
NeuroImage: Clinical 35 (2022) 103051

Available online 17 May 2022
2213-1582/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Motor imagery in amyotrophic lateral Sclerosis: An fMRI study of 
postural control 

Malek Abidi a,b, Pierre-Francois Pradat c,d,e, Nicolas Termoz a,b, Annabelle Couillandre a,f, 
Peter Bede c,d,g, Giovanni de Marco a,b,* 

a LINP2 Laboratory, UPL, Paris Nanterre University, France 
b COMUE Paris Lumières University, France 
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A B S T R A C T   

Background: The functional reorganization of brain networks sustaining gait is poorly characterized in amyo
trophic lateral sclerosis (ALS) despite ample evidence of progressive disconnection between brain regions. The 
main objective of this fMRI study is to assess gait imagery-specific networks in ALS patients using dynamic causal 
modeling (DCM) complemented by parametric empirical Bayes (PEB) framework. 
Method: Seventeen lower motor neuron predominant (LMNp) ALS patients, fourteen upper motor neuron pre
dominant (UMNp) ALS patients and fourteen healthy controls participated in this study. Each subject performed 
a dual motor imagery task: normal and precision gait. The Movement Imagery Questionnaire (MIQ-rs) and 
imagery time (IT) were used to evaluate gait imagery in each participant. In a neurobiological computational 
model, the circuits involved in imagined gait and postural control were investigated by modelling the rela
tionship between normal/precision gait and connection strengths. 
Results: Behavioral results showed significant increase in IT in UMNp patients compared to healthy controls 
(Pcorrected < 0.05) and LMNp (Pcorrected < 0.05). During precision gait, healthy controls activate the model’s 
circuits involved in the imagined gait and postural control. In UMNp, decreased connectivity (inhibition) from 
basal ganglia (BG) to supplementary motor area (SMA) and from SMA to posterior parietal cortex (PPC) is 
observed. Contrary to healthy controls, DCM detects no cerebellar-PPC connectivity in neither UMNp nor LMNp 
ALS. During precision gait, bilateral connectivity (excitability) between SMA and BG is observed in the LMNp 
group contrary to UMNp and healthy controls. 
Conclusions: Our findings demonstrate the utility of implementing both DCM and PEB to characterize connec
tivity patterns in specific patient phenotypes. Our approach enables the identification of specific circuits involved 
in postural deficits, and our findings suggest a putative excitatory–inhibitory imbalance. More broadly, our data 
demonstrate how clinical manifestations are underpinned by network-specific disconnection phenomena in ALS.   

1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal 
neuromuscular disease. The motor clinical picture of ALS is character
ized by increasing spasticity, weakness, postural instability, backward 
falls, impaired postural reflexes, retropulsion, bradykinesia, and rigidity 
(Feron et al., 2018; Pradat et al., 2009). Numerous studies have 

investigated the neuronal substrate of motor and gait impairment in 
amyotrophic lateral sclerosis (ALS) and it is thought to be driven by 
multi-network degeneration affecting motor, extra-pyramidal and 
cerebellar circuits (Feron et al., 2018). Based on longitudinal functional 
studies, it had been postulated that despite relentless cerebral and spinal 
degenerative changes compensatory processes may occur during the 
course of ALS (Proudfoot et al., 2019). The study and characterization of 
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adaptive functional processes may help to develop effective rehabilita
tion strategies and potentially slow functional decline. One of the key 
facets of clinical heterogeneity in ALS is the relative involvement of 
upper and lower motor neurons which defines the clinical phenotype, 
determines the disability profile of patients and ultimately their care 
needs. 

The neuronal underpinnings of physiological gait and postural con
trol have been successfully studied by functional magnetic resonance 
imaging (fMRI) and positron emission tomography (PET) using a motor 
imagery task (Jahn et al., 2008; la Fougère et al., 2010) which confirmed 
the pivotal role of the supraspinal locomotor network encompassing the 
supplementary motor area (SMA), the posterior parietal cortex (PPC), 
the basal ganglia (BG), and cerebellum. There is compelling evidence 
that imagined movements are largely analogous to executed movements 
with regard to intention, motor planning, and motor control (Marc 
Jeannerod, 2001) and both tasks result in similar activation patterns (M. 
Jeannerod, 1995). This analogy is crucial to study populations with 
considerable motor disability (Lulé et al., 2007). 

The majority of motor imagery studies have focused on the extent of 
brain activation, and interaction within the motor system is poorly 
characterized. Several fMRI studies have used functional connectivity 
methods to investigate correlations between time series across the brain. 
They found functional alterations and large-scale brain networks 
disconnection. However, these correlational methods do not reveal the 
causal influence of one neural system on another (Friston, 2011). In 
order to overcome this methodological limitation, some authors have 
advocated for alternative approaches, such as the assessment of ‘effec
tive connectivity’ which is defined as the directed (causal) influence of 
one (neuronal) system on another, which is inferred by modeling the 
neuronal interactions that generate BOLD time series (Friston et al., 
1997). This generative approach, called dynamic causal modelling 
(DCM), is strongly hypothesis driven. Among all known effective con
nectivity methods such as structural equation modeling (SEM), multi
variate autoregressive modeling (MAR) and Granger causality (GC), 
DCM is a well-established determinist method permitting the modeling 
of causal influences among different brain regions (Friston et al., 2003). 
By modeling time-varying hidden parameters that affect the trans
formation of neuronal activity into a hemodynamic response, DCM es
timates the temporal precedence of one neuronal system over another 
and assesses how changes in one system linearly and nonlinearly influ
ence another, how changes in multiple systems influence each other 
across time and how those neural interactions are influenced by external 
perturbations. 

In this fMRI study, we aimed to investigate neural interactions in the 
motor system during imagery to characterize hemodynamic responses in 
a cohort of clinically stratified ALS patients. We hypothesized that 
implementing state-of-the-art models such as DCM, we will succeed in 
describing effective connectivity patterns within a large-scale brain 
network, including the gait circuits. This is in sharp contrast with the 
method of the psychophysiological interactions (PPI), which operates at 
the level of the measured BOLD signal and focuses on a single source 
region. The evaluation of a single seed region limits the extent to which 
one can infer causal relationships in the brain, making the interpretation 
of the interactions ambiguous. Furthermore, the absence of a forward 
model linking neuronal activity to the measured haemodynamic BOLD 
signals makes analyses of inter-regional connectivity by PPI 
problematic. 

The advantage of DCM is that the coupling between models of neural 
dynamics and biophysical forward models is a mandatory component 
(Friston et al., 2011). Moreover, this causal method offers new insights 
into the pathophysiology of neurological disease and potentially into 
pharmacodynamics (Rowe et al., 2010). Accordingly, our objective is to 
investigate the effective connectivity with DCM, among four key motor 
regions: the supplementary motor area, the posterior parietal cortex, the 
cerebellum and the basal ganglia, which are known to closely interact 
during motor-imagery of gait (Abidi et al., 2021; Bakker et al., 2008; la 

Fougère et al., 2010). Using a plausible neurobiological model of 
imagined gait, our study aims to capture phenotype-specific connec
tivity patterns within the gait control and postural control circuits in 
ALS. Our overarching objective is the demonstration of differential 
network degeneration in clinical phenotypes and showcase the utility of 
imagery based paradigms in studying patient cohorts with significant 
motor disability. 

2. Materials and methods 

2.1. Subjects 

This study was approved by the institutional research board of the 
CPP Ile-de-France Paris VI. Thirty-one patients with ALS and 14 age- and 
gender-matched healthy controls gave informed consent to participate 
in this study. Based on standardized clinical evaluation (Simon et al., 
2015), ALS patients were divided into two subgroups: a UMNp cohort (n 
= 14) and an LMNp group (n = 17) (Table 1). Clinically, UMNp patients 
exhibited frank UMN predominance based on established UMN signs, 
such as marked spasticity, Hoffmann sign, Babinski sign, clonus etc. 
UMN burden was estimated based on the revalidated Penn UMN score 
(Quinn et al., 2020). LMNp patients showed obvious clinical signs of 
LMN pathology predominance such as decreased tone, muscle atrophy, 
fasciculations etc. Inclusion criteria included ‘definite’ or ‘probable’ ALS 
according to the revised El Escorial criteria (Brooks et al., 2000), age 
between 18 and 70 years, right-handedness. Exclusion criteria included 
frank frontotemporal dementia based on the Rascovsky criteria, co
morbid musculoskeletal conditions that would have interfered with 
functional evaluation, and contraindications to MRI. 

All participants underwent a standardized clinical examination on 
the day of imaging. Functional impairment was evaluated by the revised 
ALS Functional Rating Scale (ALSFRS-r). Disease progression rate was 
calculated as ((48-ALSFRS-r)/disease duration in months). All partici
pants also underwent a comprehensive neuropsychological evaluation 
including tests for memory, executive, language and visio-spatial do
mains (Table 1). 

2.2. Motor imagery paradigm 

The paradigm consisted of two tasks: a motor imagery (MI) task and 
a visual imagery (VI) task. Both tasks were tested with normal loco
motion (broad path) and with complex locomotion (narrow path). A 
total of four photographs were used for the experimental procedure (i.e., 
two start pads × two path widths). Subjects were asked to observe the 
photograph for 3 s and then they were asked to imagine performing the 
task while keeping their eyes closed. 

Participants were given written instructions before the training ses
sions and the fMRI experiment. On the day of the scan, the instructions 
were explained again, and a practice session was organized outside the 
scanner to simulate the procedure before data acquisition commenced 
inside the scanner. 

During the MI task, subjects were asked to imagine walking along the 
path in an egocentric perspective called “first person.” However, during 
the VI task participants had to imagine observing a black disc moving 
along the trajectory. The VI was used as a control condition (Fig. 1). 

2.3. Motor imagery scores: The visual and kinesthetic scales 

Computation of mean scores (average, standard deviation [SD]) was 
carried out for each scale VI and KI in each group. The resultant values 
may vary from 1 to 7, with a score of 7 constituting maximal motor 
imagery ability. The 2 × 3 repeated-measures ANOVA compared VI and 
KI scores between groups and were carried out using Statistica 13.0 
software. P < 0.05 was considered significant. 
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2.4. Acquisition of behavioral data 

For each trial, the time between the two button presses that marked 
the start and the end of the imagined visual or motor conditions (im
agery time [IT]) was recorded. Furthermore, the effects of task (motor 
imagery [MI], visual imagery [VI]) and path width (narrow, wide) on 
the response time in each group were also assessed. 

2.5. MRI data acquisition 

MRI data were acquired with a 3 T Siemens (Erlangen, Germany) 
Prisma platform using a 32-channel head coil. T1-weighted structural 
images were acquired with a magnetization-prepared rapid acquisition- 
gradient echo (MP-RAGE) sequence with a repetition time (TR) / echo 
time (TE) = 2300/4.2 ms, inversion time (TI) = 900 ms, and isotropic 1 
× 1 × 1 mm voxel size. Functional images were obtained using a single- 
shot gradient echo (GE-EPI) sequence. A total of 700 EPI volumes were 
acquired with TR/TE = 2020/27 ms; flip angle = 78; field of view (FOV) 
= 198 × 198 mm2 for the motor paradigm using 3 mm slice thickness. 

2.6. fMRI data preprocessing and experimental conditions 

Functional MRI analyses were performed using the Statistical Para
metric Mapping SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). In each 
dataset, for T1 equilibrium, the first four volumes were discarded. All 
EPI volumes were corrected to adjust for within-volume time differences 
and then realigned with the last volume to correct for head movements. 
The fMRI data were coregistered with the T1 anatomical images of the 
same subject and then spatially normalized into the MNI space. Spatial 
smoothing was performed with an 8-mm full width half-maximum 
Gaussian kernel. A whole-brain analysis was performed using the 
motor imagery broad (MI-Broad) condition to identify the brain regions 
involved in imagined locomotion of normal gait. A complementary 
analysis measuring the specific effects of the trajectory constraints was 
also carried out using the motor imagery-narrow (MI-Narrow) condi
tion. This condition aimed to identify brain areas more specifically 
involved in postural control and balance during complex imagined 
locomotion. 

2.7. Region of interest selection for DCM 

Four regions of interest (supplementary motor area, cerebellum, 
basal ganglia and posterior parietal cortex) were defined on the basis of 
prior knowledge of their functional interaction in motor imagery and on 
the basis of their activation in the second-level random-effect SPM 
analysis. Anatomical masks of the SMA, cerebellum, basal ganglia and 
PPC were created using the Automated Anatomical Labeling (AAL) atlas 
of the SPM Wake Forest University (WFU) PickAtlas toolbox and placed 
in each subject. The cerebellar mask included lobule VI and crus I/II of 
the cerebellum, and the basal ganglia mask included putamen and 
caudate. Time series were extracted, pre-processed and summarized 
within each ROI by their first principal component. 

2.8. DCM approach 

Effective connectivity analysis was performed using dynamic causal 
modelling (Friston et al., 2003), as implemented in SPM12, to link all 
these regions in the same model by considering different commonalities 
of connectivity. The underlying principle behind DCM is that it considers 
the brain as a non-linear dynamical system where inputs are known 
along with experimental perturbations (Friston et al., 2003). DCM is a 
framework for specifying, estimating and comparing generative models 
of time series. It incorporates known effects of interest and assesses task- 
dependent modulations among a group of interconnected regions 
through a set of matrices, known as: (a) task independent endogenous 
connectivity (matrix A) among the regions representing influence 
without any external perturbation, (b) task dependent modulation ef
fects (matrix B) representing changes in endogenous connection 
strength due to external perturbations and (c) direct influence of an 
external input (driving input) to a region (matrix C) (Friston et al., 2003; 
Pool et al., 2013). In addition to interactions between regions, DCM 
allows for external stimuli to influence regions, either directly or by 
modifying the connections between regions. 

We hypothesized that the average strengths of endogenous and 

Table 1 
The demographic and clinical profile of study participants.   

Healthy 
controls 
(n = 14) 

UMN 
predominant ALS 
patients (n = 14) 

LMN 
predominant 
ALS patients 
(n = 17) 

p 
value 

Age (years) 63.0 
(57.0–66.0) 

59.0 (20.0–71.0) 62.0 
(31.0–74.0)  

0.39 

Sex (female/ 
male) 

5/9 3/10 6/11  0.29 

Height (cm) 170 
(168–175) 

171 (157–187) 176 
(154–186)  

0.34 

Weight (kg) 74.5 
(66.0–83.7) 

67.2 (53.0–90.0) 66.0 
(54.0–86)  

0.45 

Disease Onset   
Upper limb NA 3 3  0.37 
Lower limb 7 10  0.58 
Bulbar 4 4  0.81 
ALSFRS-r (max. 

48) 
NA 37.5(35.2–41.0) 40.0 

(33.0–46.0)  
0.07 

Disease duration 
(months) 

NA 23.5(14.7–37.2) 15.0 
(07.0–80.0)  

0.73 

Disease 
progression 
rate 

NA 0.58(0.12–1.1) 0.46 
(0.09–1.0)  

0.13 

Cognitive assessment 
California verbal learning test II CVLT II 
Immediate recall NA 07.0 (04.0–13.0) 06.0 

(04.0–10.0)  
0.16 

total trial recall 
(1–5) 

57.0 (35.0–68.0) 52.0 
(38.0–69.0)  

0.32 

Short delay free 
recall 

12.0 (09.0–16.0) 12.0 
(07.0–16.0)  

0.21 

Short delay cued 
recall 

01.0 (0–13.0) 02.0(0–16.0)  0.48 

Long delay free 
recall 

14.0 (11.0–16.0) 14.0 
(09.0–16.0)  

0.41 

Long delay cued 
recall 

01.0 (0–13.0) 01.0 (0–16.0)  0.25 

Total recognition 
discrimination 

16.0 (13.0–16.0) 16.0 (0–16.0)  0.27 

Stroop test 
Reading NA 99.5 (46.0–117) 92.0 

(41.0–123.0)  
0.23 

Naming 73.5 (34.0–84.0) 64.0 
(40.0–80.0)  

0.13 

Double task 38.5 (24.0–53.0) 37.0 
(17.0–50.0)  

0.33 

Verbal fluency test 
Phonemic NA 25.0 (03.0–40.0) 18.0 

(09.0–38.0)  
0.46 

Semantic 31.0 (16.0–51.0) 32.0 
(10.0–45.0)  

0.44 

Wisconsin card sorting test 
Categories 

achieved 
NA 06.0 (01.0–06.0) 06.0 

(03.0–06.0)  
0.36 

Perseverative 
errors 

07.0 (0–31.0) 09.5 
(05.0–17.0)  

0.22  

03.0 (0–11.0) 04.0 
(01.0–09.0)  

0.38 

Digit span 
Forward NA 08.0 (04.0–11.0) 07.0 

(04.0–13.0)  
0.49 

Backwards 05.0(04.0–08.0) 04.0 
(02.0–10.0)  

0.34  
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modulatory connectivity would be unique to the study-groups and 
change according to width path conditions. Our neural model was 
specified with bidirectional connections between all regions (SMA, basal 
ganglia, PPC and cerebellum, except the PPC-basal ganglia circuit as this 
connection doesn’t play a crucial role in imagined gait. This base model 
was then modified systematically to produce ten plausible alternative 
models’ variants determined after Bayesian Model reduction described 
below. 

2.9. Parametric empirical Bayes (PEB) analysis 

To enable the quantification of commonalities and differences across 
subjects (inter-subject variability) in neural circuitry, DCM is supple
mented with a hierarchical model over parameters, called the Para
metric Empirical Bayes (PEB) framework (Friston et al., 2016). The PEB 
approach estimates the effect of each covariate on each connection (both 
the group mean and any group differences), as well as determining 
between-subject variability. The parameters of the PEB model were 
computed using a standard variational Laplace procedure. After having 
fitted each subject’s DCM to their data, we subsequently performed PEB 
analysis to estimate the group mean and the effect of path width (broad 
versus narrow) on each connection within each group. 

2.10. Bayesian model comparison (BMC) 

To evaluate how the connectivity in broad band condition differs 
from that in narrow band condition, we used Bayesian model compari
son to explore the space of possible models, where each model assumes 

that a different combination of the connections could exist across par
ticipants. It refers to the process of comparing the evidence of the full 
GLM model with multiple reduced GLM models that have certain com
binations of connectivity parameters switched off, by fixing the prior 
expectation at zero (Zeidman et al., 2019). Such comparisons are very 
efficient since the evidence and parameters of reduced PEB models can 
be derived analytically from the full model using Bayesian Model 
Reduction (Friston et al., 2016). Lastly, to confirm the Bayesian Model 
Comparison results, we applied Bayesian Model Reduction to automat
ically remove redundant effective connectivity links from the full PEB 
model that did not contribute to the model evidence. Specifically, the 
algorithm implemented a greedy searching over all the permutations of 
a small set of parameters (i.e., twenty four parameters in our case) 
whose removal produces the smallest reduction (i.e., greatest increase) 
in model fitting (Friston et al., 2003). The procedure was repeated until 
discarding any parameter starts to decrease model evidence or there 
were no more new parameters to add. After Bayesian Model Reduction, 
the best ten reduced models were combined by using Bayesian Model 
Averaging to account for uncertainty about the underlying model. 

In summary the main steps of PEB analysis include 1) specifying a 
DCM for each subject 2) fitting it to their data, providing estimates of the 
connectivity parameters (expected values and covariance) 3) subject- 
specific estimates are taken to group-level and modeled using a 
Bayesian approach of the GLM (PEB model) 4) the parameters of the 
GLM represent the group average of each connectivity parameter and 
group differences 5) using a Bayesian model reduction to search over the 
reduced PEB models with different combinations of connections 6) the 
best models from this search were combined using Bayesian model 

Fig. 1. The experimental protocol based on 
the Bakker study (Bakker et al., 2008) Subjects 
were asked to perform a mental imagery task in 
either motor (MI) or visual (VI) mode depending 
on presented visual stimulus (photos). During MI 
trials, a green square is present at the beginning 
of the path. During VI trials, a black disc is shown 
at the beginning of the path. The end of the path 
was identical irrespective of the imaging task 
(visual and motor), and was represented by a 
green pad displayed at a fixed distance of 6 m. (a) 
The photos show a corridor with a white path in 
the middle and a green sign positioned on the 
path. (b) Time-course of the experiment, partici
pants were asked to close their eyes while imag
ining themselves standing, and to press the 
button when they started imagining walking on 
the path and to press the button again at the end 
of the task. The inter-trial interval was random (4 
to 12 sec). The transition to the next test was 
signaled by the appearance of a large “X” sign in 
the center of the screen.   
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averaging whose results are reported below. 

3. Results 

3.1. Behavioral results 

The UMNp and LMNp groups were matched in age, ALSFRS-r sub
scores, disease duration, progression rates, and cognitive performance. 
No significant inter-group difference were detected in the MIQ-RS F(2, 
42) = 1.13, P = 0.33. Visual and kinesthetic scores were high (KI: mean 
= 5.04, SD = 1.23; VI: mean = 5.71, SD = 0.96) indicating a good im
agery ability in each group. 

A significant main effect of path width on imagery time (IT) was 
observed in the MI task (F(1, 42) = 67.76, P < 0.05; effect size: partial 
η2 = 0.61). The IT systematically increased with decreasing path width. 
On the other hand, path width had no significant effect on the IT of 
visual imagery F(1, 42) = 0.13, P = 0.71). A Group–Band interaction 
was also observed (F(2, 42) = 13.50, P = <0.05; effect size: partial η2 =
0.38). After Bonferroni correction (tests post-hoc), UMNp patients had 
longer IT on the narrow path compared to control subjects (P < 0.05) 
and LMNp patients (P < 0.05). No significant difference was observed 
between the control subjects and LMNp patients on the narrow path. 

3.2. Effective connectivity results 

3.2.1. Healthy control group 
Endogenous connection strengths in controls revealed significant 

connectivity between all the model nodes (Fig. 2) with bilateral con
nections which demonstrates the neurobiological plausibility of the 
model. In contrast, for the broad path condition, BG → SMA effective 
connectivity was positively modulated. A negative bilateral connectivity 
between BG → Cerebellum (− 0.040) and Cerebellum → BG (− 0.037) 
was observed, suggesting a decrease or suppression of these connections 
during broad path condition in control group (Table 2, Fig. 3). 

During Narrow path condition, we observe in controls significant 
connectivities within SMA → PPC and Cerebellum → PPC. A similar 

positive bilateral connectivity between BG → Cerebellum and Cere
bellum → BG was also recorded suggesting activation (excitation) of 
these connections with increased postural control processing (Table 2, 
Fig. 4). 

3.2.2. LMN group 
Endogenous connection strengths in LMN patients revealed signifi

cant connectivities between all the nodes of the model (Fig. 2). As 
controls, for the broad path condition, LMN patients present significant 
positive connectivity between BG → SMA and similar negative bilateral 
effective connectivity between BG and cerebellum. The bilateral inhi
bition of BG and cerebellum connectivity suggests a lesser involvement 
of this circuitry in broad path condition (Table 2, Fig. 3). During narrow 
path condition, LMN patients present different pattern of connectivity as 
healthy controls. Significant effective connectivity between SMA → PPC 
and positive bilateral connectivity between BG and Cerebellum was 
recorded. However, significant bilateral SMA-basal ganglia interaction 
and suppression of cerebellum –>PPC connectivity was observed 
(table2; Fig. 4). 

3.2.3. UMN group 
Endogenous connection strengths in UMN patients revealed signifi

cant connectivity in all the model nodes (Fig. 2). In contrast, for the 
broad path condition, BG → SMA and SMA → PPC effective connectivity 
were negatively modulated by broad path condition. Negative effective 
connectivity between these regions was detected suggesting an inhibi
tion of these connections during broad path condition (table 2, Fig. 3). 
Different pattern of activations/connections were demonstrated in UMN 
patients during narrow path condition. Only a positive bilateral effective 
connectivity between BG and Cerebellum was recorded (table2, Fig. 4). 

4. Discussion 

This study investigated the effective integrity of the motor network 
during motor imagery of locomotion in ALS. We have successfully 
applied DCM to fMRI data on imagined gait and were able to 

Fig. 2. The average strength of endogenous connectivity parameters for Controls (A), LMN (B) and UMN (C). The values (coupling parameters) reflect a rate 
constant (Hz) at which activity is propagated from one region to another. Values are significant at a posterior probability >95%. SMA = Supplementary motor area; 
PPC = Posterior parietal cortex; BG = Basal Ganglia. 
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characterize distinct patterns of effective connectivity during normal 
and precision gait tasks in both UMNp and LMNp ALS patients. 

There is ample imaging evidence of structural disconnection be
tween cortical and sub-cortical regions in ALS (Bede et al., 2018, 2021; 
Meier et al., 2020; Tu et al., 2018), but the functional interplay between 
these structures has not been characterized in sufficient detail. Our 

results revealed increased effective connectivity between basal ganglia 
and cerebellum and decreased connectivity between basal ganglia- SMA 
and SMA-PPC in UMNp patients during imagined gait. This reported 
increase between basal ganglia and cerebellum may be driven by the 
increased inhibitory influences from SMA to PPC and basal ganglia to 
SMA. This finding provides a possible novel explanation for the 

Fig. 3. Effective connectivity during broad path condition within control (A), LMN (B) and UMN (C). The red line represents increased connectivity and the 
blue lines represent decreased connectivity. 

Fig. 4. Effective connectivity during narrow path condition within control (A), LMN (B) and UMN (C). The red lines represent increased connectivity.  
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commonly observed increased connectivity in sub-cortical areas in ALS 
patients (Abidi et al., 2020; Abidi et al., 2021; Tessitore et al., 2006). 
PPC is known to store representations of movement and predict 
conscious motor intentions (Assal et al., 2007), whereas SMA will reflect 
the imminence of a motor response (Desmurget et al., 2009). The 
integrity of premotor-parietal and subcortical-SMA connectivity is 
essential to process visuospatial stimulus without the execution of motor 
motion (Cavanna & Trimble, 2006) and is crucial in locomotion, balance 
adjustments, and maintaining posture (Bakker et al., 2008; Jahn et al., 
2008). The PPC was specifically implicated in gait studies due to its 
connectivity with motor and premotor cortices (Niedermeyer et al., 
2004), and other studies have also suggested its role in complex senso
rimotor processing (Tjernström et al., 2010). The PPC has been proposed 
to generate a body schema that would be responsible for integrating 
limb movement, and their movements relative to the body, integrating 
information about the surrounding environment (Takakusaki et al., 
2008). The activation of the PPC for sensory integration, body schema, 
error monitoring and adjusting movement to environmental constraints 
would allow the PPC to assist the SMA in selecting subsequent locomotor 
plan updates Hinton et al., 2019). The negative association (inhibition) 
between premotor and posterior parietal areas indicates that UMNp ALS 
patients are unable to bring these brain regions online, leading to 
increasing gait imagining time and altering movement. These results are 
in accordance with previous findings within traumatic brain injury pa
tients, in which authors demonstrated decreased premotor-parietal 
connectivity during postural control task and this decrease in connec
tivity degree was significantly associated with poorer balance perfor
mance (Caeyenberghs et al., 2012). 

A multitude of studies have demonstrated how pontine and mesen
cephalic locomotor regions control postural muscle tone and coordinate 
stepping movements (Musienko et al., 2012). These regions are known 
to the affected in ALS (Bede et al., 2019). They receive projections from 
the SMA (Matsumura et al., 2000), and inhibition of the SMA disturbs 
locomotor regions functions and alters postural control (Mori & Naka
jima, 2010). Accordingly, it seems that the inhibitory influence of the 
basal ganglia to SMA in UMNp patients leads to altered connections 
between SMA and brainstem, the pons, and the mesencephalic loco
motor region which affect postural control, balance and gait. 

Consequently, impaired SMA-PPC and BG-SMA connectivity was 
associated with increased BG-cerebellar interaction within UMNp pa
tients. The massive recruitment of this subcortical circuitry may repre
sent a compensatory mechanism activated due to limited resources of 
premotor cortex. The basal ganglia and cerebellum are two groups of 
subcortical nuclei that are highly implicated in motor control as well as 
in cognitive functions processing (Belkhiria et al., 2017). Damage to 
these brain regions produces well-described alterations in motor and 
cognitive functions (Middleton & Strick, 2000). A multitude of studies 

have provided evidence that the basal ganglia and the cerebellum are 
not independent systems but, form a closely interconnected network 
(Bostan et al., 2010). Thus, changes at one node can percolate 
throughout the entire network to influence operations at other nodes 
(Bostan et al., 2010). The cerebellum contains neural representations 
reproducing the dynamic properties of the body and to exploit them to 
create sensorimotor predictions; this allows performing accurate motor 
forecasts linked to environmental stimuli/constraints and to body ki
nematics (Manto & Huisman, 2018). The wide neural network in which 
the cerebellum communicates with the basal ganglia allows not only 
movement prediction, coordination and timing but also the definition of 
spatiotemporal and visuospatial sequences of body segment movements 
and the generation of appropriate patterns of limb movements and in 
modulating their activation duration during locomotion (Martino et al., 
2014). 

Our study managed also to show an absence of cerebellum-PPC 
connection in UMNp patients during narrow path condition compared 
to controls. Both regions are thought to be critically involved in postural 
adjustments, balance control, and motor coordination (Goel et al., 
2019), as well as the prediction of sensory consequences of action 
(Blakemore et al., 2003). These predictions contribute to limb posi
tioning and negotiating environmental constraints (Bakker et al., 2008). 
During locomotion, cerebellar climbing fibers increase their activity, 
coding for predicted error severity during the stance portion of the 
perturbed leg and the swing phase of the next step and allowing for 
planning of the next foot placement (Yanagihara & Udo, 1994). The 
activation of PPC would then complement feedback from cerebellum to 
inform updates to the locomotor plan and allow an associative workload 
needed to integrate visual and proprioceptive stimuli (Hinton et al., 
2019). Reciprocal connection between cerebellum and PPC is then 
critically involved in encoding internal postural model in space and self- 
motion (Shaikh et al., 2004). Such a bodily information can be utilized 
to maintain upright posture during standing and to achieve anticipatory 
postural adjustment (Takakusaki, 2017). Therefore, damage observed in 
UMNp within the cerebellar—PPC connection makes gait adaptation to 
environment constraints impossible. 

More interestingly, this damage was also recorded in LMNp patients, 
however, these latter, compared to healthy controls and UMNp patients, 
present additional connectivity between SMA and basal ganglia to 
probably compensate the suppression of cerebellum-PPC connection. 
Previous researches highlight the crucial role of the SMA-basal ganglia 
connection in locomotion especially in motor imagery task. Cortical 
commands for locomotion originate in the supplementary motor cortices 
and are conveyed by the basal ganglia to brainstem locomotor centers 
(Bakker et al., 2008; Jahn et al., 2008; la Fougère et al., 2010). In 
addition, it has been shown that the SMA was highly activated when the 
task involved walking over obstacles rather than walking normally 

Table 2 
The average strength of modulatory connectivity parameters in Healthy controls, LMN,UMN in broad and narrow path condition. Values in bold are significant at a 
posterior probability >75%.   

Broad path condition  Narrow path condition  

SMA PPC BG Cerebellum  SMA PPC BG Cerebellum 

Healthy controls SMA   − 0.007  0.028  0.010    0.027  0.014  − 0.030 
PPC  0.008    − 0.015   0.053    0.049 
BG  − 0.004    ¡0.037   0.014    0.047 
Cerebellum  0.012  − 0.008  ¡0.040    − 0.016  − 0.004  0.046  

LMN SMA   − 0.0007  0.020  0.007    0.017  0.032  0.0009 
PPC  0.006    0.008   0.030    0.007 
BG  0.003    ¡0.020   0.050    0.062 
Cerebellum  0.001  − 0.002  ¡0.021    − 0.008  0.008  0.040  

UMN SMA   − 0.0069  ¡0.028  − 0.0092    0.0149  0.0092  0.0001 
PPC  ¡0.0237    0.0091   0.0024    0.0178 
BG  − 0.0065    − 0.0067   0.0160    0.0607 
Cerebellum  0.0073  − 0.0015  − 0.015    − 0.0079  0.0099  0.0425  

SMA; Supplementary Motor Area, PPC; Posterior Parietal Cortex, BG; Basal Ganglia. 
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(Malouin et al., 2003). This implies that this premotor region plays an 
important role in demanding balance tasks. Similarly, the basal ganglia 
are known to play an important role in balance and postural control for 
instance, they enable postural flexibility and sensorimotor integration 
(Visser & Bloem, 2005), in particular during complex gait task. These 
data highlight the role of the basal ganglia-SMA circuit in adapting the 
locomotor pattern in complex gait situations, and their probable 
dysfunction in pathological conditions could affect the ability to freely 
walk in complex environments (Maidan et al., 2016). Since previous 
research usually didn’t capture any differences between LMNp patients 
and healthy controls (Abidi et al., 2020; Abidi et al., 2021; Tessitore 
et al., 2006), further researches are needed. 

The nuanced characterization of the functional interplay between 
the cortex, basal ganglia and cerebellum has practical relevance to our 
understanding of gait impairment, fall risk and extrapyramidal features 
in ALS. While ALS is primarily associated with UMN and LMN degen
eration, extrapyramidal involvement is a likely contributor to the het
erogeneity of motor manifestations observed clinically. Beyond their 
contribution to motor disability, functional alterations between 
subcortical structures, the cerebellum and cortex are likely to drive ALS- 
associated cognitive and behavioral symptoms (Burke et al., 2016; 
Christidi et al., 2019). 

This study is not without limitations. Although differences were 
detected in the locomotion network in ALS patients, future studies need 
to replicate and validate these findings in a larger sample of patients. 
Moreover, additional structural connectivity analyses would have 
complemented our functional connectivity findings to provide a more 
comprehensive and multifaceted characterization of network disinte
gration in ALS. 

5. Conclusions 

Our data provide evidence of functional reorganization and neural 
circuitry disconnection in UMN-predominant ALS patients and indicate 
that loss of network integrity is a key determinant of clinical manifes
tations. UMN-predominant ALS patients exhibit increased effective 
connectivity between cerebellum and basal ganglia and diminished BG- 
SMA and SMA-PPC connectivity during motor imagery of gait; which 
impacts on locomotor, balance and postural control processing. 
Enhanced basal ganglia-cerebellar connectivity may represent func
tional adaptation. We have identified a unique connectivity pattern in 
LMNp patients with enhanced SMA-BG connectivity which may coun
terbalance the lack of cerebellum-PPC connectivity during precision gait 
paradigms. 
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Tessitore, A., Esposito, F., Monsurrò, M.R., Graziano, S., Panza, D., Russo, A., 
Migliaccio, R., Conforti, F.L., Morrone, R., Quattrone, A., Di Salle, F., Tedeschi, G., 
2006. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. 
Brain Res. Bull. 69 (5), 489–494. 

Tjernström, F., Fransson, P.-A., Patel, M., Magnusson, M., 2010. Postural control and 
adaptation are influenced by preceding postural challenges. Exp. Brain Res. 202 (3), 
613–621. 

Tu, S., Menke, R.A.L., Talbot, K., Kiernan, M.C., Turner, M.R., 2018. Regional thalamic 
MRI as a marker of widespread cortical pathology and progressive frontotemporal 
involvement in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 89 
(12), 1250–1258. 

Visser, J.E., Bloem, B.R., 2005. Role of the basal ganglia in balance control. Neural 
Plasticity 12 (2-3), 161–174. 

Yanagihara, D., Udo, M., 1994. Climbing fiber responses in cerebellar vermal Purkinje 
cells during perturbed locomotion in decerebrate cats. Neurosci. Res. 19 (2), 
245–248. 

Zeidman, P., Jafarian, A., Seghier, M.L., Litvak, V., Cagnan, H., Price, C.J., Friston, K.J., 
2019. A guide to group effective connectivity analysis, part 2: second level analysis 
with PEB. NeuroImage 200, 12–25. 

M. Abidi et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2213-1582(22)00116-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0115
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0115
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0115
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0125
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0125
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0150
https://doi.org/10.1016/B978-0-444-64189-2.00027-5
https://doi.org/10.1016/B978-0-444-64189-2.00027-5
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0170
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0170
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0170
https://doi.org/10.1016/S0165-0173(99)00040-5
https://doi.org/10.1016/S0165-0173(99)00040-5
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0195
https://doi.org/10.3389/fneur.2018.01148
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0205
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0205
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0205
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0210
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0210
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0210
https://doi.org/10.1523/JNEUROSCI.0109-04.2004
https://doi.org/10.1523/JNEUROSCI.0109-04.2004
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0230
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0230
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0230
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0250
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0250
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0260
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0260
http://refhub.elsevier.com/S2213-1582(22)00116-4/h0260

	Motor imagery in amyotrophic lateral Sclerosis: An fMRI study of postural control
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Motor imagery paradigm
	2.3 Motor imagery scores: The visual and kinesthetic scales
	2.4 Acquisition of behavioral data
	2.5 MRI data acquisition
	2.6 fMRI data preprocessing and experimental conditions
	2.7 Region of interest selection for DCM
	2.8 DCM approach
	2.9 Parametric empirical Bayes (PEB) analysis
	2.10 Bayesian model comparison (BMC)

	3 Results
	3.1 Behavioral results
	3.2 Effective connectivity results
	3.2.1 Healthy control group
	3.2.2 LMN group
	3.2.3 UMN group


	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Funding
	References


