
ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fped.2021.743544

Frontiers in Pediatrics | www.frontiersin.org 1 October 2021 | Volume 9 | Article 743544

Edited by:

Muralidharan Jayashree,

Post Graduate Institute of Medical

Education and Research (PGIMER),

India

Reviewed by:

Jerry John Zimmerman,

Seattle Children’s Hospital,

United States

Daniela De Souza,

University of São Paulo, Brazil

*Correspondence:

Sherry L. Kausch

slk7s@virginia.edu

Specialty section:

This article was submitted to

Pediatric Critical Care,

a section of the journal

Frontiers in Pediatrics

Received: 18 July 2021

Accepted: 06 September 2021

Published: 01 October 2021

Citation:

Kausch SL, Lobo JM, Spaeder MC,

Sullivan B and Keim-Malpass J (2021)

Dynamic Transitions of Pediatric

Sepsis: A Markov Chain Analysis.

Front. Pediatr. 9:743544.

doi: 10.3389/fped.2021.743544

Dynamic Transitions of Pediatric
Sepsis: A Markov Chain Analysis
Sherry L. Kausch 1,2*, Jennifer M. Lobo 3, Michael C. Spaeder 2,4, Brynne Sullivan 2,5 and

Jessica Keim-Malpass 1,2

1 School of Nursing, University of Virginia, Charlottesville, VA, United States, 2Center for Advanced Medical Analytics,

University of Virginia, Charlottesville, VA, United States, 3Department of Public Health Sciences, University of Virginia,

Charlottesville, VA, United States, 4Department of Pediatrics, Division of Pediatric Critical Care, University of Virginia School

of Medicine, Charlottesville, VA, United States, 5Department of Pediatrics, Division of Neonatology, University of Virginia

School of Medicine, Charlottesville, VA, United States

Pediatric sepsis is a heterogeneous disease with varying physiological dynamics

associated with recovery, disability, and mortality. Using risk scores generated from

a sepsis prediction model to define illness states, we used Markov chain modeling

to describe disease dynamics over time by describing how children transition among

illness states. We analyzed 18,666 illness state transitions over 157 pediatric intensive

care unit admissions in the 3 days following blood cultures for suspected sepsis. We

used Shannon entropy to quantify the differences in transition matrices stratified by

clinical characteristics. The population-based transition matrix based on the sepsis illness

severity scores in the days following a sepsis diagnosis can describe a sepsis illness

trajectory. Using the entropy based on Markov chain transition matrices, we found a

different structure of dynamic transitions based on ventilator use but not age group.

Stochastic modeling of transitions in sepsis illness severity scores can be useful in

describing the variation in transitions made by patient and clinical characteristics.

Keywords: Markov chain, illness transition states, transition matrix, Shannon entropy, entropy, stochastic

modeling, trajectory analysis

1. INTRODUCTION

The hallmark of sepsis, organ dysfunction resulting from a dysregulated host response to infection,
often requires ICU-level interventions for physiologic organ support (1). In the United States, more
than one-third of children who die in tertiary care Pediatric Intensive Care Units (PICUs) have
severe sepsis (2). In addition, survivors of sepsis have increased lengths of hospitalizations and
are at risk of long-term complications (3, 4). Despite growing research in this area, sepsis remains
a significant cause of pediatric morbidity and mortality. Better targeting of sepsis interventions
following diagnosis may result in improved outcomes, yet we remain limited in our ability to target
sepsis interventions to individual patients.

Recently, machine learning techniques have been employed to develop models that predict
future clinical deterioration, including sepsis. Continuous electrocardiogram data from bedside
monitors, vital signs, laboratory values, and clinical assessment findings in the electronic health
record can be analyzed to identify patients at rising risk of sepsis, prior to overt clinical signs.
Predictive models exist that were developed as time series measures of changing risk based
on clinical variables that detect physiological changes with illness (5–9). The utility of such
continuous predictive analytics is intuitive: novel monitoring to alert busy clinicians to a change
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in the patient so diagnosis and treatment can occur early. Sepsis
predictionmodels have led to improved outcomes in the neonatal
ICU and were associated with lower rates of septic shock in
an adult ICU (5, 6). While risk scores from predictive analytic
models have been used to provide early warning to clinicians, less
research has focused on the use of this innovative derivation of
complex physiologic data to characterize illness states (10).

A risk score incorporating an assessment of the illness
trajectory over a period of time can capture the complex courses
of patients with sepsis. Because risk scores from predictive
analytics can be assessed serially, the integrated risk score
also has potential utility as an index of acuity, as a proxy of
responsiveness to therapy (i.e., a response biomarker), and as
a way to monitor the overall trajectory of illness (11–13). By
assessing the integrated continuous predictive analytic across the
patient trajectory in the form of a highly-dimensional time series,
we have the opportunity to pursue patient-centered modeling.
The goal of patient-centered modeling is to classify individuals
into distinct groups or categories based on individual response
patterns over time (14). By approaching pediatric sepsis in
this way, we also have the opportunity to determine if there
are sub-types of trajectories, in other words—children who
may have a more favorable or unfavorable early response to
therapy and associated prognosis. Additionally,the majority of
sepsis research has focused on early diagnosis, initiation of goal-
directed therapy, and characterizing phenotypes of sepsis at
the time of diagnosis (15, 16). The immediate post-diagnosis
trajectory has received less attention. However, the time period
following sepsis diagnosis is clinically relevant due to the
persistent need to assess appropriate responsiveness to therapy
and escalate or de-escalate care to improve outcomes (11, 13, 17).
Thus, the temporal characteristics of illness state transitions and
patterns of recovery may be essential features in understanding
the illness course and for assessing how interventions affect
sepsis recovery.

Markov chain models can provide insights into disease
dynamics (18, 19). Markov models provide interpretable,
clinically relevant metrics, such as probabilities of transitioning
between illness states and the expected time required to move
from one illness state to another illness state (20, 21). Temporal
characteristics and state-based transitions have been used in
statistical models to characterize the burden of disease and the
impact of specific therapeutic interventions on recovery (22). We
use Markov chain modeling to evaluate the dynamic transitions
in illness states following sepsis in PICU patients in order to
quantify the early illness trajectory. We use risk scores generated
from a sepsis prediction model to define illness states. Our first
aim was to characterize a Markov chain transition matrix for a
cohort of PICU patients meeting sepsis criteria in the early 72 h
time period following diagnosis. Our second aim was to further
describe Markov chain transition matrices stratified by clinical
characteristics (e.g., mechanical ventilation). We used a measure
of entropy to characterize the differences between stratified
matrices quantitatively. Finally, we examined the sequence of
transitions among illness states to determine howmuch time was
required to reach a target illness state, given an initial illness state,
in a probabilistic fashion.

2. METHODS

The University of Virginia Institutional Review Board approved
this retrospective cohort study.

2.1. Study Design
Spaeder and colleagues developed a sepsis prediction model
for use in the PICU population at the University of Virginia
Children’s Hospital (7). The model produced, for each patient,
a continuous score that is the fold increase in the risk of
developing sepsis in the following 24 h. We used the output from
this model to represent the trajectory following sepsis diagnosis
instead of only representing the trajectory leading to sepsis. This
model development study included all admissions to the 17-bed
PICU from December 2013 to May 2016. The study authors
recorded demographic information, including age, length of
hospitalization, length of time on a ventilator, and mortality
(assessed as all in-hospital mortality), during the trial. Archived
data were available for 1,711 unique admissions involving 1,425
patients. The model was trained only on sepsis events that
occurred in the PICU setting. Sepsis present on admission or
occurring on the acute care ward were not included in the
model development.

We used the risk scores produced by the prediction model to
construct matrices of the probabilities of transitioning from any
given illness state to another within a 30-min period in the 3 days
following cultures for suspected sepsis. We further characterized
these transition matrices using Shannon entropy (23). We
examined: (1) transition matrices for the cohort of admissions
where sepsis occurred, (2) simulations of illness trajectories, (3)
transition matrices stratified by different clinical characteristics,
and (4) mean first passage times across the stratifications. Mean
first passage times present the number of time steps required to
reach a target illness state from an initial illness state. Analyses
were performed using R studio version 3.6.2. The R package
markovchain was used to calculate transition matrices and mean
passage times. The simulation of trajectories was implemented
in Python.

2.2. Description of the Sepsis Prediction
Model
2.2.1. Data Inputs to the Predictive Model

Inputs to the model algorithm include (1) continuous
cardiorespiratory monitoring waveforms (three leads of
ECG sampled at 240 Hz and pulse plethysmography and
invasive blood pressure tracings at 120 Hz), (2) continuous
cardiorespiratory vital signs (heart rate, respiratory rate,
peripheral oxygen saturation, invasive blood pressure, ventilator
measured respiratory rate, and sample-and-hold non-invasive
blood pressure) sampled at 0.5 Hz, (3) clinician-entered
vital/clinical signs (oxygen saturation, temperature, Glasgow
coma scale, and fraction of inspired oxygen), (4) laboratory
measurements (serum sodium, potassium, chloride, bicarbonate,
blood urea nitrogen, creatinine, glucose, calcium, white blood
cell count, hematocrit, platelet count) and BUN-to-creatinine
ratio, and (5) clinical covariates (age, male gender, presence
of an arterial line, and the presence of mechanical ventilation)
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(7). Cardiorespiratory dynamics measured from the continuous
cardiorespiratory monitor, unseen by clinicians, were calculated
as described by Moss et al. (24). These 16 measures were
calculated in 30 min windows every 15 min. Intermediate
features, censored when the values were more than 24 h old for
vital signs and 48 h old for laboratory values, were combined
with continuously obtained features using sample-and-hold.

2.2.2. Model Development

The model was developed for two use cases: (1) to provide
continuous risk estimates and (2) to provide sepsis screening
alerts. A random forest model was developed on 100% of the
hospital admissions and validated using cross-validation.Missing
data was imputed with median values. Leave-one-out cross-
validation was used to predict risk. The model output represents
the fold increase in risk that a child will be diagnosed with
sepsis in the following 24 h compared with the average risk
of sepsis. The area under the receiver operating characteristic
curve (AUC) was calculated to evaluate model performance.
Confidence intervals were calculated based on 200 bootstrap runs
resampled by admission. The model had an AUC of 0.750 (95%
CI: 0.708–0.809). For comparison, the AUC for SIRS, with a 12-h
prediction window, was 0.663 (95% CI: 0.632–0.695).

2.2.3. Sepsis Definition

Sepsis events were established based on the 2005 International
Pediatric Sepsis Consensus Conference criteria (25). Episodes of
sepsis were defined as (1) the presence of systemic inflammatory
response syndrome (SIRS) and (2) suspected or proven invasive
infection caused by any pathogen. For every patient who had a
blood culture order, each chart was individually reviewed by a
clinician to establish the time of the sepsis event (i.e., the time of
blood culture order or time of blood culture collection, whichever
came first) in cases where a patient met SIRS criteria in the 12-h
window preceding the culture and received antibiotics in the 6-h
window following cultures.

2.2.4. Description of the Data

Sepsis occurred in 157 of the 1,711 PICU admissions. In
admissions with multiple sepsis events, only the first event was
included in this analysis. The model generated risk scores every
15 min for each patient. To account for the fact that the model
used the preceding 30 min of continuous cardiorespiratory data
to generate risk scores, this study used scores every 30 min.
Additionally, evaluating illness state changes every 30 min has a
desirable clinical correlate to the frequent clinician monitoring
that occurs in the PICU setting. Nonconsecutive risk scores
occurred in 71 observations and were removed from the analysis
(0.3% of the total data). The remaining 18,666 scores were
adjacent 30-min score pairs. All risk scores were labeled with
the corresponding time in minutes following the sepsis diagnosis.
Actual times were not included; times following sepsis diagnosis
for each patient were used to obtain scores in the appropriate
period following sepsis and in the correct time order for this
Markov chain implementation.

2.3. Markov Chain Assumptions
A system must have a set of distinct states and identifiable
transitions among those states to be modeled as a discrete-
time Markov chain (26). The transition probabilities among the
identified states can be estimated for each possible transition
based on the observed data at specified time intervals. A first-
order Markov chain assumes behavior in the future can be
predicted using only the current state. Therefore, Markov chains
are considered to be “memoryless.” This has a desirable clinical
correlate. While clinicians often have knowledge of prior medical
history, cumulative treatment burden, physiological trends, and
past responsiveness to therapy, there are many times during a
critical illness when clinicians are making treatment decisions
based on the current physiological state. However, Markov chains
can be constructed to maintain a memory effect by accounting
for prior state transitions. For example, in a second order
Markov chain, each observation is influenced by the two previous
observations. We constrain our examination to only the first-
order Markov chain.

We assume transition probabilities are independent of time.
We examine the 72-h period following cultures obtained for
sepsis as the time of interest in the course of sepsis illness.
However, illness transition probabilities may be conditional
on time. Clinically, we can see that illness resolution is
not guaranteed in the days following sepsis. We examine if
the assumption of time-independent probabilities holds by
comparing the transition probabilities of one week to those of
3-day periods. Finally, this is a population-level analysis rather
than an individual-level analysis. Transition probabilities are
aggregated across all patients. By stratifying groups based on
specific characteristics, we will partially address this limitation.

2.4. Markov Chain Construction
Risk scores generated from the model are the fold-increase in
sepsis relative to the average risk of sepsis in the study population.
A relative risk of 1.0 indicates the average risk while 2.0-fold
indicates twice the average risk. Risk scores ranged from 0 to 8.
To create clinically meaningful, discrete illness states, the scores
were binned into four groups (0–3). The lowest illness state, 0, has
risk scores in the range [0,1]. Illness state 1 has risk scores in the
range [1,2], representing those with an increased risk. Risk scores
in the range [2,3] compose illness state 2, and represent a higher
illness state than the preceding states of 0 and 1. The highest risk
illness state, 3, contains all scores 3 or higher.

With four illness states, there are 16 possible transitions
and associated transition probabilities. The transition matrix is
created by row, that is the probabilities in a row sum to one.
Specifically, the number of transitions from the initial illness
state to the next illness state are counted and inserted into the
corresponding cell in the transition matrix. Then, each cell in
the row is divided by the sum of transition counts for that row.
Transition matrices were calculated in two ways: (1) as non-
absorbing matrices where only the illness states are considered as
possible transient states, and (2) including death as an absorbing
state in addition to the four transient illness states. This matrix
has five rows, with the fifth row representing the absorbing state
of death.
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2.5. Developing the “Entropy Matrix”
Entropy can be considered as a measure of disorder within a
system (27). The Shannon entropy of a random variable is (23):

H = −

∑
p(x) log p(x) (1)

Distributions that are peaked around only a few values will have
low entropy relative to more uniform distributions. We will
calculate the Shannon entropy of the distribution of transition
probabilities by recalculating the transition matrix. In the

TABLE 1 | Sociodemographics of the study cohort.

Variable Levels Value

Illness state (No. of observations) 18,666

0 3,878

1 6,433

2 4,129

3 4,226

Age (mean, SD) 4.2, 5.3

Age groups (No. of sepsis events) 0–1 78

Over 1 79

Sex (No. of sepsis events) Male 80

Female 77

Survived (No. of sepsis events) Survived 130

Deceased 27

Ventilator Groups (No. of sepsis events) Ventilated 129

No ventilation 28

transition matrix, all of the rows are probability distributions and
sum to one. We create an “entropy matrix” where matrix cells
sum to one. In this matrix the number of transitions observed in
each of the matrix cells is divided by all observed transitions. We
use natural logarithms to define entropy.

2.6. Simulating Trajectories
An illness trajectory can be simulated from a Markov chain
based on a starting state and probabilities from the transition
matrix. After obtaining the transition matrix of probabilities and
selecting an initial illness state, a multinomial distribution can be
generated based on the corresponding row of probabilities in the
transition matrix.

2.7. First Passage Times
In this context, the first passage times show how much time
it would take to reach a destination illness state for the first
time from a given initial illness state using the probabilities in
the transition matrix. For each possible initial illness state, the
number of time steps required to reach the target destination state
is calculated.

3. RESULTS

3.1. Characteristics of Patients
Demographic information of the cohort is given in Table 1.
Sepsis occurred in 157 PICU admissions involving 140 individual
patients. In the 3 days following sepsis there were 18,666 observed
illness states. Twenty-seven of the admissions ended with the
death of a patient, with 16 of those deaths occurring within
the 3 days following sepsis. One hundred and twenty-nine

FIGURE 1 | Across all patients in the 3 days following sepsis, (A) is the transition matrix. The matrix shows the probability of transitioning from a current illness state,

denoted by rows, to the subsequent illness state, denoted by columns. (B) is the entropy matrix. The probabilities in the entropy matrix are normalized from all initial

illness states. Thus, values in the entropy matrix indicate the density of the observed transitions. The visual difference between the transition and entropy matrices

arises from the fact that the the row values sum to one in the transition matrix while all the cell values sum to one in the entropy matrix. The figure may be interpreted

as follows. The darkest cell in the entropy matrix is in the second row and the second column of (B), where 28% of observed transitions occurred. The corresponding

cell in (A) signifies that there is an 80% chance of remaining in illness state 1 for patients currently in illness state 1.
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FIGURE 2 | Simulations of Markov chain iterations from three initial illness states. Using the Markov chain, 3 days of transitions (i.e., 144 sequential 30-min transitions)

are simulated from (A) initial illness state of 3, (B) initial illness state of 0, and (C) initial illness state of 1.

admission with sepsis required mechanical ventilation, with a
median duration of ventilation of 207 (IQR: 78–638) hours. The
median age of the cohort was 1.2 years.

3.2. Characterizing the Transition Matrix
Figure 1 shows the transition matrix for the entire cohort of
children in the 3 days following sepsis. Transition probabilities
ranged from 0.88 to <0.01. The highest transition probabilities
were along the diagonal, with patients most likely to remain
in the same illness state. The Shannon entropy for the entropy
matrix of transitions was 1.96. For a point of reference, the
minimum entropy value possible is 0, characterizing a matrix
with a probability of one in one cell and a probability of zero in
all remaining cells. The maximum entropy for a 16-cell matrix is
2.77, representing the case when the probabilities are uniformly
distributed among the cells.

3.3. Simulating Trajectories
The transition matrix can be used to simulate Markov chain
iterations from initial illness states, as shown in Figure 2.

Simulated trajectories offer a probabilistic method to examine
how illness states may vary between high and low levels of illness
following diagnosis regardless of the initial illness state.

3.4. Characterization of Stratified
Transition Matrices and Entropy Matrices
Figure 3 includes the absorbing and non-absorbing transition
matrices stratified by age and the corresponding entropy
matrices. When stratified by age less than or greater than 1 year,
the transition matrix is similar for both age groups. The entropy
of the two matrices is also similar. The entropy of the matrix
for patients under 1 year 1.95, similar to the entropy of 1.92 for
those older than 1 year. The absorbing transition matrix shows
that patients died in both age groups and the transitions to death
occurred across all illness states.

Figure 4 includes the absorbing and non-absorbing transition
matrices stratified by ventilator use and the entropy matrices.
Non-ventilated patients had the greatest density of transitions
in illness state 3 and had a probability of 0.95 of remaining
in the highest illness state. Ventilated patients had the greatest
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FIGURE 3 | Transition matrices stratified by age group. Separate transition matrices were created for (A) patients older than 1 year of age and including death as an

absorbing state (B) patients older than 1 year of age and including only transient illness states, and (C) the entropy matrix for patients older than 1 year of age. The

transition matrices are shown for (D) patients from birth to age one, including death as an absorbing state (E) patients from birth to age one with only transient illness

states, and (F) the entropy matrix for patients from birth to age one.

density of transitions in illness state 1. For those in illness state
3, the probability of transitioning to a lower illness state was 0.14,
greater than the 0.04 probability of transitioning to an illness state
of 2 for those in the non-ventilated group. The entropy of the
matrix for ventilated patients is 1.96, higher than the entropy of
1.70 for non-ventilated patients. The absorbing transition matrix
shows that most patients who died were ventilated and that the
transition to death occurred across all illness states.

3.5. First Passage Time to Target Illness
States
We examined mean first passage times, or how much time was
required for a patient to move from an initial illness state to
a target illness state. Figure 5 shows the first passage times (in

hours) from each possible initial illness state to each possible
destination illness state. We did not consider the times required
to re-enter the same illness states, and the time is denoted as 0 in
the matrix. Figure 6 shows passage times stratified by ventilator
use and age.

3.6. Assumption Testing
We assumed a discrete-time Markov chain would characterize
illness state transitions in the time immediately following sepsis.
We tested this assumption by examining different periods
following sepsis. Transition matrices were examined for a period
of 7 days in addition to a period of 3 days following sepsis.
The transition matrix of a 3-day period modeled the population-
level illness state transitions better than a seven-day period and
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FIGURE 4 | Transition matrices stratified by ventilator use. Separate transition matrices were created for (A) patients without mechanical ventilation and including

death as an absorbing state (B) patients without mechanical ventilation with only transient illness states, and (C) the entropy matrix for patients without mechanical

ventilation. The transition matrices are shown for (D) patients requiring mechanical ventilation, including death as an absorbing state (E) patients requiring mechanical

ventilation with only transient illness states, and (F) the entropy matrix for patients requiring mechanical ventilation.

was used in this analysis. Supplementary Figures 1–4 display
model fit for each illness state. Supplementary Figure 5 shows
the transition matrices based on a 7-day period. We also
examined the effect of different binning of illness states on
the transition matrix. Transition matrices were examined using
illness states binned into five and six categories, without changes
in the structure of the matrices. The number of illness state
observations we not equal among the groups in the four-
bin structure we used in this analysis. The majority of illness
state observations were in state 1 (see Table 1). Therefore, an
additional four-bin structure was examined where there were an
equal number of total observations over the four illness states (see
Supplementary Figure 6) without a change in the structure of
the transition matrix.

4. DISCUSSION

We studied the trajectories of illness severity indices in a
cohort of children admitted to the PICU. We undertook
stochastic methods to explore physiological state transitions
in children in the hours following a sepsis diagnosis. When
using Markov chains to model trajectories, the trajectories
are defined by the probability of transitioning between states.
These probabilities are presented in the transition matrices.
Differences in trajectories can be seen in the differences between
the transition probabilities when stratifying by ventilator status
or age or other clinical factors to understand the differences
in temporal dynamics of illness severity between these clinical
factors. Our results demonstrate that the population-based
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FIGURE 5 | Mean first passage times from initial illness states to destination

illness states. For each possible initial illness state, denoted by rows, the

amount of time (in hours) required to reach the destination illness state in

shown. The 0 s along the diagonal indicate that the number of steps to reach

the same state were not calculated.

transition matrix of sepsis illness severity scores in the hours
following a sepsis diagnosis can describe a sepsis illness trajectory.
Additionally, the calculation of Shannon entropy can be useful
in describing the variation in transitions made across patient
characteristics and clinical factors.

The transition matrices stratified by age are similar, both in
terms of the probability of transitions between illness states and
in the distribution of observed transitions. Shannon entropy is
also similar between the two matrices. Thus, one interpretation
is that the illness trajectory of sepsis is similar across ages. Also,
this could speak to the performance of the prediction model
when it was developed. The assessment of sepsis trajectories by
age is helpful due to the vast physiological and developmental
differences seen in the population of children in the PICU,
ranging from neonates to young adults.

The transition matrices stratified by ventilator group
suggest a difference in illness trajectory dynamics between
the two groups. Those who require mechanical ventilation
have a greater density of observed transitions in the lower
illness states as compared with those who do not require
ventilation. In the non-ventilated group, almost half of
the observed transitions occur in the highest illness state.
Shannon entropy is also different between these groups,
with higher entropy in the transitions of ventilated patients.
This could speak to the role of respiratory rate on illness
severity calculations (7). There is a potential that those with

mechanical ventilation would have respiratory rates within
normal ranges due in part to the ventilator breathing for
them. These differences between groups further highlight
the need to explore sepsis disease dynamics and therapeutic
intensity simultaneously.

Very little work has been focused on the critical period
immediately following a sepsis diagnosis where clinicians must
carefully assess responsiveness to therapy or the need to change
antibiotic regimens. Further, there are very few biomarkers
that are indicative of sepsis severity. The biomarkers that do
exist (e.g., lactate, procalcitonin) require serial blood draws for
laboratory assessment and are not obtained at the same frequency
an illness severity score is accessible (28–31). Approaches
that assess differences in illness dynamics that are associated
with successful recovery can be used in conjunction with
established biomarkers and assessments of the level of therapeutic
intensity, or how much support (i.e., vasopressor requirements,
use of mechanical ventilation, or extracorporeal membrane
oxygenation) the child requires to maintain physiological
stability (32). Understanding these patterns and variations
between children who survive hospitalization and children who
do not may be of immense clinical utility in this early period
of sepsis, where clinical regimens may be further tailored
to risk.

This analysis provides an essential first step toward future
analyses utilizing Markov decision processes to optimize
clinical interventions to improve illness trajectories. It
also suggests the potential to use reinforcement learning
in this post-sepsis diagnosis period. Other approaches
to illness trajectories have used longitudinal methods for
evaluating change over time, which allows for apportioning
of variance as well as phenotyping or clustering approaches
(15, 33). In contrast, Markov decision processes can
model the sequence of interactions between clinician
interventions and illness states (34). This could allow
for an understanding of how clinician action affects
illness transitions.

One strength of this study is in our generation of Markov
chains based on empirical data. We had few missing data points
and a large amount of data. We re-categorized states to examine
the effect of different illness state bins on transition matrix
probabilities. We note that using risk scores as measures of
illness severity requires a well-calibrated model. Our study had
limitations. Our analysis was limited to illness state transitions
based on risk scores generated from one predictive analytic
model designed for use in a single PICU. External validation
of our method on a different study population is needed.
Additionally, it is important to acknowledge that the most up
to date pediatric definition for sepsis, the International Pediatric
Sepsis Consensus Conference criteria that we employed in this
study, has not been updated for 16 years. We anticipate that
a future update of the pediatric criteria would employ organ
dysfunction as a component of the definition, similar to the
adult Sepsis-3 criteria (1). In future work, our model would
need to be updated to reflect the changing sepsis criteria.
Finally, modeling a system as a Markov chain requires making
several assumptions, notably the limitation in the Markov
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FIGURE 6 | Mean first passage times from initial illness states to destination illness states stratified by ventilator use and age group. Times were estimated separately

for (A) patients requiring mechanical ventilation and (B) patients without mechanical ventilation as well as (C) patients older than 1 year and (D) patients from birth to 1

year.

property and the assumption that we chose an appropriate
period to study. We examined whether these assumptions held
in our data and noted that the Markov assumption has a
clinical concordance in how clinicians assess patients in the
ICU environment.

In conclusion, we used a discrete-time Markov chain to
characterize the illness trajectory following sepsis. Pediatric

sepsis is a heterogeneous disease that can result in mortality
or significant morbidity and prolonged physical disability
(3, 4). Using the entropy based on Markov chain transition
matrices, we found a different structure of dynamic transitions
based on ventilator use but not age group. Elucidating these
transitions and variations in illness severity is a needed
area of inquiry to understand better how to characterize
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children’s sepsis trajectories. Studying disease dynamics
through stochastic approaches offers the foundation for
reinforcement learning during critical clinical decision-making
periods. Future work is needed to explore the relationships
between therapeutic interventions and sepsis transitions and
understand the burden of illness across the entire critical
care trajectory.
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