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An assessment tool 
for computer‑assisted semen 
analysis (CASA) algorithms
Ji‑won Choi1, Ludvik Alkhoury1, Leonardo F. Urbano2, Puneet Masson3, 
Matthew VerMilyea4 & Moshe Kam1*

Computer‑Assisted Semen Analysis (CASA) enables reliable analysis of semen images, and is designed 
to process large number of images with high consistency, accuracy, and repeatability. Design and 
testing of CASA algorithms can be accelerated greatly if reliable simulations of semen images under 
a variety of conditions and sample quality modes are available. Using life‑like simulation of semen 
images can quantify the performance of existing and proposed CASA algorithms, since the parameters 
of the simulated image are known and controllable. We present simulation models for sperm cell 
image and swimming modes observed in real 2D (top‑down) images of sperm cells in laboratory 
specimen. The models simulate human sperm using four (4) types of swimming, namely linear mean, 
circular, hyperactive, and immotile (or dead). The simulation models are used in studying algorithms 
for segmentation, localization, and tracking of sperm cells. Several segmentation and localization 
algorithms were tested under varying levels of noise, and then compared using precision, recall, and 
the optimal subpattern assignment (OSPA) metric. Images of real human semen sample were used to 
validate the segmentation and localization observations obtained from simulations. An example is 
given of sperm cell tracking on simulated semen images of cells using the different tracking algorithms 
(nearest neighbor (NN), global nearest neighbor (GNN), probabilistic data association filter (PDAF), 
and joint probabilistic data association filter (JPDAF)). Tracking performance was evaluated through 
multi‑object tracking precision (MOTP) and multi‑object tracking accuracy (MOTA). Simulation models 
enable objective assessments of semen image processing algorithms. We demonstrate the use of 
a new simulation tool to assess and compare segmentation, localization, and tracking methods. 
The simulation software allows testing along a large spectrum of parameter values that control 
the appearance and behavior of simulated semen images. Users can generate scenarios of different 
characteristics and assess the effectiveness of different CASA algorithms in these environments. The 
simulation was used to assess and compare algorithms for segmentation and tracking of sperm cells in 
semen images.

Computer-Assisted Semen Analysis (CASA) systems and their algorithms continue to be of great interest to 
clinicians and andrology  researchers1. Modern CASA systems “have been designed to objectively and quan-
titatively measure several aspects of sperm structure and function, aiming to provide high levels of intra- and 
inter-laboratory consistency”1,2. To achieve this aim, methods of noise filtering, image segmentation, localization, 
multi-object tracking, and machine learning were  employed3–15.

A major challenge in developing and validating CASA systems is the accurate assessment and comparison 
of their semen analysis methods to the ground truth. In order to validate a CASA system, this process needs to 
take place across a representative sample of the expected semen images. For real-life samples, the ground truth is 
often unknown, motivating the use of high-quality image simulations with modifiable parameters for validation 
of CASA systems and algorithms. Simulations of this kind have the potential to help in developing automated 
semen analysis systems, and in comparing different candidate algorithms to each other.

To generate a simulation of semen sample video for assessment and validation, we need the following: (1) a 
model for the image of a sperm cell (to generate sperm cells in the simulated semen image) and (2) a model for 
the sperm cell movement that defines how the semen image changes over time. The development of sperm cell 
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model in this paper mirrors similar work that was done for other cell  types16–21. The development of sperm cell 
swim models is informed by several existing approaches. Some of these use a set of nonlinear equations of motion 
(Armon et al.22 and Ch. 6 of Urbano (2015)4). Others use fluid dynamics to develop a more refined descrip-
tion of cell  movements23–31. However, most existing simulation models of cell  dynamics25–31 did not integrate 
multiple cells into a comprehensive image such as the ones used in practice by CASA  systems32,33. Integration 
of these single cell descriptions into full-scale multi-cell images is required before relevant image simulations 
can be developed and used.

In this paper, we provide models for the image of a sperm cell and for four (4) different swimming modes of 
sperm cells (circular, linear mean, hyperactive, and immotile). The computational requirements to simulate these 
models and integrate them into multiple-cell image are relatively low, allowing for generation of multiple images 
in a format similar to the images used by CASA systems. As an example, a snapshot of a real semen image and 
simulated image are shown side by side in Fig. 1. Figure 1a is an image of semen sample at 200× magnification. 
Figure 1b is a simulated semen image generated by using parameters estimated from the semen image on the left.

The rest of this paper is organized as follows. In the “Methods” section, we present a model of a sperm cell 
and of the swimming modes. In the “Testing setup” section, we explain how simulated images were created to 
mimic real ones for visual and numerical comparisons. In the “Testing” section, we demonstrate use-cases for 
segmentation, localization, and tracking algorithms.

This paper is accompanied by simulation software which is publicly available at Choi et al.34 as a stand-alone 
software and as MATLAB codes (https:// github. com/ Jiwon Choi- NJIT/ NJIT_ sperm_ simul ator). The dataset 
supporting the conclusions of this article are available in the github repository (https:// github. com/ moshe kam/ 
NJIT- Semen- Images- Data- Fusion- Lab)35.

Methods
The human sperm cell (see Fig. 2, retrieved from Villarreal (2006)36) has two main parts, the head and the fla-
gellum. The flagellum is composed of midpiece, tail (also called principal piece), and end piece. The flagellum 
moves in a wave-like motion to propel the  cell37. In the following sections we describe the 2-dimensional (2-D) 
image of the head and the flagellum of a sperm cell, and the models of sperm movements.

Simulating a sperm cell. We generate the image of the head and the flagellum of a sperm cell separately, 
and then combine them. In modeling the head and the flagellum of a sperm cell, we follow the morphology of 
sperm cells described in the WHO laboratory manual for the examination and processing of human  semen38. 
The normal shape of the human sperm head is generally oval. The tail, or the principal piece, of the flagellum is a 
thin cylinder of uniform calibre. In our simulation, the flagellum is modeled by the tail only (we do not consider 
the midpiece or the end piece for the simulation model since they are often too small to be observed separately 
in the resolution used by CASA systems).

The flowchart of the process of generating the sperm image is shown in Fig. 3. The inputs of the process are 
images I1 (corresponding to the sperm head) and I2 (corresponding to the curve of the flagellum), and point 
spread functions f1 , f2 , and f3 . The image of sperm head center I5 and membrane I6 are generated using the opera-
tions labeled Process A and B, respectively. The inputs for Process A are image I1 and point spread function f1 , 
and the inputs for Process B are image I1 and point spread function f2 . The images of sperm head center I5 and 
membrane I6 are merged in Process C, producing a final image of sperm head I7 . Processes A-C are therefore the 
sperm head generation process. The final image of the flagellum I8 is generated using Process D, whose inputs are 
image I2 and point spread function f3 . Lastly, the image of sperm head I7 and flagellum I8 are merged in Process 

Figure 1.  (a) Image of real human semen sample. (b) Image of simulated semen sample.

https://github.com/JiwonChoi-NJIT/NJIT_sperm_simulator
https://github.com/moshekam/NJIT-Semen-Images-Data-Fusion-Lab
https://github.com/moshekam/NJIT-Semen-Images-Data-Fusion-Lab
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Figure 2.  Diagram of a human sperm  cell36. (Top) Main components of a sperm cell. (Bottom) Front and side 
view of sperm head and midpiece.

Figure 3.  Flowchart of sperm image generation process. Image I1 and I2 , and point spread functions f1 , f2 , and 
f3 are the inputs. The output I9 is the simulated sperm image. Details of each process are shown in Figs. 5, 7, 8, 9, 
and 10. Image I7 shows the image of sperm head (Output of process C). Image I8 shows the image of flagellum 
(Output of process D). Image I9 shows the image of sperm head (Output of process E). Color bars next to I7-I9 
indicate the corresponding grayscale intensity values. Resulting grayscale image of simulated sperm cell below 
the colored plot of I9.
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E, producing the complete image of the sperm cell, I9 . A grayscale image of the simulated sperm cell is shown 
just below the full-color simulated cell image in Fig. 3.

I1 is an image of N by N pixels where

N is the size of the frame of the simulation image. Here, {(xHC , yHC ) , (xHL , yHL ) , (xHH , yHH ) , (xHI , yHI )} are the 
locations of sperm heads of cells engaged in circular swimming, linear mean swimming, hyperactive swimming, 
or no swimming (immotile cells), respectively. I2 is also an image of N by N pixels where

Here, {(xtailC , ytailC ) , (xtailL , ytailL ) , (xtailH , ytailH ) , (xtailI , ytailI )} are the points along the curve of sperm flagellum of 
circular swimming, linear mean swimming, hyperactive, and immotile cells, respectively. Each flagellum consists 
of M points (typically M = 200 ). The detailed placing of the sperm head ( {(xHC , yHC ) , (xHL , yHL ) , (xHH , yHH ) , 
(xHI , yHI )} ) and the points along the curve of sperm flagellum ( {(xtailC , ytailC ) , (xtailL , ytailL ) , (xtailH , ytailH ) , 
(xtailI , ytailI )} ) are provided below in the section titled “Swimming models”.

An image of a simulated sperm cell is shown in Fig. 4 with the points for the location of sperm head (where 
I1(x, y) = 255 ) and the curve of the flagellum (where I2(x, y) = 255 ) shown in green and blue, respectively. In 
the simulation, grayscale values are used in the range between 0 to 255 (256 levels). In following sections, the 
five processes (A-E) are explained in detail. The flowcharts of processes (A-E) are given in Figs. 5, 7, 8, 9 and 
10. Images of I3-I9 are accompanied by numbered colorbar that can be used to convert the image to grayscale.

Process A: sperm head (center) generation (Part 1). The flowchart of Process A is shown in Fig. 5. To generate 
the oval-like structure of the sperm head, image I1 is convolved with a 2-D normal distribution filter f1 (Process 
A-1); the filter is used as a point spread function (Ch. 3–5 in  Gonzalez39). The point spread function f1 , a 2-D 
normal distribution, is defined as

The 3-D surface plot of f1 is shown in Fig. 6a. Standard deviations σxG and σyG control the length and width of 
the cell head. In the examples shown in this section, σxG = 1.86 px and σyG = 2.86 px. The size of the filter f1 is 
25× 25 px (x and y ranges from − 12 to 12). The resulting output image is then scaled by a constant C1 to set the 

(1)I1(x, y, t) =

{

255 (x, y) ∈ {(xHC (t), yHC (t)), (xHL (t), yHL (t)),
(xHH (t), yHH (t)), (xHI (t), yHI (t))}

0 otherwise.

(2)I2(x, y, t) =

{

255 (x, y) ∈ {(xtailC (k, t), ytailC (k, t)), (xtailL (k, t), ytailL (k, t)),
(xtailH (k, t), ytailH (k, t)), (xtailI (k, t), ytailI (k, t))}, k = 1, 2, 3, . . . ,M,

0 otherwise.

(3)f1(x, y) =
1

2πσxGσyG
exp

(

−

[

( x
σxG

)2 + (
y

σyG
)2

2

])

.

Figure 4.  Simulated sperm image with points for the location of the head (green) and the curve of the flagellum 
(blue).

Figure 5.  Flowchart of sperm head (center) image generation process. Image I1 and point spread function f1 are 
the inputs. The output is the simulated image of sperm head center I5 . I1 and f1 is convolved and then scaled by 
C1 to generate I3 (Processes A-1 and A-2). The image I3 is complemented to generate the image I4 (Process A-3). 
Lastly, the background is added to image I4 , generating an image of sperm head center I5 (Process A-4).
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Figure 6.  Point spread functions used in sperm cell image generation process; (a) f1 , (b) f2 , (c) f3.

Figure 7.  Flowchart of the image generation process of the sperm membrane. Image I1 and point spread 
function f2 are the inputs. The output is the simulated image of sperm membrane I6 . I1 and f1 is convolved and 
then scaled by C1 to generate I6 (Processes B-1 and B-2).

Figure 8.  Diagram of sperm head image merging process. Images I5 and I6 are the inputs. The output is the 
simulated image of sperm head I7 . I5 and I6 are added to generate I7 (Process C-1).

Figure 9.  Flowchart of flagellum generation process. Image I2 and point spread function f3 are the inputs. 
The output is the simulated image of flagellum I7 . I2 and f3 are convolved and then scaled by C3 to generate I7 
(Processes D-1 and D-2).
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peak intensity value to be 255 and is denoted I3 (Process A-2 in Fig. 5). Constant C1 can be changed to control 
the intensity value of cell head. The image I3 is complemented to produce the image of dark-oval-like center on 
a white background (Process A-3). In Process A-4, the background for the simulation image is added. Let BL 
be the background that will be added to the simulated image. The size of BL is N by N. In the examples in this 
section, a uniform background is assumed, where every value in the pixel is equal to 204 ( BL(x, y) = 204 , 80% 
of 255). The value 255− BL is subtracted from the image I4 and any value below 0 is set to 0. The resulting image 
is denoted image I5 ( I5 = max[0, I4 − (255− BL)]).

Process B: sperm head (membrane) generation (Part 2). The flowchart of Process B is shown in Fig. 7. In typical 
semen image samples, one can observe a halo-like membrane surrounding the sperm head, as shown on the left 
of Fig. 1 (referred to as “a horseshoe-shaped halo” in Urbano et al.3). To generate this halo-like membrane around 
the cell, a modified version of Laplacian of the 2-D normal distribution filter is used as the second point spread 
function on image I1 . The Laplacian of the 2-D normal distribution filter is defined as

The point spread function f2 is defined as

The resulting point spread function f2 is shown in Fig. 6b. Standard deviations σxL and σyL control the length 
and width of the cell membrane. In the examples in this section, σxL = 2.79 px and σyL = 4.29 px. The size of 
the filter f2 is 25× 25 px (x and y ranges from − 12 to 12). The point spread function f2 is convolved with image 
I1 , generating the image of a membrane (Process B-1). The resulting output image is then scaled by constant C2 
(Process B-2) to set the peak intensity to be 51 (peak intensity value of cell membrane, 20% of 255). This image 
of the membrane is denoted I6 . Constant C2 can be changed to control the intensity value of the cell membrane.

Process C: sperm head generation (Part 3). The flowchart of Process C is shown in Fig. 8. In Process C, the 
images of the sperm head center I5 and the image of the flagellum I6 are added to complete the image of sperm 
head. The resulting sperm head image is shown in Fig. 8 and is denoted I7.

Process D: sperm flagellum generation. The flowchart of Process D is shown in Fig. 9. To generate the flagellum, 
image I2 (Eq. 2) is convolved with point spread function f3 (Eq. 6) to generate the image of uniform calibre look 
of the flagellum. The point spread function f3 is defined as the Laplacian of Gaussian filter (equal to the Eq. (4) 
with σxL = σyL = σf  ), namely

The 3-D surface plot of f3 is shown in Fig. 6c. Standard deviation σf  controls the width of the flagellum. In the 
examples in this section, σf = 1.5 px. The size of the filter f3 is 25× 25 px (x and y ranges from -12 to 12). The 
output image is then scaled by constant C3 to set the peak intensity of the membrane as 13 (approximately 5% of 
255). Constant C3 can be changed to control the intensity of the flagellum. The resulting image of the flagellum 
is a long membrane-like curve. The scaled image of the flagellum is denoted I8.

(4)g(x, y) = ∇2

(

1

2πσxLσyL
exp

(

−

[

( x
σxL

)2 + (
y
σyL

)2

2

]))

.

(5)f2(x, y) = max(0, g(x, y)).

(6)f3(x, y) = ∇2

(

1

2πσ 2
f

exp

(

−

[

( x
σf
)2 + (

y
σf
)2

2

]))

.

Figure 10.  Diagram of sperm head and flagellum image merging process. Images I7 and I8 are the inputs. The 
output is the simulated image of sperm cell I9 . I7 and I8 are added to generate I9 (Process E-1).
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Process E: sperm head and flagellum merge. Finally, in Process E, the image of cell head, I7 , and the image of the 
flagellum, I8 , are added to generate the image of a sperm cell ( I9 in Figs. 3 and 10). Process E is shown in Fig. 10.

Swimming models. In this section, we describe the swim/movement models of the head and the flagellum 
of a sperm cell. The swimming models describe how the position of the head and the flagellum change over time. 
These positions define the points used to generate I1 (cell head, Eq. (1)) and I2 (cell flagellum, Eq. 2).

We categorize the sperm movement into the following four swimming modes: 

1. Circular swim,
2. Linear mean swim,
3. Hyperactivated,
4. Immotile, or dead.

Figure 11 shows simulated tracks for the four swimming modes (4 seconds long). The tracks indicate the location 
of the head of a cell and the arrow indicates the direction of movement.

Circular swimming cells and linear mean swimming cells actively propel themselves forward, either on a 
large circular or linear path. Examples of (1) circular swim and (2) linear mean swim are shown on top of Fig. 11. 
The red arrow indicates the direction of movement for the cell. (3) Hyperactivated sperm cells do not travel 
significantly away from their initial location. The movements of hyperactive cells are described as “vigorous”, 
“whiplash type”, or “frantic”40,41. An example is shown in bottom left of Fig. 11. (4) Immotile movements define 
cells which show barely any movement at all (shown in bottom right of Fig. 11).

We synthesized the models to describe circular and linear mean movements based on the sperm tracks 
recorded in the  literature3,8,29,33,42. Hyperactive swim, described to be “frantic” and “vigorous” is modeled through 
as Brownian motion to reflect the randomness in the cell  movement43. In following sections, we describe each 
movement in detail.

Circular swim model. A sperm cell exhibiting a circular swim moves along a circular path with oscillations 
about this path caused by the beatings of the  flagellum33. This circular swim can be represented as a sinusoidal 
modulated circular path (Fig. 12). The equations used to model the movement of the head and the flagellum of a 
circular swimming cell are given in Table 1. The 2-D position of the cell’s head is determined by Eqs. (7a), (7b). rc 
is the radius of the overall circular path, fs is the frequency of the sinusoid modulated on the circular path (Hz), 
a is the amplitude of the sinusoid modulated on the circular path, and fc is the frequency of the circular cycle 
(cycle/sec). Cxc and Cyc are horizontal and vertical offsets, respectively.

Figure 11.  Simulated swimming path of the four swimming modes: circular swim, linear mean swim, 
hyperactive, and immotile. The color bar indicates the color of a track with respect to time. The duration of 
movement is 4 s.
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(xTc (k, t), yTc (k)) are Cartesian coordinates of the points along the center curve of the flagellum with 
k = 1, 2, 3, . . . ,M , where in the default setting we used M = 200 . The flagellum of circular swimming cells fol-
lows Dresdner’s model of sperm flagellum (Eq. 8a)24. Equation (8a) determines the oscillation of the flagellum 
( xTc ), and Eq. (8b) determines the end to end length (wavelength � ) of the flagellum (distance between the start 
and the end of the flagellum). b(k) is the local variation in beating amplitude along the flagellum. The points 
(xTc , yTc ) are rotated using the rotation matrix R(·) to match the direction of movement, and shifted to the loca-
tion of the sperm head ( xHC , yHC ) (Eq. 9); the points of the flagellum of a circular swimming cell are denoted 
(xtailC , ytailC ) . In the examples shown in this paper, the local variation in the beating amplitude, b(k), follows the 
affine function b(k) = a

(

α �k
M + β

)

, with α = 0.02, β = 0.8 for circular swimming cell. Here, a is the amplitude 
of a sinusoid modulated on the circular path, and � is the wavelength of the flagellum.

An example of simulated flagellum of a circular swimming cell is shown in Fig. 13. On the left is a simulated 
image of a circular swimming cell with the path shown in blue line. On the right is a curve which represents the 
flagellum of that cell. The example in this image uses amplitude of a = 4 pixels and wavelength of � = 40 pixels.

Table 1.  Simulation of a circular swimming cell. (xHC , yHC ) : head position of circular swimming cell. rc : 
radius of the circular path. a :  amplitude of the sinusoid modulated on the circular path. fs : frequency of the 
sinusoid modulated on the circular path (Hz). fc : frequency of the circular cycle (cycle/s). (Cxc ,Cyc ) : vertical 
and horizontal offset constant. (xTailC , yTailC ) : a set of k points along the center of the flagellum of circular 
swimming cell. � : wavelength of flagellum (distance between the start and the end of the flagellum). R(·) : 
rotation matrix. b(·) : local variation in beating amplitude along the flagellum.

Circular swim model—head
xHC (t) = (rc + a sin(2π fst)) cos(2π fc t)+ Cxc (7a)

yHC (t) = (rc + a sin(2π fst)) sin(2π fc t)+ Cyc (7a)

Circular swim model—flagellum

xTc (k, t) = b(k) sin
[

2π
(

k
M − fst

)]

(8a)

yTc (k) = −�
k
M

(8b)
[

xtailC
ytailC

]

= R(2π fst)

[

xTc
yTc

]

+

[

xHC

yHC

]

(9)

R(·) =

[

cos(·) − sin(·)
sin(·) cos(·)

]

(10)

b(k) = a
(

α �k
M + β

)

, α = 0.02, β = 0.8 (11)

Figure 12.  Trajectory of simulated circular swimming cell.

Figure 13.  (Left) Simulated image of circular swimming cell with past track shown in blue. (Right) Plot of the 
flagellum of circular swimming cell. In this example, wavelength ( � ) is 40 pixels and amplitude (a) is 4 pixels.
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Linear mean swim model. In linear mean swim, a sperm cell moves along a straight-line path, rolling side to 
side as it propels itself forward. This feature causes a ribbon-like movement about the straight line. The equations 
used to model the movement of the head and the flagellum of linear mean swimming cell are given in Table 2.

We generate the cell head movement (ribbon-like movement along a linear path) using Eqs. (12–15). The 
position along the linear path is denoted ( xc , yc ) and the position along the ribbon-like movement is denoted 
( Px(t),Py(t) ). The resulting path is shown in Fig.  14a.

The straight-line path is a linear function of time t with initial positions of (CxL ,CyL ) . The straight-line path is 
a line segment from initial positions (CxL ,CyL ) to the point ( xc , yc ) (as shown in Fig. 14). The horizontal and verti-
cal positions along the linear path ( xc , yc ) change at the rate of horizontal and vertical velocity in the direction 

Table 2.  Simulation of a linear mean swimming cell. (xHL , yHL ) : position of the sperm head of linear 
swimming cell . (CxL ,CyL ) : horizontal and vertical offset constant (pixels). V :  straight line path velocity 
(pixels/sec). fl : rate of change in ribbon angle (Hz). rh, rv : width and height of ribbon (pixels). Ahar : user 
defined ratio between the first and the third harmonics. Ac : correction constant for defined width of the 
ribbon. θr : direction of the forward movement (radian). (xTailLM , yTailLM ) : a set of k points along the center 
of the flagellum of linear mean swimming cell. b1(k), b2(k) : local horizontal and vertical variation in beating 
amplitude along the flagellum. b3(k) : flagellum position correction function.

Linear mean swim model—head

[

xc
yc

]

=

[

V cos(θr )t + CxL
V sin(θr )t + CyL

]

(12)

P =

[

Px(t)
Py(t)

]

=

[ rv
2 sin(4π fl t)

rhAc
2 [sin(2π fl t)+ Ahar sin(6π fl t)]

]

(13)

Ac =
1

max
θ

(sin(θ)+Ahar sin(3θ))
(14)

[

xHL

yHL

]

= R(θr )P +

[

xc
yc

]

(15)

Linear mean swim model—flagellum

[

xo(k, t)
yo(k, t)

]

=

[

b1(k)xT (k, t)
b2(k)yT (k, t)

]

(16)

xT (k, t) =
rv
2 sin

(

4π
(

k
M + fl t

))

(17a)

yT (k, t) =
rh
2 sin

(

2π
(

k
M + fl t

))

(17b)
[

xLM (k, t)
yLM (k, t)

]

=

[

xo(k, t)
yo(k, t)

]

−

[

�k
M
0

]

(18)

yLM2 (k, t) = yLM (k, t)− [Py(t)− yT (0, t)]b3(ψ) (19)
[

xtailLM
ytailLM

]

= R(θr )

[

xLM
yLM2

]

+

[

xHL

yHL

]

(20)

b1(k) =
1

1+e(αk/M+β)
(21a)

b2(k) = e−γ1k/M (21b)

b3(k) = 1− e−γ2k/M (21c)

Figure 14.  (a) Trajectory of simulated linear mean swimming cell (Eqs. 12–15). (b) Ribbon-like oscillatory 
movement along the straight-line path of linear mean swimming cells (Eq. 13).
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of forward movement θr (Eq. 12). The position along a “ribbon-like” path ( Px(t),Py(t) ) is generated using Eqs. 
(13–14). The ribbon is shown in Fig. 14b, where rv is the height of the ribbon and rh is its width. Px(t) and Py(t) 
are periodic functions of time t. Px(t) is a sinusoid with a frequency of 2fl and amplitude of rv

2
 . Py(t) is a sum of 

two sinusoids of frequencies of fl and 3fl and amplitudes of rhAc
2

 and Ahar , respectively. Ac is a correction constant 
to set the amplitude of function Py(t) as rh

2
 (Eq. 14). The resulting ribbon-like path is shown in Fig. 14b. Ahar is 

the ratio between the two sinusoids of function Py(t) . The examples in this paper use Ahar = 0.1.
The position of the cell along the ribbon, ( Px(t),Py(t) ), is multiplied by rotation matrix R(·) resulting in a 

rotation by θr (Eq. (15), R(θr)P ). Lastly, The position on the ribbon-like path R(θr)P is added to the position 
along the straight-line path (xc , yc) to define the position of the sperm head at all times (Eq. 15).

The flagellum is generated using Eqs. (16–21). Dresdner’s model is used to define the horizontal and vertical 
oscillations in the flagellum ( xo(k, t), yo(k, t) ). xo(k, t) and yo(k, t) are discrete set of points for k = 1, 2, 3, . . . ,M 
realized at time t. The value of M in our simulation is 200. An example of simulated flagellum of linear mean 
swimming cell is shown in Fig. 15. The blue dots represent the successive location of the sperm head. We also 
show, for one of these locations, the associated flagellum in orange. We use the fundamental frequency of the 
ribbon in horizontal ( 2fl for Px(t) ) and vertical directions ( fl for Py(t) ) to determine the movement of the flagel-
lum (Eqs. (13) and (17)). The local variation in beating amplitude for xT (k, t) and yT (k, t) are b1(ψ) and b2(k) , 
respectively (Eqs. (21a) and (21b)).

The function b1(k) (Eq. (21a)) is a transformed sigmoid function, where the values of α and β determine the 
shift and the compression/expansion of the function; b2(k) (Eq. 21b) is a decaying exponential function. Together, 
these functions provide the desirable realistic visual effect.

We define a line segment from the head to the end of the flagellum ( f (k) = − �k
M , k = 1, 2, 3, . . . ,M ). The 

oscillations xo(k, t) and yo(k, t) are added to this straight line (Eq. 18).
The differences in the vertical location of the head Py(t) and the vertical position of the flagellum yT (k, t) cause 

offset in placement of the flagellum because we have only considered the fundamental frequency component, fl , 
of Py(t) to generate ( yT (k, t) ). This mismatch is corrected by Eqs. (19) and (21c).

Lastly, the flagellum is rotated to match the direction of movement and shifted to the position of the cell 
head (Eq. 20). The constants in Eqs. (21a), (21b), and (21c) in the example of we provide here were set to: 
α = 22,β = −2, γ1 = 5, γ2 = 1.5.

Hyperactive swim model. The equations used to model the movement of the head and the flagellum of hyper-
active swimming cell are given in Table 3. For each dimension (x and y), the movement of a cell follows Eq. 
(22), where ( µx ,µy) are drift coefficients of Brownian motion, ( σxb , σyb ) are diffusion coefficients of Brownian 
motion, and W(t) is the standard 1-dimensional Brownian motion ( W(t) ∼ N(0, t) ). Our simulation assumed 
no drift ( µx = µy = 0 ), and the diffusion coefficients are assumed to be the same for the horizontal (x) and the 
vertical (y) directions ( σ 2

xb
= σ 2

yb
= σ 2

b  ). The location of the sperm head of hyperactive cell is defined by Eq. (23), 
where T is the difference in time between each simulation frame ( sec

frame
).

The flagellum of the hyperactive swimming cell is defined to be the linear interpolation on a set of points 
[(xHL (t), yHL (t)), (xHL (t−T), yHL (t−T)), (xHL (t−2T), yHL (t−2T)), . . . , (xHL (t−nT), yHL (t−nT))] (a set of loca-
tion of the cell from time t − nT to t, Eq. (24)). In our simulations, the value n is set to 0.2secT  or rounded up to 
the nearest integer value.

Figure 15.  Example of sperm flagellum generation for linear mean swimming cell. (Orange) Simulated 
flagellum. (Blue) Track of linear mean swimming cell.
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Immotile or dead cell model. Immotile or dead cells are simulated as non-moving objects. The equations used 
to model the movement of the head and the flagellum of immotile cell are given in Table 4.

Throughout the simulation, the head and the flagellum of the cell will not move (Eqs. 25, 26). The flagellum 
is generated by taking a snapshot of the flagellum of a hyperactive cell. The flagellum of the immotile cell is 
generated using Eq. (26).

In Fig. 16, an example the simulated semen sample is shown, where the cells of four different swimming 
modes can be seen. The trajectories of each cell are shown in blue line. In the simulation software (available in 
Choi et al.34), parameters for cell concentration, appearance, and swimming modes can be changed to generate 
the user’s desired semen image for testing.

In Fig. 17, we show 3 additional scenarios which are simulation features. These simulation features are used 
to generate dynamic scenarios for testing of CASA algorithms and systems.

The first feature adds noise to the position of each sperm cell (example shown in Fig. 17a). The addition of 
noise is used to mimic the random movements caused by the cell and the surrounding fluid.

Table 3.  Simulation of a hyperactive swimming cell. (µx ,µy) : drift coefficients of Brownian motion. 
(σxb , σyb ) : diffusion coefficients of Brownian motion. W(t) :  standard 1-dimensional Brownian motion 
( W(t) ∼ N(0, t)). (xHH , yHH ) : position of the sperm head of hyperactive cell. T :  the difference in time 
between each simulation frame. (xTailH , yTailH ) : a curve along the center of the flagellum of hyperactive cell.

Hyperactive swim model—head

x(t) = µxt + σxbW(t) and (22a)

y(t) = µy t + σybW(t) (22b)

xHH (t) = xHH (t − T)+ σbW(T) and (23a)

yHH (t) = yHH (t − T)+ σbW(T), (23b)

Hyperactive swim model - flagellum

(xtailH (k, t), ytailH (k, t)) =
      Linear interpolation on a set of points
      [(xHL (0), yHL (0)), (xHL (1), yHL (1)),
      (xHL (2), yHL (2)), . . . , (xHL (n), yHL (n))]
where xHL (n) = xHH (t − nT),
      yHL (n) = yHH (t − nT)

(24)

Table 4.  Simulation of an immotile cell. (xHI , yHI ) : position of the sperm head of immotile cell. (xTailI , yTailI ) : 
a curve along the center of the flagellum of immotile cell.

Immotile cell model—head
xHI (t) = xHI (0) and (25a)

yHI (t) = yHI (0) (25b)

Immotile cell model - flagellum

(xtailI (k, t), ytailI (k, t)) =

      Linear interpolation on a set of points

      [(xIL (0), yIL (0)), (xIL (1), yIL (1)),
      (xIL (2), yIL (2)), . . . , (xIL (n), yIL (n))]
where xIL (n) = xHH (−nT),

yIL (n) = yHH (−nT)

(26)

Figure 16.  Example of simulated image with track of each cell shown in blue.
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The second feature assigns a different intensity to each sperm cell (example shown in Fig. 17b). This feature 
is to simulate an environment where the sperm cells appear differently due to the depth of the chamber or slide 
used to observe the semen sample. The chamber that is used to observe semen is usually 10 to 20 µ m  deep38. 
Certain cells may be swimming much deeper within the chamber when other cells may be swimming close to 
the top of the chamber. This causes some cells to look faded. The second feature is used to mimic such scenario.

Sperm cells change their swimming mode as time  progresses32. The third feature assigns transition prob-
abilities to define how likely a cell will change from one swimming mode to the other. In the example shown in 
Fig. 17c, a sperm cell goes from linear mean swim to circular swim to hyperactive swim. As an example, one can 
assign probability that a cell undergoing linear mean swim has 85% chance of staying in linear mean swim, 10% 
chance of transitioning to circular swim, and 5% chance of transitioning to hyperactive swim after 1 second (0% 
chance to change into immotile). In Choi et al.34, we provide sample images generated using these three different 
functionalities as examples.

Testing setup
For testing, we simulated images based on real semen image samples. The semen samples used in the study were 
collected by us for previous  studies3,4 and are available in the public  domain35. The images of the samples were 
provided by the In-Vitro Fertilization laboratories at Penn Fertility Care. Each specimen was allowed to liquefy 
for 30–40 minutes at room temperature and was washed in media. The washed semen samples were pipetted 
on a 20 µ m deep Vitrolife MicroCell chamber for data collection. For detailed explanation on the preparation 
process of the samples, please refer to Urbano et al.3 and  Urbano4.

The parameters we have extracted from the real images were the image background BL , the noise variance σ 2
N , 

the size of sperm head, the number of cells in the image NC , and the number of non-moving cells ND . The values 
of the parameters are given in Table 5. The sperm cells in the image were labeled manually. The process used to 
calculate these parameters are provided in the additional file [see Additional file 1].

Testing
Two use cases of the simulation were explored. First, we tested five sperm cell detection algorithms and assessed 
their performances. The cell detection algorithms consists of two major components, which are segmentation 
and  localization39. In segmentation, regions in the image that contains sperm cells are separated from the image. 
In localization, the locations of sperm cells in the segmented regions are labeled. The performance of segmenta-
tion and localization was evaluated in terms of optimal subpattern assignment (OSPA) distance ( c = 20, p = 2

)44, precision and recall  rates45. OSPA distance is a metric that quantifies errors in distance between the ground 
truth and detection and in cardinality (difference in number between ground truths and detections). Precision 
is the ratio between true positives (true matches) to the total number of detections. Recall is the ratio between 
true positives to total number of ground truth. Ideally, the value of OSPA distance is 0 and the values of preci-
sion and recall are 1. The calculation of OSPA distance, precision, and recall in real samples was made possible 
by manual labeling of sperm locations.

Second, we tested four tracking algorithms for sperm tracking (nearest neighbor (NN), global nearest neigh-
bor (GNN), probabilistic data association filter (PDAF), and joint probabilistic data association filter (JPDAF))46. 

Figure 17.  (a) Simulation image of two cells with additive random noise; tracks of the two cells shown in 
blue. The random noise in this example is Gaussian random variable. (b) Simulation image of sperm cells with 
variable intensity. (c) Simulation image of a sperm cell making transition to other swimming modes.

Table 5.  Simulation parameters for segmentation and localization testing.

Noise variance σ 2

N
Radius rM (major axis) Radius rm (minor axis) Number of cells NC

Number of non-moving 
cells ND

Sample 1 8.22× 10−6 2.86 px 1.86 px 10 3
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The purpose of a tracking algorithm is to track each of the sperm cells as time progresses. The calculated tracks 
are then used to provide parameters that describe the motility of sperm cells in the semen sample (e.g., percent 
of motile cells, velocity of sperm cells). The performance of the tracking algorithms was assessed in terms of 
Multiple Object Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA) with cutoff dis-
tance of cT = 5  px47. MOTP is the sum of the distance between the matched ground truth and detected tracks. 
MOTA is a metric that quantifies the error in false positive FP (false alarm), false negative M (missed detection), 
and track mismatch MME . The MOTA is defined to be MOTA = 1− (FP +M +MME) . Ideally the value of 
MOTP is zero and MOTA is 1 ( FP = M = MME = 0 ). Detailed explanation of the assessment metrics is given 
in the additional file [see Additional file 1].

Applying the simulation to assess segmentation, localization, and tracking. The real semen 
image and the simulated images were tested using five (5) different algorithms for detection (segmentation and 
localization). These algorithms were the following: 

1. (Otsu) Binarization of image using Otsu’s thresholding followed by morphological enhancements (closing, 
dilation, and erosion)48.

2. (Adaptive) Binarization of image using the adaptive thresholding method of  Bradley49 with the sensitivity 
defined to be 0.8, followed by morphological enhancements (closing, dilation, and erosion).

3. (Spot-enhancement) Binarization of spot-enhanced image using Otsu’s thresholding, followed by morpho-
logical enhancements (closing, dilation, and erosion) (method proposed in Urbano et al.3).

4. (Edge-detection) Edge detection of median-filtered image using Sobel operator (modified algorithm pro-
posed in Abbiramy and Shanthi (2010)5) followed by morphological enhancements (dilation, closing, and 
erosion).

5. (GMM) Motion detection algorithm using Mixture of Gaussian Model (GMM) with the number of training 
frames set to 20, number of Gaussian modes in the mixture model set to 3, learning rate set to 0.005, and 
background ratio set to 0.711,50 followed by morphological enhancements (closing, dilation, and erosion).

A total of 20 different simulated images were generated for testing using the parameters obtained from a real 
human sample (sample 1). The size of the frame was 250× 250 px. In the simulated images, the non-moving cells 
were modeled as immotile cells. The moving cells ( NC − ND ) were modeled as either linear mean swimming 
( 50% ) or circular swimming ( 50% ) cells. The algorithms were tested on real and simulated images. To each one 
of the images (real and simulated), we added zero-mean Gaussian noise with variance ranging from 0 to 1225 
(standard deviation of 35 in grayscale). Figure 18 shows the OSPA distances, precision, and recall rates for vary-
ing levels of noise of real and simulated images.

The graphs show that the Adaptive algorithm exhibits the best performance in terms of OSPA (smallest 
distance away from ground truth) under low noise levels (noise variance approximately below 600), followed by 
the Spot-enhancement algorithm, the Edge-detection algorithm, the GMM algorithm, and the Otsu algorithm, 
respectively (Fig. 18a,b).

In terms of precision, sharp loss in performance is observed for the Otsu algorithm and the Spot-enhancement 
algorithm when the noise level increases beyond the noise variance of 100 and 300, respectively. Precision for 
the Adaptive algorithm and the Edge-detection algorithm also decreases as the noise level increases, where the 
Edge-detection algorithm becomes more robust than Adaptive algorithm in high levels of noise (approximately 
above noise variance of 600). The GMM algorithm shows the highest level of robustness, having almost no 
degradation in performance in precision (small number of false alarms).

In terms of recall, almost no change is observed between the noise variance of 0–1225 for the Adaptive 
algorithm, the Spot-enhancement algorithm, and the Edge-detection algorithm. The Otsu algorithm and the 
GMM algorithm showed degradation in performance when noise level increased, the Otsu algorithm showing 
sharp decline around noise variance of 100 and the GMM algorithm showing gradual decline between noise 
variance value of 0–1225.

The OSPA distance, precision and recall rates of the five different algorithms show similar trends for the real 
sample image and its simulated image. Overall, the Adaptive algorithm performed best in low level of noise 
(below noise variance of 600) and the Edge-detection algorithm has performed the best in high level of noise 
(above noise variance of 600). The Otsu algorithm showed the worst performance. Spot-enhancement algorithm 
performed well in low levels of noise, but failed when the noise level rose above noise variance of 300. GMM 
algorithm was the best algorithm in terms of precision, however did not show good performance in terms of 
OSPA distance and recall. Additional results for another real human sample (sample 2) are provided in the 
additional file [see Additional file 1].

Applying the simulation to assess tracking. Four (4) tracking algorithms (NN, GNN, PDAF, and 
JPDAF) were tested on simulated images. The codes for tracking algorithms were written by Leonardo Urbano 
and are available in Urbano et al.51. The output of each tracking algorithm is the track information of all the 
detected cells in the semen image.

We evaluated the performance of NN, GNN, PDAF, and JPDAF algorithms for varying numbers of cells. 
Each simulated image consisted of 20, 40, 100, or 200 cells. Each cell in each image was assigned to a swim type 
using equal probabilities: linear mean swim ( 1

4
 ), circular swim ( 1

4
 ), hyperactive swim ( 1

4
 ), and immotile ( 1

4
 ). The 

size of the frame was 500× 500 px. The framerate was set at 15 FPS and total of 10 seconds of each image were 
used for tracking. Twenty (20) different scenarios were generated for each number of cells for a total of 100 
images. The background intensity level was 204 (80% of 255) and no noise was added to the video images. The 
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simulation parameters used to generate the images are given in Table 6. Ground truth tracks for each image 
were provided by the simulation, and were compared to the estimated tracks calculated by NN, GNN, PDAF, 
and JPDAF algorithms.

The mean MOTP, FP , M  , MME , and MOTA values for 20 different scenarios for each type of images (20, 
40, 100, and 200 cells) are shown in Table 7. The values of multi-object tracking precision (MOTP) for the four 
tracking algorithms were approximately equal regardless of the number of cells in the image. As the number of 
cells increased, the value of multi-object tracking accuracy (MOTA) decreased and the false positive rate ( FP ), 
miss detection rate ( M  ), and mismatch rate ( MME ) increased.

For large number of cells, GNN and JPDAF algorithms performed better than NN and PDAF tracking algo-
rithms in terms of MOTA. The major factor for this difference was in the false positive rate ( FP ). Comparing 
NN and PDAF, MOTA for PDAF was lower than NN for all of the testing cases (20, 40, 100, and 200 cells). The 

Figure 18.  OSPA distance, precision and recall rates of sample 1 for varying levels of additive Gaussian noise 
(a,c,e) real, (b,d,f) simulation.
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GNN and JDPAF tracking algorithms showed similar performance in terms of MOTA. Overall, GNN and JPDAF 
showed best performance, which was followed by NN. The PDAF tracking algorithm had the worst performance.

Conclusion
We presented a model of 2-D (top-down) view of a sperm cell and of four (4) different swimming modes gener-
ated by observing the swimming paths of real human sperm cells. The simulation opens up opportunities for 
methodical study and comparison of different semen image processing algorithms, including algorithms for 
segmentation, localization, and tracking. In our examples, we tested five different segmentation and localiza-
tion algorithms and used the simulation to rank the algorithms by their performance, obtaining ranking with 
simulation that appear similar to ranking using real images. In addition, we compared the performance of four 
different tracking algorithms (NN, GNN, PDAF, and JPDAF) on the simulated images using MOT metrics and 
have ranked them by their performances.

The simulation models and the software presented in this paper serve as a powerful new tool for developing 
and enhancing CASA systems and algorithms. Using this new tool, stronger and more robust CASA systems can 
be developed. The use of such systems is an attractive alternative to manual semen collection and assessment. 
Specifically, clinicians can generate and demonstrate to students and technicians a variety of images that represent 
different types of observed semen samples; this task can be accomplished without having to collect, process, 
and record human semen images. The simulated images can also be used to train technicians, by comparing the 
results of their analyses of the images to the simulations’ ground truth.

Table 6.  Simulation parameters used for tracking assessment.

Parameter Value

rc 80 pixel

fc 50 deg/s

fs 4 Hz

a 3 pixel

fl 3 Hz

rh 12 pixel

rv 8 pixel

Ahar 0.1

V 50 pixel/s

σxb , σyb 10 pixel

Table 7.  Tracking performance of NN, GNN, PDAF, and JPDAF algorithms on varying number of cells.

# of cells MOTP FP M MME MOTA

NN

20 1.4 px 0.2101 0.0941 0.0003 0.6955

40 1.4 px 0.2935 0.1143 0.0012 0.5910

100 1.4 px 0.3593 0.1609 0.0030 0.4768

200 1.4 px 0.4140 0.2163 0.0061 0.3635

GNN

20 1.4 px 0.0690 0.0812 0.0012 0.8487

40 1.4 px 0.0920 0.0886 0.0028 0.8165

100 1.4 px 0.1317 0.1090 0.0070 0.7524

200 1.5 px 0.1810 0.1343 0.0144 0.6703

PDAF

20 1.4 px 0.2076 0.0994 0.0003 0.6927

40 1.4 px 0.2934 0.1292 0.0009 0.5765

100 1.4 px 0.3636 0.1956 0.0027 0.4381

200 1.5 px 0.4448 0.2748 0.0049 0.2754

JPDAF

20 1.4 px 0.0714 0.0817 0.0012 0.8457

40 1.4 px 0.0969 0.0907 0.0026 0.8098

100 1.4 px 0.1291 0.1099 0.0058 0.7553

200 1.5 px 0.1717 0.1352 0.0118 0.6813
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Data availability
The raw data, dataset, and software supporting the conclusions of this article are available in the github reposi-
tories, [https:// github. com/ Jiwon Choi- NJIT/ NJIT_ sperm_ simul ator and https:// github. com/ moshe kam/ 
NJIT- Semen- Images- Data- Fusion- Lab].
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