs in familial as well as sporadic 
PD patients. Especially in specific ethnic populations such as the 
Northern Arabs, up to 30% of sporadic cases have been reported 
to contain this mutation: (2) the symptoms of patients with the 
G2019S mutation are similar to those of idiopathic PD cases: (3) 
like sporadic PD, the G2019S mutation develops late-onset PD 
that PD occurrence increases with age. An estimated 28% of dis-
ease onset is at age 59, 51% at 69, and 74% at 79 years [28]: (4) Most 
importantly, the G2019S mutation clearly increases the kinase ac-
tivity of LRRK2. These observations made a reasonable hypothesis 
that the increase of LRRK2 kinase activity is related to the mecha-
nism of PD pathogenesis. Therefore, LRRK2 kinase activity could 
be a promising target for PD therapeutics development [29] and, 
so far, much effort to develop a LRRK2 kinase inhibitor as a drug 
to treat PD is going on in several global pharmaceutical companies 
[30, 31]. However, in the Asian population, the G2019S mutation 
was rarely observed. Instead, two risk factors, G2385R and R1628P, 
were observed with relatively higher frequencies [32-34]. It is 
also worth noting that the G2019S mutation exhibits incomplete 

Fig. 1. A schematic view of LRRK2 with its pathogenic mutations and functional domains. ANK, ankyrin; LRR, Leucine-rich repeat; ROC, Ras of com-
plex protein; COR, Carboxyl-terminal of ROC. Among numerous LRRK2-interacting proteins, two proteins are shown [86].
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penetrance [28], implying that other factors such as aging and en-
vironmental elements are important in the pathogenesis of PD.

Another LRRK2 pathogenic mutation present in R1441 is the 
second most prevalent mutation in LRRK2 FPD cases [6, 14, 15]. 
Interestingly, the resulting amino acid from the R1441C mutation 
varies, and they include cysteine, glycine or histidine. The R1441C/
G/H mutation is present in ROC, a GTPase domain, and, at least, 
the R1441C/G mutation has been reported to impair its GTPase 
activity along with another pathogenic mutation in the COR do-
main, the Y1699C mutation [35], again indicating the importance 
of LRRK2’s enzymatic activities in PD pathogenicity.

More recent genetic information on LRRK2 mutations can be 
found in another excellent review by Monfrini et al. [6].

Because LRRK2 pathogenic mutations increase its kinase activity 
and cause PD, it is critical to know the in vivo phosphorylated pro-
tein targets of the LRRK2 kinase. Recently, several studies yielded 
promising results and this review aims to briefly summarize them. 
More detailed information about these studies can be found in 
other recent excellent reviews [23, 36-38].

Functions of LRRK2

LRRK2 is a big, multi-domain protein consisting of several 
protein-protein interaction and functional kinase and GTPase 
domains playing critical roles in the regulation of signal transduc-
tion. Therefore, it is of no surprise that LRRK2 plays regulatory 
roles in various cellular processes, such as autophagy, synaptic 
vesicle trafficking, protein synthesis, dynamics of microtubule 
and mitochondria, etc. , whose defects culminate to dopaminergic 
neuronal degeneration [17, 29, 39-41]. LRRK2 is ubiquitously ex-
pressed, mainly in the kidneys and lungs and it is relatively weakly 
expressed in the brain. LRRK2 localizes in the cytoplasm, often 
present in vesicles and cellular organelles [42]. 

Because PD is caused by defective mitochondria, an increase of 
oxidative stress, and impairment of protein quality control, the re-
lationship of LRRK2 and autophagy is intensely being investigated. 
However, although it is obvious that LRRK2 regulates autophagy 
[43, 44], it remains unclear and controversial whether increased 
LRRK2 kinase activity positively or negatively regulates autophagy 
[41, 45]. Although recent in vivo studies using LRRK2 knock out 
or G2019S transgenic animals [46, 47] suggested that LRRK2 is a 
negative regulator of autophagy [48], further studies are needed 
for clear conclusions.

LRRK2 plays critical roles in synaptic vesicle trafficking. At first, 
LRRK2 was reported to interact with Rab5B to impair endocy-
tosis of synaptic vesicles [49]. Subsequently, various studies sug-
gested LRRK2’s crucial functions in synaptic vesicle trafficking. 
For example, LRRK2 phosphorylates endophilinA at the S75 site 

to affect tubulation of synaptic vesicle membrane [50] as well as 
endocytosis of synaptic vesicles [51]. A further study showed that 
EndophilinA-induced macroautophagy is activated by LRRK2-
mediated endophilinA phosphorylation [52]. Other studies sug-
gested that the R1441C and the G2385R mutations differentially 
regulate phosphorylation of synaptic vesicle proteins and binding 
affinity to synaptic vesicle proteins, respectively [53-55]. In addi-
tion, LRRK2 silencing altered evoked postsynaptic currents and 
dynamics of synaptic vesicle recycling [56]. 

LRRK2’s function in protein synthesis was also suggested by a 
study showing that the protein synthesis regulator eIF4E-BP is 
phosphorylated by LRRK2 and that this phosphorylation in a fly 
model increased protein synthesis, but also resulted in degenera-
tion of dopaminergic neurons [57]. However, eIF4E-BP phos-
phorylation in the mammalian brain was not changed by LRRK2 
expression [58]. Another study reported that LRRK2 pathogenic 
G2019S or I2020T mutation negatively controls microRNA-medi-
ated translational repression and supported that LRRK2 mediates 
translation [59]. A more recent study showed regulation of protein 
synthesis by LRRK2-mediated phosphorylation of the ribosome 
protein S15 [60]. In this study, LRRK2-mediated S15 phosphory-
lation increased both cap-dependent and -independent protein 
translations [60]. However, our recent study suggested that the 
LRRK2 recombinant protein itself did not directly affect protein 
synthesis in vitro [61].

Defective mitophagy is another key mechanism in PD pathogen-
esis [62] and mutations in LRRK2 and other PD-causative genes 
such as Parkin and PINK1 resulted in mitochondrial impairment 
[63]. LRRK2 interacts with Dlp1/Drp1, a mitochondrial fission 
protein, and regulates mitochondrial dynamics, probably via 
LRRK2 kinase activity in neurons [64]. Recently, we have reported 
that LRRK2 kinase activity also facilitates mitochondria fragmen-
tation in microglia [65]. Interestingly, one study has reported that 
mitochondrial DNA damage was also induced by LRRK2 kinase 
activity [66].

Another important function of LRRK2 is related to immunity. 
LRRK2 has been reported to be highly expressed in immune cells 
such as peripheral blood mononuclear cells [67, 68], suggesting 
its roles in immune function. LRRK2 has also been identified as 
a major susceptibility gene for inflammatory bowel disease (IBD 
[69, 70]). With respect to this function, lysozymes in Paneth cells 
of LRRK2 knockout mice were degraded in the lysosome, result-
ing in enteric infection [71]. Recent studies reported that LRRK2 
kinase activity negatively regulates phagosome maturation [72] 
or facilitates phagocytic activity [73]. This discrepancy definitely 
requires a further study for LRRK2’s roles in phagocytosis. Treat-
ment of microglia with a TLR agonist such as LPS induced activa-
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tion of LRRK2 activity and co-treatment of LPS with a specific 
LRRK2 kinase inhibitor attenuated neuroinflammation response 
[74, 75], suggesting a role of LRRK2 in immune functions in the 
brain as well. 

Interactions of LRRK2 with α-synuclein

α-Synuclein protein is the main component of LB and processing 
of α-synuclein monomers to aggregates via oligomers and fibrils 
is a main pathological mechanism of PD [76]. Along with LRRK2, 
SNCA is also an important autosomal dominant PD-causing 
gene. Accordingly, the pathogenetic relationship between LRRK2 
and α-synuclein has been a topic of intense research. LRRK2 was 
reported to phosphorylate α-synuclein at S129 [77], but no other 
study confirmed this direct phosphorylation, although their co-
localization in LB was reported [78]. Although results are still 
contradictory, the overexpression of G2019S in the brain of A53T 
transgenic mouse, an α-synuclein pathogenic mouse line, wors-
ened several cellular processes related to PD, resulting in neurode-
generation [76, 79-80]. These results implied that the synergistic 
effect of LRRK2 and α-synuclein is cell type- or brain region-
dependent because various studies reported that treatment with 
a LRRK2 kinase inhibitor decreases α-synucleinopathy [76]. At 
the same time, these results suggested that LRRK2 could regulate 
processing or cellular trafficking of α-synuclein. In fact, two recent 
reports showed that LRRK2 promotes exocytosis of lysosomal 
contents via phosphorylation of Rab proteins which may increase 
lysosomal secretion of toxic α-synuclein and α-synuclein propaga-
tion [81, 82].

LRRK2 kinase and its substrates

Earlier studies

Since after LRRK2’s first two reports as a PD-causative gene [14, 
15], identification of endogenous substrates of LRRK2 kinase has 
been intensively investigated [83, 84]. The first identified substrate 
was moesin, an ERM, actin binding cytoskeletal protein [85]. Sub-
sequently, it was found that LRRK2 itself was auto-phosphorylated 
at S910 and S935 sites and these phosphorylation were essential for 
binding of the 14-3-3 proteins [86]. An early study reported that 
LRRK2 also interacts with and phosphorylated tubulin-associated 
Tau protein, whose aggregates are often identified in the brain of 
PD patients [87]. Another study reported that LRRK2 facilitates 
Tau phosphorylation by CDK5 [88]. These and other studies [89, 
90] suggested that LRRK2 could modulate microtubule stability 
via regulation of Tau phosphorylation. In addition, other proteins 
such as eIF4E-BP, snapin, p53, akt1, endophilinA, ASK1, and p62 
[50, 52, 57, 91-95] have been suggested as LRRK2 kinase sub-

strates, although it remains unclear whether they are physiological 
substrates or not.

At first, to identify LRRK2 kinase substrates, LRRK2 interacting 
proteins were identified after co-immunoprecipitation assays or 
yeast two-hybrid screenings. Then, although mostly performed 
under non-physiological conditions, various cellular and bio-
chemical assays were used to confirm whether the identified 
proteins were substrates of the LRRK2 kinase. However, after the 
development of specific LRRK2 kinase inhibitors and antibodies 
specific for phospho-substrates, it was possible to test LRRK2-
mediated phosphorylation of endogenous proteins. Using this ap-
proach along with systemic proteomic analysis, several members 
of the Rab GTPase family were identified as endogenous sub-
strates of the LRRK2 kinase [96, 97].

Rab Proteins as LRRK2 kinase substrates 

Rab GTPases, a branch of the Ras superfamily, are critical regula-
tors of intracellular vesicle trafficking [98]. It cycles an active GTP- 
and inactive GDP-bound forms and their membrane localization 
also affects its functional activity [99]. In addition, Rab GTPase 
activity was regulated by GEF, GAP, and GDI proteins [100]. 
Because cargo transport along a neuron’s long axon is important 
for the neuron’s viability, impairment of Rab proteins function at 
various intracellular membrane trafficking points is suggested to 
cause neurodegeneration [98]. The human genome encodes more 
than 60 Rab members, some of which, such as Rab5A, 5B and 5C, 
are close isoforms. Defective vesicle trafficking was suggested as a 
culprit of PD [101] and has also been reported in cells harboring 
PD-causative LRRK2 or SNCA mutations [56, 102, 103]. Among 
proteins functioning in vesicle trafficking, impairments of Rab 
proteins are suggested to be linked to PD [104, 105]. In addition, 
α-synuclein interacts with several members of Rab proteins and 
overexpression of these Rab proteins rescues defective vesicle traf-
ficking caused by pathogenic α-synuclein [106, 107]. Moreover, 
Rab29 (Rab7L1) and Rab39B have been reported as putative PD-
associated genes [108, 109] in addition to VPS35 [110], another 
vesicle trafficking regulator (Fig.  2).

Several elegant and systemic assays using phosphoproteomics 
and LRRK2 kinase inhibitors revealed that members of the Rab 
GTPase family are cellular physiological substrates of LRRK2 ki-
nase [96, 97, 111]. Actually, the relationship of LRRK2 to members 
of the Rab proteins such as Rab7, Rab5B, and Rab29, suggests that 
LRRK2 pathogenic mutations dysregulate vesicle trafficking [49, 
112, 113]. Mann and Alessi’s groups [97] developed a stringent 
assay by combining G2019S MEF cells treated with or without 
specific LRRK2 kinase inhibitors and a phosphoproteomics ap-
proach to identify physiological LRRK2 kinase substrates. This 
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elaborate study identified T73 of Rab10 and a known LRRK2 
autophosphorylated site, S935, as LRRK2 kinase substrate sites. 
Because the T73 of Rab10 is present in the distinctive and highly 
conserved switch II domain of the Rab family members, they 
systemically tested all Rab GTPase protein members for their po-
tential as LRRK2 kinase substrates and finally identified Rab3A/
B/C/D, Rab8A/B, Rab10, Rab12, Rab35, and Rab43 as endogenous 
substrates and Rab5B/C and Rab29 as potential substrates [96]. 
The phosphorylated sites of these Rab proteins were Thr or Ser 
and these sites corresponded to the T73 site of Rab10 in the switch 
II domain [96]. They also reported that Rab interacting lysosomal 
protein like (RILP) 1/2 interacts with the phosphorylated forms 
of certain Rabs (Rab8, 10 or 12) and this interaction regulates 
ciliogenesis [96]. The phosphorylation of Rab35 by LRRK2 has 
also been confirmed [111]. Furthermore, a recent report suggested 
that LRRK2-mediated Rab35 phosphorylation positively regu-
lates α-synuclein propagation, linking LRRK2 kinase activity to 
α-synuclein aggregate formation [82]. The most recent studies sug-
gested lipid storage and centrosomal defect as functions changed 
after Rab8A phosphorylation by LRRK2 [114, 115]. Although 
various studies above have confirmed the LRRK2-meidated 
phosphorylation of Rab proteins, most of them were conducted 
in experimental settings. Therefore, whether this phosphorylation 
really occurs in vivo  was an important question. A recent study 
has reported increased LRRK2 kinase activity and phosphorylated 
Rab10 level in dopaminergic neurons in the substantia nigra from 
brain tissues of patients with sporadic PD when compared with 
those of the control non-PD patients [116], suggesting that treat-

ment with LRRK2 kinase inhibitor might be useful for not only 
PD patients carrying the LRRK2 mutations, but also PD patients 
without them.

Rab29 functions differently from other Rab proteins. Rather than 
just simple LRRK2 kinase substrate, Rab29 interacts with LRRK2 
via the ankyrin (ANK) domain of LRRK2, localizes LRRK2 to the 
trans-Golgi network or the lysosome and activate LRRK2’s kinase 
activity after its phosphorylation (Fig. 2) [81, 117-119]. Another 
vesicle trafficking regulator VPS35 has also been reported as a 
modulator of LRRK2 kinase activity. VPS35 D620N, a PD-associ-
ated pathogenic mutation, increases LRRK2-mediated phosphor-
ylation of Rab proteins (Fig. 2) [120]. Therefore, these results have 
suggested that Rab29 and VPS35 function as upstream regulators 
of LRRK2 while Rab8/10/12/35 are LRRK2 downstream targets.

Moreover, a recent study showed that defective endolysosomal 
trafficking mediated by LRRK2 G2019S is partially caused by 
the impairment of Rab8A GTPase function [121]. As mentioned 
above, LRRK2 has also been reported to promote exocytosis of ly-
sosomal contents via phosphorylation of Rab proteins which may 
increase lysosomal secretion of toxic α-synuclein and α-synuclein 
propagation [81, 82]. Altogether, these studies suggested that phos-
phorylation of Rab proteins to dysregulate vesicle trafficking is a 
major function of LRRK2, thus, obviously pointing out a strong 
functional relationship between LRRK2 and Rab GTPases. 

However, there are still unanswered questions. For example, 
although ciliogenesis was decreased by pathogenic LRRK2 pro-
teins via influencing of Shh signaling [96], defective ciliogenesis 
has not yet been observed as a major PD-associated symptom 

Fig. 2. A summary of conse-
quences of LRRK2- mediated 
R ab phosphor ylations. Two 
upstream regulators related to 
phosphorylation, VPS35 and 
Rab29 were shown [81, 117, 120]. 
Relationship between VPS35 and 
Rab29 is unknown yet. Among 
LRRK2 kinase substrates, Rab5 
and Rab29 are putative sub-
strates [96]. Activation of LRRK2 
by Rab29 translocalizes LRRK2, 
Rab8, and Rab10 to lysosomal 
membranes, resulting in stabi-
lization of Rabs on membranes 
after their phosphorylation [81]. 
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and the spectra of patients with PD and those with ciliopathies 
are different [36], suggesting that functions of LRRK2-mediated 
phosphorylated Rab proteins other than ciliogenesis are related to 
PD. For example, does LRRK2-mediated phosphorylation of these 
Rab proteins affect their GTPase activities? Does phosphoryla-
tion change the functions or the binding affinities of Rabs to their 
various downstream effectors? It is highly possible that LRRK2-
mediated phosphorylated Rab8/10/12/29/35 proteins alter their 
binding affinities to their various effector proteins in addition to 
RILP1/2 and EHBP1, thus altering the effect of functions regu-
lated by these GTPases [81, 96, 118]. Although LRRK2-mediated 
Rab8 phosphorylation in SH-SY5Y cells was observed [115], most 
studies were performed in non-neuronal cells such as HEK 293 
cells or MEF cells [96, 97]. Therefore, the most important question 
is whether this phosphorylation occurs in neurons and other brain 
cells such as microglia and astrocytes where LRRK2 expression 
is higher than that of neurons. The major functional outcomes 
by Rabs phosphorylated by LRRK2 were summarized in Fig. 2. 
The physiological functions of Rab proteins phosphorylated by 
LRRK2 kinase are briefly summarized in Table 1, and detailed in-
formation can be found in the excellent recent reviews [23, 36-38]. 
In addition to Rab proteins phosphorylated by LRRK2, other Rab 
proteins such as Rab1, Rab2, Rab7, Rab11A, Rab13, Rab32, Rab38 
and Rab39B were also reported to be related to PD [98].

Phosphorylation of various Rab proteins by LRRK2 is now 
under intensive research to elucidate functional changes of phos-
phorylated Rabs related to PD pathogenesis. Further, such research 
may provide cues for PD therapeutic development.
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