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Deep convolution stack 
for waveform in underwater 
acoustic target recognition
Shengzhao Tian1, Duanbing Chen1,2,3, Hang Wang1 & Jingfa Liu4,5*

In underwater acoustic target recognition, deep learning methods have been proved to be effective 
on recognizing original signal waveform. Previous methods often utilize large convolutional kernels 
to extract features at the beginning of neural networks. It leads to a lack of depth and structural 
imbalance of networks. The power of nonlinear transformation brought by deep network has not been 
fully utilized. Deep convolution stack is a kind of network frame with flexible and balanced structure 
and it has not been explored well in underwater acoustic target recognition, even though such frame 
has been proven to be effective in other deep learning fields. In this paper, a multiscale residual unit 
(MSRU) is proposed to construct deep convolution stack network. Based on MSRU, a multiscale 
residual deep neural network (MSRDN) is presented to classify underwater acoustic target. Dataset 
acquired in a real-world scenario is used to verify the proposed unit and model. By adding MSRU into 
Generative Adversarial Networks, the validity of MSRU is proved. Finally, MSRDN achieves the best 
recognition accuracy of 83.15%, improved by 6.99% from the structure related networks which take 
the original signal waveform as input and 4.48% from the networks which take the time-frequency 
representation as input.

In underwater acoustic target recognition, target radiated noise collected by hydrophones is used to identify 
targets. Due to the complexity of the ocean soundscape, collected radiated noise is always accompanied by a great 
deal of interferential noise. Because the collected noise is neither explicit nor semantic, it is difficult to label and 
classify. How to improve the performance of automatic detection and classification of acoustic radiated noise 
signal is still a challenge problem.

Generally, conventional underwater acoustic target recognition methods extract manual designed features to 
train the classifiers. Due to the huge effect on recognition performance, traditional methods pay more attention 
to the design and extraction of features. The conventional manual designed features mainly include waveform 
 features1–3, wavelet  features4,5, spectrum  features6–10, and auditory  features11,12. The characteristics of the under-
water targets are described well by manual designed features from different perspectives. However, designing 
these features requires a great deal of prior knowledge of targets. For unknown targets and complex underwater 
soundscape, it is difficult to acquire enough prior knowledge. Hence, facing the unknown complex ocean acoustic 
field, manual designed features are not robust. Although preprocessing methods such as feature selection and 
feature  fusion13–17 were alleviated the weak generalization ability of manual designed features to some extent, the 
inherent generalization ability problem of these features still cannot be solved radically. Besides, in traditional 
methods, designing classifiers and extracting features are relatively independent, so the designed features may 
not fit the classification  models18. Briefly, the traditional methods have difficulty in adapting to the complex and 
changeable ocean environment. Thus, the underwater acoustic target recognition still mainly relies on well-
trained sonar  man19.

With the great progress of deep learning, deep neural networks have been successfully applied not only 
in pure visual and semantic perception but also in intelligent  transportation20,21, intelligent  industrie22 and 
intelligent  security23. It becomes feasible that build and train an end-to-end deep neural network to identify 
underwater acoustic targets by extracting deep features automatically. Instead of using hand-engineered features 
as before, Cao et al.24 used Sparse Auto-Encoders to learn the hidden structure from the time-frequency (T-F) 
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representation of underwater target acoustic signals in an unsupervised manner. The recognition performance 
was improved greatly compared with the traditional methods. Mello et al.25 used Stacked Auto-Encoders on the 
T-F representation for classification as well as detection of novelty categories that do not appear in the training 
set. Kamal et al.26 used a Deep Belief Network (DBN) to classify the underwater acoustic targets and the results 
confirmed the robustness of the approach in complex ambiences and the applicability of deep feature learning 
approaches for underwater target recognition. Yue et al.27 compared DBN to Convolutional Neural Network 
(CNN) using spectrogram as the input of networks, and the results showed that deep learning methods can 
achieve higher recognition accuracy. Yang et al.28 used a competitive learning mechanism to increase cluster 
performance during training of the deep network, and achieved higher accuracy than traditional methods. Wu 
et al.29 proposed a modified CNN based on typical CNN to classify the LOFAR (Low-Frequency Analysis and 
Recording) spectrogram. Cao et al.30 proposed a novel classification framework which combines the CNN archi-
tecture with the second-order pooling (SOP) to capture the temporal correlations from the T-F representation of 
the radiated acoustic signal and the proposed method yields an 8% improvement in classification accuracy over 
the state-of-the-art deep learning methods. Besides, salp swarm  algorithm31 and chimp optimization algorithm 
were developed by Khishe et al.32 for training neural networks, and results showed that the newly proposed 
algorithm in most cases provides better or comparable performance. In application of Recurrent Neural Network 
(RNN), Yang et al.33 combined deep long short-term memory network (LSTM) and deep auto-encoder neural 
network (DAE). The LSTM model in the DAE was pre-trained via unsupervised learning. The proposed method 
achieved a better classification performance compared with only using DAE and LSTM. Yuan et al.34 proposed 
a multimodal deep learning method for the recognition of ship-radiated noise. Ship-radiated noise (acoustics 
modality) and visual observation of the ships (visual modality) are two different modalities that the multimodal 
deep learning method models on. Liu et al.35 proposed a one-dimensional convolutional neural network (1D-
CNN) to recognize the line spectrums of Detection of Envelope Modulation on Noise (DEMON) spectrums of 
underwater target-radiated noise.

All deep learning models mentioned above took the time-frequency representation as the input of the net-
works, such as spectrogram, LOFAR spectrogram, Mel Frequency Cepstral Coefficient, DEMON spectrum 
and so on. By spectrogram calculation, the original signal was converted to the time-frequency domain with 
more explicit characteristics. Meanwhile, the information from waveform fine structure was lost. Besides, time-
frequency representations are usually limited by the generation parameters, such as the window size of Fourier 
Transform (FT) and the hop length of FT window. On the one hand, it requires prior knowledge to determine 
the appropriate transform parameters, and the time and frequency resolution cannot reach the optimum simul-
taneously. On the other hand, once the parameters are determined, the resolution of the generated spectrogram 
is fixed accordingly. It causes the loss of other resolution information for the end-to-end model with fixed input 
size. It becomes the bottleneck of spectrogram-based methods. Naturally, modeling on original signal waveform 
directly as well as predicting targets in a whole model becomes the direction to break through the bottleneck 
of performance.

Hu et al.36 conducted feature extraction to original waveform of underwater sound signal by CNN and took 
the extracted features as the input features of extreme learning machine classifier. Recognition rate was greatly 
improved compared to the traditional methods. Shen et al.37,38 proposed auditory inspired convolutional neural 
networks trained from raw underwater acoustic signal. A bank of trainable gammatone filters simulated the 
cochlea filter banks to extract features from original signal. The classification performance had been improved. 
Yang et al.19 designed a bank of multiscale deep convolution filters to decompose raw time domain signal into 
signals with different frequency components and made an improvement by refining the fusion and classification 
layers of depth characteristics. It achieved a classification accuracy of 81.96%. Recently, Shen et al.18 continued to 
improve their model by using Inception-Resnet39 as deep architecture for classification and adding an auxiliary 
classifier to recalibrate auditory features extracted from trainable gammatone filter banks. The model achieved 
87.2% recognition accuracy on four ship types and ocean background noise. Hu et al.40 designed auditory per-
ception inspired time-dilated convolution neural network (ATCNN) based on depthwise separable convolution 
and time-dilated convolution. Intra-class and inter-class information can be fully used for classification. For 
generative tasks, the Generative Adversarial Networks (GAN) have been proved to be effective in synthesis and 
restoration of  voices41 and  pictures42. GAN improves the ability of sample generation through adversarial learn-
ing between a generator and a discriminator. A good generator can be used to extend the training dataset, and 
improve the generalization and robustness of recognition model. In underwater acoustic target recognition, Jin 
et al.43 utilized GAN to extend the dataset by generating LOFAR spectrogram, and improved the performance of 
classification. However, due to the complexity of the signal waveform and the instability of the training process, 
few works have been done on using GAN to synthesize the underwater acoustic signal waveform so far.

Building and training an end-to-end neural network to classify underwater acoustic targets have been gradu-
ally adopted by researchers. However, in previous work, most of models have few layers and utilize large kernels at 
the beginning of the network for learning and extracting features. The network structures are imbalanced, because 
the convolutional layers with large kernels consume most of the memory. The networks are more dependent on 
the front architecture. It also leads to the separation of feature extraction and classification imperceptibly, and 
makes researchers gradually pay more attention on designing front of networks just like conventional methods. 
Deep convolution stack is a kind of network frame with flexible and balanced structure. It has good robustness 
since it does not depend on a particular part of the network. Automatic Machine Learning (AutoML) techniques 
such as Neural Architecture Search (NAS) can be easily applied on deep convolution stack networks due to the 
regularity of structure. In fact, deep convolution stack networks have not been explored well in underwater 
acoustic target recognition, even though such deep convolution stack networks like  ResNet44,45,  Inception39 and 
 DenseNet46 have been proved to be flexible and effective in visual understanding and natural language process-
ing. The reason for not using the deep convolution stack networks may be the lack of a basic stack unit which 
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is effective on perceiving the one-dimensional signal waveform of underwater sound. Unlike the speech audio, 
underwater sound is more irregular and random due to the diversity and uncertainty of sound source. Therefore, 
the general deep network structure may not be suitable for underwater acoustic target recognition.

In this paper, we focus on exploring appropriate network structure of deep convolution stack for perception 
underwater target radiated noise, giving full play to the automatic feature learning and extraction capabilities of 
deep neural networks. To model the one-dimensional original waveform, a multiscale residual unit (MSRU) is 
proposed inspired by  DRSN47 and deep neural network (DNN)48,49. Soft-thresholding proposed from  DRSN47 
and large convolution kernel used  in48,49 are combined as the initial design inspiration. Multiscale convolution is 
used to replace the core convolution in DRSN. By stacking MSRU, we present a multiscale residual deep neural 
network (MSRDN) for underwater acoustic target recognition, which takes original waveform as input. Dataset 
acquired in a real-world scenario is used to verify the effectiveness of our model. MSRDN achieves the best 
recognition accuracy of 83.15%, improved by 6.99% from the structure related networks which take the original 
signal waveform as input and 4.48% from the networks which take the time-frequency representation as input. 
MSRDN can improve the performance in underwater acoustic target recognition. Besides, to verify the MSRU in 
a different perspective, we add MSRU into Generative Adversarial Networks by replacing the core convolutional 
layers in  BigGAN42 and  WaveGAN41. The results of experiments have proved the effectiveness of the MSRU.

The main contributions of this paper are summarized as follows:

• For original signal waveform of the underwater acoustic target, a multiscale residual unit (MSRU) is proposed. 
The receptive field of the model has been improved. The results of classification and generative experiments 
prove the effectiveness of the MSRU.

• By stacking MSRU, a multiscale residual deep neural network (MSRDN) for underwater acoustic target 
recognition is presented. Comparative experiments results show that MSRDN improves the classification 
performance of underwater acoustic targets.

• For generative tasks, we preliminarily explore using Generative Adversarial Networks to synthesize underwa-
ter acoustic signal waveform. Two advanced GAN models are modified by using MSRU and the performance 
of them are improved.

• An approach of making underwater acoustic dataset is summarized in this paper. Detailed descriptions and 
analyses are correspondingly carried out. Several affecting factors that may impact the recognition perfor-
mance are proposed.

The remains of the paper is organized as follows. The proposed MSRU and MSRDN including two initial design 
inspirations are detailedly described in Methods. The manufacturing process of the dataset from a real-world 
scenario is introduced in Data Description Section. The experimental results and analyses are given in Results 
Section. Conclusions and future works are drawn in Discussions Section.

Methods
Multiscale residual unit. Inspired by  DRSN47 and deep neural network (DNN)48,49, multiscale residual 
unit (MSRU) is proposed in this paper. Concretely, we are attracted to the soft-thresholding proposed in  DRSN47 
and large convolution kernel used  in48,49.

Soft‑thresholding. Soft-thresholding has been used in many signal denoising methods. The function of soft 
thresholding can be expressed as

where x is the input feature, f(x) is the output feature, and τ is the threshold. Instead of setting the negative 
features to zero in ReLU activation function, soft thresholding sets the near-threshold features to zeros, so that 
useful negative features can be preserved. Different from image recognition and natural language processing, 
the negative features or the negative correlations of the one-dimensional signal are also important in classifica-
tion due to the time variability of the signal. It is helpful for the model to improve the perception ability of one-
dimensional signal by retaining the negative feature and restraining the near zero feature.

Compared with the basic unit used in  ResNet45, soft-thresholding is inserted as nonlinear transformation 
layers into the deep architectures to eliminate unimportant features in  DRSN47. Without manual presetting, the 
threshold can be learn automatically by a nonlinear transformation mechanism. Figure 1 shows the basic unit 
of  DRSN47. Firstly, we define a group of computational operations including a batch normalization, an activa-
tion and a convolution. The information in unit flows through two paths. one is the main information path 
and another is the shortcut information path. There are three groups of computational operations sequentially 
in the main information path. Following computational groups is a Soft-thresholding layer which learned the 
threshold by the nonlinear transformation structure in top right corner. To match the output shapes of two paths, 
there is one computational group in the shortcut information path. Hyper-parameter C is set as the number of 
processing channels for the entire unit. Hyper-parameter S is set as the stride of both the middle convolution in 
main path and the convolution in shortcut path. The channels of input data will be transformed to C by the first 
computational group in main information path and then the channels will expand to 4C by the last computational 
group in main information path. After Soft-thresholding layer, the output of the main information path and the 
shortcut information path will be added to form the final output.

(1)f (x) =

{

x − τ , x > τ

0, − τ ≤ x ≤ τ

x + τ , x < −τ
,
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Large convolution kernel. As we know, 3 × 3 convolutional kernel has been proved to be the most efficient 
kernel for image recognition. The 3 × 3 convolutional kernel could capture fine features of image very well. 
However, for one-dimensional signal waveform, the appropriate kernel size may be different due to the super-
position of different periodic signals and the difference of sampling frequency. Hence, the kernel size of 3 may 
be not the good choice for convolution on one-dimensional signal waveform. In fact, for signal with sampling 
frequency being 8 kHz or 16kHz, only using kernel size of 3 will result in insufficient receptive field of model 
and require a very deep convolution layer stack to perceive the features of waveform. The DNN  in48,49 took the 
kernel size of 16 as the filter length. Shen et al.18 took the kernel size of 100 as the gammatone filter length. Hu 
et al.36,40 took the kernel size of 204, 12 and 14. Li et al.50 took the kernel size of 128 as the filter length. All these 
works demonstrate that for one-dimensional signal waveform, better performance can be achieved if we increase 
convolutional kernel size appropriately.

However, due to the limitation of storage and computing resource, it is difficult to apply deep convolution 
stack with large convolutional kernel size. With limited resources, it is feasible to use large kernel size to construct 
convolution stack with few layers or to use small kernel size to construct convolution stack with deep layers. 
In underwater acoustic target recognition, the first strategy was taken by Shen et al.18,37,38, Yang et al.19 and Hu 
et al.36,40 They all used large convolutional kernel at the front of the network to form a filter bank. Then, typical 
convolution stack with small kernel size was used to classify the output of the filter bank. The second strategy 
was taken  by47–49 in highly noised vibration signals and computerized electrocardiogram identification. They 
used medium size convolutional kernel through the network from start to end to construct deep convolution 
stack network. The second strategy has also been proved to be effective on one-dimensional signal waveform. In 
fact, deep convolution stack has not been explored well in underwater acoustic target recognition. Hence, in this 
paper, we will take the second strategy on underwater acoustic target recognition. At the same time, in order to 
avoid the inadequacy problem of small convolutional kernels, we consider using multiscale convolutional kernels 
to enhance the receptive field of the model.

Implementation of multiscale residual unit. Inspired by  DRSN47 and  DNN48,49, Multiscale Residual Unit is pre-
sented in Fig. 2. MSRU is designed on the basis of deeper bottleneck architectures in  ResNet44. Soft-thresholding 
and multiscale convolutional kernels are used to increase the perception ability for one-dimensional underwater 
acoustic signals. Using multiscale convolutional layers will be able to enhance the receptive field of the model. 
On a micro level, like the spectrum calculation, once the kernel size of convolution is determined, the resolution 
of the generated feature map is fixed accordingly. In contrast, multiscale convolutional layers will be able to gen-
erate feature maps with multiple resolutions and combine them. The inadequacy problem of small convolutional 
kernels can be avoided. On a macro level, because the convolutional layer usually processes on the output of 
the previous convolutional layer, the low resolution information will be delivered to the deep layer. Generating 
feature maps with multiple resolutions during forward propagation allows the model to capture more feature 
information, by combining and calculating layer by layer. The imbalance structure problem of large convolu-
tional kernels can be solved.

In order to make the features balanced at each scale and maintain the multiscale sensitivity of the model, the 
number of channels processed at each layers in parallel multiscale convolution module should be equal. For the 
convenience of the channel calculations, four parallel layers of convolution will be used in MSRU. Besides, we 
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Figure 1.  The basic unit of  DRSN47. In convolution layer, parameter c is the convolutional out channel number, 
k is the kernel size of convolution, and s is the stride of convolution.
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conducted experiments on 2 and 8 layers of multiscale convolution module. The results did not exceed the model 
with 4 layers in module. Under the trade-off between resource and performance, we adopt the convolutional 
kernel with size of 3, 9, 15 and 21 in four parallel convolutional layers respectively.

Two hyper-parameters which will determine the output shape need to be set in advance. Hyper-parameter C 
is set as the number of processing channels for the entire unit. Hyper-parameter S is set as the stride of multiscale 
convolution as well as the stride of convolution in shortcut path. The information flows through two paths. one 
is the main information path and another is the shortcut information path. In main information path, the chan-
nels of input data will be transformed to C by the first convolutional layer. Then, four convolutional layers with 
different kernel size will extract features from different scales. Channel concat will be used to fusion the output 
features of each convolutional layer. Soft Threshold Learning Module will generate a threshold for every channels 
by nonlinear transformation. After filtered by the learned thresholds, the channels of feature will expand to 4C 
by the last convolutional layer. In shortcut information path, following by batch normalization and activation 
layer, one convolutional layer will be used to match the output shapes of main and shortcut paths. Finally, the 
output of the main and shortcut path will be added to form the final output.

Compared with the basic unit of  DRSN47 (see Fig. 1), one dimensional convolution at the middle computa-
tional group in main path is replaced by four parallel convolutional layers with different kernel size. The number 
of output channels per convolutional layer is one quarter of the input channels. After channel concat, the size of 
output feature equals the size of basic unit in  DRSN47. Therefore, only the multiscale convolution part needs extra 
parameters and computations. Besides, the activation layer before the last convolution layer will be replaced by 
soft-threshold layer. In this way, multiscale features could be filtered directly and the amount of computation and 
parameters required for soft-threshold layer could be reduced, because the whole process is performed before the 
channel promotion. All designs will significantly improve model receptive field with small increase in parameters.

Different from the Auditory perception inspired Deep Convolutional Neural Network (ADCNN)19, in which 
filters with different convolutional scales were only set up in the beginning of the network, MSRU with four 
different convolutional scales runs through the network from start to end. By varying the number of MSRU, the 
network can be adjusted more easily facing different environments. In addition, both the combination strategies 
of different convolutional kernel size and the number of MSRU can be used as entry points of network structure 
search.

Multiscale residual deep neural network. Following the advanced structures of deep convolution stack 
networks, multiscale residual deep neural network (MSRDN) stacked by MSRU is constructed in Fig. 3. In the 
head of the network, four parallel convolutional layers with different kernel size will be performed firstly. The 
selection of kernel size is same as multiscale convolution module in MSRU. The reason for using the four parallel 
layers is to avoid the limitation by a fixed convolutional kernel size initially, and the multiscale features in low 
resolutions are ensured to the maximum extent. The output channel of each convolution layer is set to 16 and 
the stride of each convolution layer is set to 2. After bath normalization and activation layer, a max Pooling layer 
(kernel size = 3, stride = 2) will be used to reduce the output dimensions of each convolution. Then, channel 
concat will be used to fusion the output features. The shape of the feature map after fusion is [B, 64, L/4].

Based on structure of ResNet-10144, the main body of MSRDN is stacked by MSRU. According to the differ-
ence of hyper-parameter C, all MSRUs will be divided into four convolution stacks. The number of MSRUs in 
four stacks is distributed as [3, 4, 23, 3], and the hyper-parameter C is set as [64, 128, 256, 512] respectively. In 
each convolution stacks, the MSRUs are connected sequentially. The hyper-parameter S in each MSRU can be 
set to 2 or 1. If S is set to be 2, MSRU will perform once sub-sampling to the input. Otherwise, no sub-sampling 
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Figure 2.  The structure of Multiscale Residual Unit (MSRU). Two hyper-parameters C and S will determine the 
output shape. The shape of input data is [B,C_in, L] in which B represents batch size, C_in represents channel 
number, and L represents data length. The shape of output data is [B,C × 4, L/S] . Hyper-parameters S is usually 
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size and a channel concat operation. Soft Threshold Learning Module consists of a global average pooling 
layer and two fully connected nonlinear transformation layer. In every convolution layer, parameter c is the 
convolutional out channel number, k is the kernel size of convolution, and s is the stride of convolution. All the 
padding approach are “same”.
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will be performed. In our model, for two consecutive MSRUs in convolution stack 1 and convolution stack 2, S 
is set to 2 in prior MSRU and 1 in other unit. While for three consecutive MSRUs in convolution stack 3, S is set 
to 2 in prior unit and 1 in other two units. In convolution stack 4, S is set to 1 for all MSRUs.

At the end of the network, after a activation layer, a Global Average Pooling layer and a full connection layer 
will be used to generate result of prediction. Finally, the result of prediction will be transformed to a probability 
distribution by a soft-max layer. The shape of output is [B,Class_N] , in which B represents batch size and Class_N 
represents the number of predicted categories.

Compared with the structure of ResNet-10144, MSRDN changes the initial convolution layer in the head of 
network into four parallel multiscale convolution layers. Then, general residual units in ResNet-101 are replaced 
by proposed MSRU. The unit distribution of each convolutional stack remains the same. With such modification 
of structure, MSRDN would automatically learn and extract multiscale features from underwater acoustic radi-
ated noise. Meanwhile, the benefits of  ResNet44 are preserved. Besides, MSRDN are not dependent on a particular 
part of structures, becaue MSRUs run through the main body of MSRDN from start to end. The network structure 
becomes more regular and balanced.

Data description
Data source. The sample data of underwater targets used in this paper are collected from Ocean Networks 
Canada (https:// ocean netwo rks. ca). Specifically, we choose the signals recorded by Ocean Sonics icListen AF 
Hydrophone 2523 deployed at Latitude 49.080811◦ , Longitude −123.3390596◦ and 144 meters below sea level. 
The dates of data acquisition are from 24 Jun, 2017 to 24 Jul, 2017 and from 04 Nov, 2017 to 04 Oct, 2018. Sam-
pling frequency of the signal is 32 kHz and it will be downsampled to 16 kHz in our dataset. Each recording is 
a 5 minutes audio file in WAV format. Each recording will be sliced into 100 segments to make up the input of 
neural networks. Namely, each segment has 3 seconds of duration.

These data in Ocean Networks Canada are acquired for disaster mitigation, ocean management and environ-
ment protection. It means that no target type labels are generated at the same time. Fortunately, the related refer-
ences remind us that Automatic Identification System (AIS) nearby the hydrophone can record the information 
about passing targets approximately. Therefore, we choose the AIS information as the standard truth of targets 
to label audio samples. Concretely, we use the log recorded by Digital Yacht AISnet Receiver 1302-0097-01 
(12522) deployed at Latitude 49.2160633333◦ , Longitude −123.2054816667◦ which is the closest receiver device 
to the hydrophone.

By querying the AIS record of corresponding time and area of a signal recording, we can acquire the pass-
ing targets information approximately. It is possible to use these data materials to manufacture an underwater 
target recognition dataset.

Dataset manufacture. Firstly, targets presented in an area of 2 km radius of the hydrophone deployment 
site are selected. To minimize noise generated by other ships, the recording will be removed if there are other 
ships presented in 3 km radius of the hydrophone deployment site.

Then, according to the AIS information of the target, the Maritime Mobile Service Identify (MMSI) of the 
target is available. By querying the MMSI, the type of target can be confirmed, and corresponding recording can 
be annotated. In order to make the labeled categories as relevant as possible to the source of acoustic radiation, 
we adopt the label system  in8. Combining with the collected data, the label system used in this paper is as follows:

• Class A: fishing boats, trawlers, mussel boats, tugboats and dredgers
• Class B: passenger ferries
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Figure 3.  The structure of multiscale residual deep neural network (MSRDN). The shape of input data is 
[B, 1, L], in which B represents batch size and L represents data length. The shape of output is [B,Class_N] , in 
which B represents batch size and Class_N represents the number of predicted categories. In the head of the 
network are four parallel convolution with different kernel size. the main body of MSRDN is stacked by MSRU. 
According to the difference of hyper-parameter C, all MSRUs will be divided into four convolution stacks. The 
convolution stacks can be directly connected to each other due to the independence and flexibility of MSRU.
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• Class C: ocean liners and ro-ro vessels
• Class D: background noise recordings

Finally, dataset with 4 target categories is manufactured. However, the original dataset is imbalanced among 
categories and it is not conducive to training model. We randomly sample from the categories with large quanti-
ties of recordings. After sampling, the number of recordings is close between categories and is similar among 
each month. The number of recordings of each categories is shown in Table 1. Class A, C and D are obtained by 
random sampling. Each category has recordings about 62.5 hours. In order to get close to the real application 
situation, the recordings from the first 12 months are used for training and the remaining 5 months for testing. 
Segments from one recording can not be split into the training dataset and testing dataset concurrently. Table 1 
also shows the partitioning details of dataset.

Results
The experiments are designed around two aspects. In the first experiment, the networks such as  ResNet45,  DRSN47 
and  DNN48 which have related structures and same input form with MSRDN will be used for comparison. By 
adding and modifying network structures step by step, the performance gains from the improvements are gradu-
ally reflected. Besides, in order to demonstrate that MSRDN can break through the limitation of the spectro-
gram-based methods, the networks such as  ResNet45, Inception-Resnet39,  DenseNet46 and the modified LENET 
(MLENET)43 which take the time-frequency representation as input will be used to compare with MSRDN.

In the second experiment, based on  BigGAN42 and  WaveGAN41, we modify the structures of two models by 
replacing the core convolutional layers by our MSRU and compare the performance. The second experiment is 
conducted because we want to demonstrate that the structure we proposed can actually capture the features of 
underwater targets, rather than just promote the classification indicators through training tricks. Therefore, we 
add the MSRU into the generative task for investigation. The generated data in second experiment will not be 
used in the previous experiments in this paper.

Evaluation indicators in this paper follows the general classification task and generative task. For classifica-
tion task, accuracy, average recall, average precision, macro F1 score and AUC (Area Under Curve) are used 
to evaluate models. There are four categories in dataset to classify. The confusion matrix is shown in Table 2.

Accuracy is defined as the ratio of identifying correct:

where n is the number of samples of test dataset.
For each class k(k = A,B,C,D) , recall, precision and F1 score are defined as:

(2)Accuracy =
AA + BB + CC + DD

n
,

(3)recallk =
kk

kA + kB + kC + kD
,

(4)precisionk =
kk

Ak + Bk + Ck + Dk
,

Table 1.  The number of recordings. Each recording is a 5 min audio file in WAV format. Each recording 
will be sliced into 100 segments as samples to make up the input of neural networks. Each segment has 3 s 
duration.

Class label A B C D

Total number of recordings 750 750 750 750

Number of training recordings 530 538 530 530

Number of testing recordings 220 212 220 220

Table 2.  Formal description of the confusion matrix.

Truth

Prediction

Class A Class B Class C Class D

Class A AA AB AC AD

Class B BA BB BC BD

Class C CA CB CC CD

Class D DA DB DC DD
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average recall, average precision and macro F1 score are calculated by average them among all categories cor-
respondingly. AUC is the area under the Receiver Operating Characteristic (ROC) curves, and is often used to 
evaluate multiclassification  models18,19,28,37. The closer the AUC is to 1, the better the model performance is.

For generative task, we mainly evaluate the performance of generator. Fréchet Inception Distance (FID)51 are 
used to measure the quality of generated samples. This indicator need to uses a pre-trained classifier. In our paper, 
the trained MSRDN model is used as the pre-trained classifier during the calculation process of FID. Based on 
deep feature maps of pre-trained classifier, FID calculates the distance between the real samples and the generated 
samples at the feature level. To be specific, FID assumes that if two samples are similar, their deep feature maps 
from the same classification model should also be similar. At the dataset level, if generated dataset is similar to 
testing dataset, the FID value between them should be low. In fact, two datasets can not be exactly the same. 
For the generator, it is meaningless to generate samples that are identical to the real dataset. In other words, we 
expect that the generated dataset can be similar to the real dataset and maintain some degree of diversity at the 
same time. For measuring this expectation accurately, we firstly calculate the FID between the training set and 
the testing set ( FIDbase ). FIDbase represents the degree of diversity we expect, and the inherent differences in the 
real dataset itself. Ideally, FID between the real data and the generated data should be close to FIDbase.

Then, we calculate the FID between the training set and the generated set ( FIDtrg ) and the FID between the 
testing set and the generated set ( FIDteg ). Finally, we use FID(TRG ) to measure the distance between the train-
ing set and the generated set, where FID(TRG ) is the ratio value of FIDtrg and FIDbase . Correspondingly, we use 
FID(TEG) to measure the distance between the testing set and the generated set, where FID(TEG) is the ratio 
value of FIDteg and FIDbase.

All experiments are conducted on a regular rack server with a Nvidia Titan RTX GPU (24G). Training and 
testing models are both based on the GPU. All neural networks are implemented on the open source machine 
learning framework pytorch-1.6.052 under Linux operating system with python programming language.

Classification experiments. A set of ablation experiments are designed to compare the performance of 
MSRDN and reference models, including  ResNet45,  DRSN47,  DNN48. Besides, for the completeness of the abla-
tion experiment, we design an intermediate model called Large kernel size with Soft-thresholding Deep Net-
work (LSDN) which takes advantages of  DRSN47 and  DNN48 by combining large convolution kernel and soft 
threshold.

ResNet45 is a milestone model in deep learning. By adding shortcuts, the network can easily enjoy accuracy 
gains from greatly increased depth. We adopt the pre-activate version in this paper. The stacking configuration 
(the setting of layers number and channels number) of ResNet follows ResNet-10145, to make sure the depth of 
models and the resource consumption are in the similar level. In this experiment, ResNet will be modified to 
1D version, by changing the function of convolution and pooling.

Based on ResNet,  DRSN47 took soft thresholding which can learn the threshold automatically as nonlinear 
transformation layers into the deep architectures to eliminate unimportant features. Also, to make sure the depth 
of models and the resource consumption are in the similar level, we construct DRSN followed by the stacking 
configuration of ResNet-10145.

The third comparison model is deep neural network (DNN) used  in48. Because the network  in48 was not 
designed for underwater target recognition, we extend this network to follow the stacking configuration of 
ResNet-10145. The kernel sizes will be changed from 16 to 17 for convenient calculation. Compared with ResNet, 
 DNN48 only increase the kernel size of convolution to change the receptive field of the model.

The fourth comparison model LSDN combines large convolution kernel and soft threshold. Compared with 
 DNN48, Soft-thresholding is inserted as nonlinear transformation layers into the deep architectures in LSDN. 
Compared with  DRSN47, the kernel size of the middle convolution layer is increased to 17 in every residual unit 
in LSDN.

In comparisons with T-F representation based models, the deep neural networks with well-designed stack 
structures such as  ResNet44,45, Inception-Resnet39,  DenseNet46 and the modified LENET (MLENET)43 are used 
to compare with our MSRDN.

The original 2D version  ResNet45 will be adopted. Inception Series networks proposed by Google. The core 
idea is to achieve better perception by widening the networks. In each Inception module, convolution kernels of 
different sizes are used, which can be understood as different sensory fields, and then concentrate to enrich each 
layer of information. Inception has been shown to achieve good performance in image recognition at a relatively 
low computational cost. Inception-Resnet combined the structure of InceptionV4 and ResNet.  DenseNet46 con-
nects each layer to every other layer in a feed-forward fashion. This model alleviates the vanishing-gradient prob-
lem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. 
Besides, the  MLENET43 achieved good results in underwater acoustic target recognition.

For ResNet of 2D version, we adopt the pre-activate version. The stacking configuration (the setting of layers 
number and channels number) of ResNet follows ResNet-10145. The parameters in Inception-Resnet that deter-
mine depth of network are the number of three modules. These are L, K and M. In this paper, they are taken as 
L = 5, K = 10, M = 5. For  DenseNet46, we adopt DenseNet-201 model in our experiments.

For the generation of time-frequency spectrograms, a short time fast Fourier-transform with the frame length 
of 512 points (32ms) was used to yield the representation of the signal data. The hop length between frames 
is 187 points. Thus, the signal data was transformed into spectrogram of shape 257 × 257. Figure 4 shows the 
time-frequency representation generated by each category sample.

(5)F1 scorek =2 ·
precisionk · recallk

precisionk + recallk
,
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We train the networks from scratch, and use  Swish53 as the activation function. We use the Adam  optimizer54 
with the default parameters. The Batch size is set to 64 for all experiments. The learning rate is from 1e−3 to 
1e−8, and reduce as the training epoch increasing. We save the best model and evaluate on the testing set dur-
ing the optimization process. The experimental results of classification experiments are shown in Table 3. The 
entire training process lasted 3–4 days to run through the whole training set about 80 times (80 epoch). Each 
model has been fully trained.

From experimental results of wave-based models, it can be seen that both Soft-thresholding and Large kernel 
size can significantly improve the performance 4–5% in accuracy compared with  ResNet45 which can be con-
sidered as a basic deep convolutional stack. Compared with Soft-thresholding, Large kernel size can bring more 
performance improvement. Indeed, as the receptive field gets larger, the model learns more features. Whereas 
Soft-thresholding can only maximize the use of features based on the original receptive field. LSDN combining 
large convolution kernel and Soft-thresholding improve the performance 0.8%-1.69% in accuracy compared 
with  DRSN47 and  DNN48. It shows that the two methods improve the performance of the model from differ-
ent perspective, and they can be used in combination without conflict. Compared with other models, MSRDN 
achieves the highest performance in accuracy, average precision, average recall and macro F1 score. To our 
surprise, LSDN achieves the highest AUC, and MSRDN achieves the second highest AUC. One possible reason 
is that AUC is affected by output distribution of softmax layer. Although MSRDN achieves better on accuracy, 
the output distribution of softmax layer may not be as sharp as LSDN. There is room for improvement in the 
confidence of MSRDN model. In terms of the parameters size, benefiting from to multiscale convolution, our 
model is only larger than ResNet of 1D version and smaller than other wave-based models.

From experimental results of spectrogram-based models, we can find out that our model achieves the high-
est recognition indicators compared with deep models which takes time-frequency representation as input. 
Compared with  ResNet45, Inception-Resnet39 and  DenseNet46, MSRDN improves 3.05%, 1.29% and 0.77% in 
accuracy respectively. Compared with  MLENET43, the performance advantages of MSRDN are also obvious. 
However, because the convolutional kernels are small, the parameters sizes of spectrogram-based models are 
generally small. It is the advantage of spectrogram-based models. In addition, we observed that Inception-Resnet 
achieves higher accuracy and F1 score than ResNet of 2D  version45 and  DenseNet46. The reason may have to 
do with the shape of the spectrogram features. In T-F spectrogram, target features are usually in banded shape.

Specific to each category, the confusion matrix of the proposed model on test data is shown in Table 4. The 
accuracy is listed at the bottom-right corner. Both the precision and recall of Class C are higher than that of 
other classes. This is most likely due to the large differences between ocean liners and other categories. The high 
performance of background noise (Class D) demonstrates that it is easy to identify if there is no target. The 
confusion between class A and class B are larger than other categories. This reason may be that two categories 
occasionally have similar propulsion systems, gross tonnage and size.

Figure 4.  Time-Frequency Representation of each category.

Table 3.  Classification experimental results.

Input Models Accuracy (%) Avg precision (%) Avg recall (%) Macro F1 (%) AUC Parameter size

Wave ResNet45 76.16 76.18 76.06 76.08 0.9147 35.95M

Wave DRSN47 80.30 80.20 80.20 80.15 0.9143 111.97M

Wave DNN48 81.19 80.76 81.05 80.82 0.9278 61.61M

Wave LSDN 81.99 82.02 81.91 81.94 0.9408 137.63M

Wave MSRDN 83.15 82.85 83.04 82.91 0.9307 54.38M

T-F Inception-Res39 82.38 82.26 82.32 82.17 0.9165 29.82M

T-F DenseNet46 81.86 81.66 81.78 81.64 0.9293 18.09M

T-F ResNet45 80.10 80.13 80.04 79.96 0.9111 42.49M

T-F MLENET43 78.67 78.46 78.59 78.45 0.9297 3.19M
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Generative experiments. In generative experiments, we choose two advanced models  BigGAN42 
and  WaveGAN41. Both of them are improvements of Deep Convolutional Generative Adversarial Network 
(DCGAN)55. We modify the structures of two models by replacing the core convolutional layers by our MSRU 
and compare the performance.

WaveGAN41 is a first application of GANs on unsupervised audio generation. Unlike the BigGAN, the origi-
nal WaveGAN was an unsupervised model. It means that the label information is not being used. To align the 
models and make them comparable, we modify the two models to  ACGAN56 form. In generator, labels will be 
combined with the input random vector after passing through an embedded layer. The label information is used 
to supervise the generator to generate samples for specified category. In discriminator, an auxiliary classifier 
is added to the tail of the network. The discriminator can not only distinguish the true and false samples, but 
also predict the sample category. The concrete structure of WaveGAN used in this paper can be found as Sup-
plementary Tables S1 and S2 online.

For adding the MSRU into WaveGAN, we replace each convolution layer with MSRU structure and construct 
the MSRWaveGAN. For this purpose, we designed two basic units based on MSRU. These two types of units 
are used in generator and discriminator respectively. The concrete structure of basic unit used in generator and 
discriminator can be found as Supplementary Figs. S1 and S2 online. Finally, The concrete structure of MSR-
WaveGAN used in this paper can be found as Supplementary Tables S3 and S4 online.

BigGAN42 is an advanced generative adversarial network proposed by Google DeepMind. It uses the ResNet 
architecture for both generator and discriminator. In this experiment, BigGAN will be modified to 1D version, 
by changing the function of convolution, pooling, and upsampling layer. The structure of residual blocks used 
in generator and discriminator can be found as Supplementary Figs. S3 and S4 online. Overall, the concrete 
structure of BigGAN used in this paper can be found as Supplementary Tables S5 and S6 online.

Correspondingly, we create the MSBigGAN by using our MSRU to replace the residual block in BigGAN. 
The structure of residual blocks used in generator and discriminator can be found as Supplementary Figs. S5 
and S6 online.

In terms of loss function, for the true-false discrimination, we use hinge loss just like BigGAN. For the 
auxiliary classifier, we use cross-entropy loss in common with general classification tasks. The Batch size is set 
to 64 for all experiments. We use Adam  optimizer54 with β1 = 0 and β2 = 0.999 with a constant learning rate. 
For generator, we use 2× 10−4 as learning rate, and for discriminator, we use 5× 10−5 as learning rate. Spectral 
 Normalization57 is used in both generator and discriminator. We train the networks from scratch. For model 
validation, we use the generator to generate 250 batches of samples for each category. Generated set contains 
64000 samples in total for batch size 64. The entire training process lasted 5–6 days to run through the whole 
training set about 40 times (40 epoch). The experimental results of GAN experiments are shown in Table 5.

From experimental results, we can find out that adding MSRU to WaveGAN and BigGAN can improve 
performance. Specifically, for BigGAN, there are significant improvements in both FID(TEG) and FID(TRG). 
One possible reason is that the original BigGAN take the kernel size of 3. As we analyzed earlier in Methods 
section, the kernel size of 3 may be not the good choice for convolution on one-dimensional signal waveform. In 
comparison, original WaveGAN take the kernel size of 25 as the filter length. Hence, MSRU brings the BigGAN 
greater promotion than WaveGAN.

Besides, during training process, we observed an interesting phenomenon. When MSRUs are added in the 
two models, the loss of discriminator decreased obviously. Figure 5 shows the loss curves of the discriminators 
and generators. Because the generator and discriminator are in a dynamic game, the training process of GAN 
is usually unstable. Losses of networks are oscillating. Therefore, we use the smoothing function provided by 

Table 4.  Confusion matrix of samples. The accuracy is listed at the bottom-right corner.

Truth

Prediction

Class A Class B Class C Class D Recall (%)

Class A 16944 3040 1368 648 77.02

Class B 3393 15027 574 2206 70.88

Class C 571 737 20554 138 93.43

Class D 352 1509 154 19985 90.84

Precision 79.70% 73.98% 90.75% 86.98% 83.15

Table 5.  Generative experimental results.

Model FID(TEG) FID(TRG)

WaveGAN 1.9131 2.3598

MSRWaveGAN 1.0589 2.1155

BIGGAN 9.7091 9.4453

MSBIGGAN 1.6397 2.6340
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 TensorBoard58. We speculate that MSRUs enhance the discriminator more than the generator. The essential rea-
son may be that signal synthesis and decomposition are based on different principles. The synthesis of signal is 
more like an additive process, whereas the decomposition of signal is more like an multiplication (filter) process. 
Therefore, multiscale feature extraction is more suitable for discriminator than generator. In fact, we believe that 
the improved discriminator can improve the performance of generator to some extent. Because the generator 
needs to be more powerful against the discriminator. On the other hand, this phenomenon also demonstrate 
the effectiveness of MSRUs in recognition.

Discussion
Factors that will impact the recognition results are analyzed based on the process of making the dataset. Base 
error of dataset, label precision and time range need to be considered when modeling on the dataset. In fact, in 
underwater image and wireless signal quality assessment, quite a few methods had been  published59–62. However, 
there are few evaluation methods of waveform data quality for underwater target recognition. Although it is 
difficult to give a quantitative method in quality assessment, we think it is necessary to analyze some influencing 
factors qualitatively.

Base error of dataset. In this subsection, base error of the dataset are analyzed. Finding out the sources of 
error will facilitate the application of the dataset.

Target report missing‑TRM. An obvious fact is that we cannot guarantee that every target will open the AIS 
transmitting device when passing near the hydrophone. The impact of such errors is wider. One case is that a 
recording labeled as background noise contains the ship-radiated noise of the targets. Another case is that a 
recording labeled as a category contains the ship-radiated noise of another type targets. Both cases could cause 
confusion in the dataset.

AIS parsing error‑APE. Instead of clear text data, AIS recording data is stored in a special message format. 
Errors occur occasionally when the device receives information over wireless communications. Some AIS data 
parsing may be problematic. However, the impact of such errors is limited due to the send frequency of the mes-
sages. The sending frequency of AIS messages usually between a few and a dozen seconds, depending on the 
state of the ship. The probability of consecutive record error AIS messages over a long period is small.

Distance calculation error‑DCE. In the process of making the dataset, the distance between target and hydro-
phone needs to be calculated by the target position reported in the AIS messages. As we know, the earth is not 
a regular sphere. There must be deviation in calculating the distance between two points based on the latitude 
and longitude. In fact, the distance we concerned is short. Although distance calculation error is inevitable, it is 
in a limited range.

Target annotation error‑TAE. In the process of making the dataset, we found the target via the MMSI and 
annotate target according to its category. We could only rely on the query results of public website, to find out 
whether a MMSI corresponds to a specific ship. There may be several inaccurate information or mismatches. We 
used several different websites for the query, and this kind of error is minimized by cross check.

From above analysis, all base errors described may affect the recognition model. Errors from the dataset itself 
can be summarized as a base error level. This level of error reflects the quality of dataset. The higher the error 
level is, the worse the quality of the dataset is. Specifically, the Target Report Missing is the most influential error 
source. The only way to reduce this error is manual filtering. Recordings will be judged by expert experience.

Label precision. In underwater acoustic target recognition, label precision is a key factor to impact recogni-
tion. Generally, the underwater acoustic target recognition is a weak label question. It means that there is no way 
to know exactly where and when the sound of a target starts and ends. Therefore, any annotation is approximate 
and must have a precision scale. In our dataset, the label precision is 5min. In other words, if there is a target in 

Figure 5.  The loss curves of the discriminators and generators. (a) Generator loss of BigGAN and MSBigGAN. 
(b) Discriminator loss of BigGAN and MSBigGAN. (c) Generator loss of WaveGAN and MSRWaveGAN. (d) 
Discriminator loss of WaveGAN and MSRWaveGAN. The smoothing function is used, and the smoothing 
factors are set to 0.8 in all subfigure.
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the five-minute recording, we annotated the recording as the target type. Naturally higher label precision makes 
the model recognition performance better but higher label precision also needs more costs on annotation.

Time range. Time range represents the sample richness of the dataset. Marine environment changes peri-
odically and the temperature and salinity of sea water will affect sound transmission. The longer the time range 
of the dataset, the more likely it is to include such variations, and the broader the applicability of the model. 
Therefore, the dataset in this paper chooses continuous 12 months of record for training, to include as much 
sample space as possible.

Conclusion
In order to explore appropriate structure of deep convolution stacks for perceiving underwater acoustic radiated 
noise and give full play to the automatic feature learning and extraction capabilities of deep neural networks, a 
multiscale residual unit (MSRU) is proposed in this paper. Multiscale convolution is used to replace the original 
core convolution in ResNet with significant improvement of model receptive field. Based on MSRU, we present 
a multiscale residual deep neural network (MSRDN) to classify underwater acoustic target. MSRDN achieves 
the best recognition accuracy of 83.15%, improved by 6.99% from the structure related networks which take the 
original signal waveform as input and 4.48% from the networks which take the time-frequency representation 
as input. Classification and generative experiments have proved the effectiveness of the MSRU and MSRDN. The 
multiscale features can be perceived from the original signal waveform to improve the performance in underwater 
acoustic target recognition. Detailed analyses are correspondingly carried out to put forward several factors that 
will impact the recognition results.

In the future study, we will consider using the method of computer assistance or expert experience to reduce 
the base error. Then, pay more attention on analyze the trajectory information of each target in detail to improve 
the label precision. More information (like target shape, tonnage, power, etc.) will be used to optimize the 
annotation system and improve label correlation. Of course, more and more comprehensive real data needs to 
be collected.

In terms of model improvement, it is meaningful to consider how to fuse spectrum and waveform feature by 
deep neural network. If these two kinds of features can be complementary fused, the performance of the model 
will be greatly improved further. Besides, using the generator in GANs to extend the training dataset may be a an 
effective way to improve the generalization and robustness of recognition model. We will explore the influence 
of using different mixing apportion of real and generated data in training process. Besides, we are considering 
using NAS techniques to find the best parametric strategy for our model.
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