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Abstract 

Background:  Heart disease diagnosis is a challenging task and it is important to explore useful information from the 
massive amount of electrocardiogram (ECG) records of patients. The high-precision diagnostic identification of ECG 
can save clinicians and cardiologists considerable time while helping reduce the possibility of misdiagnosis at the 
same time.Currently, some deep learning-based methods can effectively perform feature selection and classification 
prediction, reducing the consumption of manpower.

Methods:  In this work, an end-to-end deep learning framework based on convolutional neural network (CNN) is pro-
posed for ECG signal processing and arrhythmia classification. In the framework, a transformer network is embedded 
in CNN to capture the temporal information of ECG signals and a new link constraint is introduced to the loss function 
to enhance the classification ability of the embedding vector.

Results:  To evaluate the proposed method, extensive experiments based on real-world data were conducted. 
Experimental results show that the proposed model achieve better performance than most baselines. The experi-
ment results also proved that the transformer network pays more attention to the temporal continuity of the data and 
captures the hidden deep features of the data well. The link constraint strengthens the constraint on the embedded 
features and effectively suppresses the effect of data imbalance on the results.

Conclusions:  In this paper, an end-to-end model is used to process ECG signal and classify arrhythmia. The model 
combine CNN and Transformer network to extract temporal information in ECG signal and is capable of performing 
arrhythmia classification with acceptable accuracy. The model can help cardiologists perform assisted diagnosis of 
heart disease and improve the efficiency of healthcare delivery.
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Background
Heart disease is one of the most pervasive causes of 
human death [1]. An electrocardiogram (ECG) is a tech-
nique for graphical representation of heart activity over 
time. An ECG reflects the regularity of the heart’s activity 
and physiological state of each body part. Therefore, an 
ECG is a significant reference for the diagnosis of heart 
disease [2]. The difficulties in diagnosing heart disease 

are mainly related to its paroxysmal and complex nature. 
In a clinical manner, doctors usually diagnose it based 
on the morphological waveform of an ECG, although it 
is usually difficult to make a clinical judgment, especially 
when the signals are mixed with noise. This stresses the 
significance of developing methods to accurately identify 
heart disease with support from machine learning.

In the past few decades, many machine learning meth-
ods have been employed to perform intelligent analysis of 
ECG signals. Given the morphological characteristics of 
an ECG waveform, such as the shape of the QRS and P 
waveforms, traditional machine learning approaches usu-
ally employ fixed features and classical signal processing 
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techniques [3, 4]. However, even the same patient exhib-
its different waveforms in different environments. There-
fore, using fixed features are not sufficient to accurately 
distinguish different types of diseases [5, 6]. Moreover, 
most of the existing models require manually crafted 
features. In these cases, the selection of features for the 
inputs would significantly affect the performance of 
implemented classifiers.

In recent years, end-to-end deep-learning methods 
have led to substantial breakthroughs in image classi-
fication, speech recognition, and other tasks. It is also a 
significant research problem to effectively apply related 
techniques in the fields of medicine and healthcare. Cao 
et al. combined Brownian multi-verse optimizer (BMVO) 
algorithm [7] and a Damping Multi-Verse Optimizer 
(DMVO) algorithm [8] with DNA storage to show us 
how closely future disease prediction is linked to DNA 
storage. Recently, deep-learning methods have been 
applied for ECG signal processing and heart disease diag-
nosis. Research on ECG signals has traditionally been a 
hot research topic. Here, the general framework of ECG 
diagnosis is introduced, and then previous work on auto-
matic ECG diagnosis in the literature is reviewed. Earlier, 
large, rich ECG datasets were not available. Therefore, it 
is not particularly time-consuming to capture ECG fea-
tures manually, such as the QRS wave group and S and T 
waves. Chazal et al. proposed an algorithm for personal-
ized heartbeat classification based on ECG morphology 
and discriminant analysis using time-interval feature lin-
earity [9]. In 2004, Chazal et  al. proposed a method for 
automatically processing heartbeat classification, which 
divides the manually detected heartbeat into six catego-
ries: normal pulsation, ventricular ectopic beat (VEB), 
supraventricular ectopic beat (SVEB), normal and VEB 
fusion, and unknown beat type. A statistical classification 
model with a supervised method has been used, but the 
detection effect on the SVEB type is relatively weak [10]. 
Varatharajan et al. performed pre-processing of some fil-
tering, such as FIR and IIR, on ECG signals, and the fil-
tered signals were input into an improved support vector 
machine (SVM) for pattern recognition through a linear 
discriminator [11]. Shadmand also proposed an artificial 
neural network based on particle swarm optimization 
to classify specific patient heartbeats. Compared to the 
above algorithms, Shadmand’s algorithm has superior 
classification performance [12]. All of these methods use 
manual features to train models and only achieve limited 
performance. Thus, they cannot help doctors play a sup-
porting role.

In 2010, Zhang et al. constructed an ECG database, the 
China Cardiovascular Disease Database (CCDD), includ-
ing both 12-lead ECG and detailed diagnostic data. It 
contains more than 190,000 12-lead ECG records and 

each record has at least one tag [13]. Using this database, 
Jin and Dong proposed a CNN model and designed a 
three-layer convolution layer followed by the fully con-
nected layer. The model reached an accuracy of 83.66% 
on classification experiment [14]. Recently, a research 
team at Stanford University (California, USA) developed 
a deep neural network (DNN) to classify a broad range 
of distinct arrhythmias from single-lead ECGs with high 
diagnostic performance, which outperformed the diagno-
ses of cardiologists [15]. Shashiku et al. designed a convo-
lutional de-noising autoencoders model to identify ECG 
heartbeat classifications [16]. Jun et  al. used a remote 
ECG database to create a new dataset and proposed an 
end-to-end deep CNN to identify short-term 12-lead 
ECG signals. They improved the residual module, which 
is more expressive than a doctor’s judgment for disease 
identification in six categories [17]. Yao et  al. proposed 
attention-based time-incremental convolutional neural 
network (ATI-CNN) [18], a deep neural network model 
achieving both spatial and temporal fusion of informa-
tion from ECG signals by integrating CNN, recurrent 
cells and attention module. The above algorithms all use 
CNNs to identify the types of ECG signals [19, 20].

Although CNNs have achieved great success in the rec-
ognition of arrhythmias, at the same time, the ECG signal 
is also a time series of data, and a recurrent neural net-
work (RNN) can be used to solve the time-series prob-
lem. In recent years, for example, Mostayedl et al. used a 
two-way RNN to identify multiple categories of arrhyth-
mia. He pre-processed the ECG signal to obtain charac-
teristic information of ECG signals such as the positions 
of the R peak and of the QRS complex. The information 
of these features is then input into the bidirectional RNN 
model to obtain the identification classification of ECG 
signals [21]. For example, Saadatnejad et  al. designed 
both a class of network-recognition ECGs based on the 
wavelet transform and multiple Long Short-Term Mem-
ory (LSTM) models for ECG signals of personal wearable 
devices [22]. Considering the specificity of ECG signals, 
Chen et  al. completed the arrhythmias classification 
by fusing CNN and RNN models with excellent perfor-
mance on the dataset we used [23].

The most representative work was reported by Han-
nun et al. [24]. They collected single-lead ECG data from 
wearable displays and used a 34-layer residual CNN to 
diagnose the signals. The approach demonstrated high 
diagnostic performance, even exceeding the average 
level of cardiologists in F1 score. However, it ignored 
the characteristics of ECG as temporal signals. A trans-
former network can capture temporal features and focus 
on context vectors using an attention mechanism [17, 
22]. To this end, an end-to-end deep-learning model 
that can effectively process arbitrary-length 12-lead ECG 
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signal sequences by extending the transformer model is 
proposed herein. Specifically, the model splits an ECG 
record into different segments using a window of 6-s 
duration, which are used as inputs of the model, and 
then it captures the valuable features by a CNN and feeds 
them into the transformer network. The transformer 
network employs a multi-head attention mechanism to 
pay more attention to different segments of ECG signals. 
Importantly, a new constraint for classifying the ECG sig-
nals has been designed, which leads to the prior knowl-
edge, i.e., the labels of ECG signals. The main role of the 
link constraint is to make the embedding vectors of the 
ECG signals from the same class as similar as possible. 
Owing to the extraction of valid and significant features, 
the link constraint can result in enhanced performance 
for the downstream tasks.

Overall, the main contribution of this paper are the 
following.

•	 A transformer network is embedded in the CNN 
framework for the identification of ECG signals. The 
integration of the transformer compensates for the 
shortcomings of the CNN for poor performance of 
temporal features.

•	 A new link constraint is introduced in the loss func-
tion. In the previous schemes, the embedding fea-
tures were not evaluated; however, the proposed 
model constrained the features with the new link 
constraints to ensure that the network extracts better 
feature information.

•	 The time window was designed to process unequal 
ECG signals so as not to lose the temporal informa-
tion of the signal.

The rest of this paper is organized as follows. In Sec-
tion 2, related work is summarized. In Section 3, a formal 
problem statement is provided and the data pre-process-
ing issues are introduced. The proposed methodology 
is discussed in Section  4. The experimental settings are 
discussed in Section 5, and results are presented. Finally, 
conclusions are drawn in Section 6.

Methods
Problem statement and data processing
Before discussing methodology, the diagnosis problem 
that is the aim of this paper is clarified and the data char-
acteristics discussed.

Problem statement
ECG data used in this paper were acquired from a cardi-
ology challenge [25], which was collected from 11 hospi-
tals and covering a total of 6877 individuals. These data 
have been de-sensitized, with a total of 3699 records for 

men and 3178 for women. The duration of the signal is 
between 6 and 60 s, with an average duration of 15.79 
s. The data were recorded by a 12-lead ECG, with a fre-
quency of the electrocardiogram recording of 500 Hz. 
The 12 waveforms of an ECG signal sample are presented 
in Fig. 1.

Each sample has a tag (label) for its category. There 
are nine categories in total, including one normal type 
of heart disease and eight abnormal types.The data cate-
gory description are shown in Table 1. The main problem 
to be solved in this work can be formulated as follows: 
given 12-lead ECG signal data, the data are segmented 
through a time window and fed into a model for learning, 
and finally the classification scores of the 9 categories are 
obtained using the classification model.

Data pre‑processing
Noise is inevitable in collecting ECG signals. Noise 
includes baseline drift and high-frequency noise. There 
are many ways to de-noise ECG signals, such as design-
ing high-pass or median filters to eliminate baseline drift. 
In this paper, we apply the difference method and wave-
let transform in signal processing to improve the quality 
of the signal. For the abnormal values that appear in the 
ECG signals, it is found that the abnormal values have 
relatively larger voltage values than the normal signals, so 
we use the difference method to remove these abnormal 
values. First, we set the threshold values after traversing 
the complete ECG signals, and replace the abnormal val-
ues with the threshold value when the voltage values is 
greater than the threshold values. Then, we can obtain 
ECG data with no abnormal values. For the ECG sig-
nals containing noise, we performed six layers of wave-
let decomposition on the ECG signals and selected the 
bior2.6 wavelet function to obtain the detail coefficients 
and approximation coefficients of each layer. The EMG 
interference noise is distributed in the high-frequency 
components of the first layers of decomposition, while 
the noise of baseline offset is distributed in the low-fre-
quency components of the sixth layer. Therefore, we set 
all the detail coefficient components in the first and sec-
ond layers to 0, and set the approximate coefficient com-
ponents in the sixth layer to 0. Finally, we reconstruct the 
signal layer by layer. After the reconstruction, we obtain 
the ECG signal without outliers and noise. The combina-
tion of difference method and wavelet transform method 
can eliminate noise interference and outliers.

Since the length of the ECG signals is not equal, we 
split the ECG signals into segments of fixed length 
according to the given window size and step size. The size 
of each window is set to match the integrity of the regular 
heartbeat. All experimental parameters will be given in 
“Experimental settings” section.
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Model architecture
A new end-to-end model for ECG classification was 
designed that combines the advantages of a CNN and 
transformer networks. The architecture of the proposed 
model, which is designed to handle variable-length 
12-leads ECG data, is shown in Fig. 2. An ECG record is 
divided into equal-length ECG signal segments according 
to the window size and step size given in the pre-process-
ing stage. The 12-lead data are then passed to the CNN to 
capture the hidden deep features in the ECG signal.

Next, the linear network structure is used to fur-
ther capture the feature information, which was 
then sent to the transformer network in the form 
Xcnn = [x[0], x[1], ..., x[n]] . The transformer network can 
output the embedding vector of the input ECG signal 
Xembed , which is finally fed into the classification layer 
to obtain the class probability of the ECG signal.

As shown in Fig. 2, the proposed model consists of four 
components: (1) the link constraints, (2) feature-extrac-
tion units, (3) transformer network, and (4) classification 
layers.

Fig. 1  Twelve-lead ECG sample

Table 1  Data category description

Type Description

Atrial fibrillation (AF) Atrial fibrillation (AF) is characterized by the fibrillatory atrial waves and irregular conduction of QRS

First-degree atrioventricular block (I-AVB) First-degree atrioventricular block (I-AVB) is defined as constant PR intervals longer than 0.2 s

Left bundle branch block (LBBB) Left bundle branch block (LBBB) is diagnosed by the distinct QRS morphology at leads I, aVL, V1, V2, V5, and 
V6

Right bundle branch block (RBBB) Right bundle branch block (RBBB) is diagnosed by the rsR0pattern at V1 and V2

Premature atrial contraction (PAC) The premature atrial contraction (PAC) indicate the electrical impulse from an abnormal site; specifically, the 
P wave or QRS morphology of PAC differs from that in normal heart beats

Premature ventricular contraction (PVC) The premature ventricular contraction (PVC) indicate the electrical impulse from an abnormal site; specifi-
cally, the P wave or QRS morphology of PVC differs from that in normal heart beats

ST-segment depression (STD) ST segment is abnormal if either ST-segment depression (STD) is greater than 0.1 mV

ST-segment elevated (STE) ST segment is abnormal if either ST-segment elevation (STE) is greater than 0.1 mV
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Link constraints
To improve the quality of embedding features for down-
stream task, the following assumption on the embedding 
features is made.

If the correlation coefficient between embedding fea-
tures of two samples are large ( max = 1 ), which means 
positive correlation, the classifier will predict that they 
belong to the same category with a high probability. If the 
correlation coefficient is small ( min = −1 ), the classifier 
will predict different categories with a high probability.

Based on the above assumptions, the correlation coeffi-
cient between the samples of the same class is made a 
larger value by min

∥
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embed − X
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∥
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correlation coefficient between the samples of different 
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embed = −1X

j
embed when 

the correlation coefficient equals −1.
Borrowing the idea of [26], link constraints are added 

to the loss function. There are two types of links between 

the samples: a Must-link and a No-link. For the task of 
classification, the links between the samples of the same 
class are Must-links and the links between the samples of 
the different classes are No-links. Figure 3 shows that the 
embedding vectors of two samples are similar when they 
have a Must-link. Thus, the embedding vectors can better 
contribute to downstream tasks such as classification. It 
is essentially a regular term, and its formula is:

Based on Eqs. (1)–(3), the link constraints can make the 
embedding vectors of the same class closer and those 
of different classes. In the experiment, the embedding 

(1)Loss = min f (β)+ �I(β)

(2)I(β) =
∑

pq

1

2

∥

∥

∥
βp − e(pq)β

(q)
∥

∥

∥

2

2

(3)e(ij) =

{

1 A must-link betweeni hboxand j
−1 A cannot-link betweeni and j

Fig. 2  Architecture of proposed model
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vector β is Xembed and the function f the classifier net-
work (a linear network) after the transformer network. 
Moreover, the link constraints can only be applied in the 
training process like other regularization terms, such 
as L1 and L2. The specific process of link constraints is 
detailed in Algorithm 1.

Although the outputs Xcnn of the CNN [27], such as β 
can be used, since Xcnn sometimes has temporal informa-
tion, i.e., the first element may have the information from 
the early time and the last element may have the late-
time information, we cannot use outputs from a CNN 
as embedding vectors directly. Therefore, several layers 
are needed to disorganize the temporal information and 

Fig. 3  Schematic diagram of link constraints

Fig. 4  CNN layer parameters
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usually take the outputs of BiLSTM or a transformer as 
the embedding vectors.

Feature extraction
CNNs have shown outstanding performance in image-
classification tasks due to their translation-invariance and 
ability to capture local features [28, 29]. The essence of 
the convolution kernel is a filter, which is especially suit-
able for feature extraction of ECG signals. A CNN net-
work with seven convolution layers, which have different 
kernel sizes to capture various features, was designed in 
the present study. Each convolution layer is composed of 
a convolution filter, batch normalization layer [30], active 
layer, and pooling layer. The parameters of the CNN’s lay-
ers are shown in Fig. 4.

Transformer layers
The transformer network [31] was developed based 
on the attention mechanism, which is composed of an 
encoder and decoder. In the ECG signal classification 
problem, only the encoder part is used, the structure of 
which is shown in Fig. 5. The transformer network con-
tains eight identical layer stacks and each layer has two 
sub-layers. The first sub-layer is the multi-head atten-
tion and the second is a simple fully connected for-
ward neural network. The two sub-layers are connected 
by a residual network structure followed by a norm 
layer. The output of each sub-layer can be expressed by 
out = LayerNorm(x + Sublayer(x)) , where each sub-
layer is constructed independently. To facilitate the 
residual connection between layers, the sub-layers in the 
model are fixed output with 256 dimensions. These sub-
layers are described as follows.

•	 Scaled dot-product attention. The input of the atten-
tion function Q, K, and V represents query, key, and 
value, respectively. The attention weight is calcu-
lated according to the similarity of the query key. The 
attention context is obtained according to the atten-
tion weights. The model uses scaled dot-product 
attention, which is calculated as follows: 

•	 Multi-head attention. The multi-head attention 
mechanism projects Q, K, and V through h differ-
ent linear transformations, and finally splices differ-
ent attention results. Q, K, and V have the same val-
ues in the self-attention mechanism. The formula is 
expressed as follows: 

(4)
Attention(Q,K ,V ) = softmax(QKT /

√

dkV )

(5)
MultiHead(Q,K ,V ) = Concat(head1, ..., headh)

 where MultiHead(Q, K, V) is the contact of headi.
•	 Position-wise feed-forward networks. In addition 

to the attention sub-layer, each layer of the encoder 
contains a fully connected feed-forward network and 
a two-layer linear transformation using a ReLU acti-
vation function: 

 While the linear transformations are the same across 
different positions, they use different parameters 
from layer to layer. The input size of the model is 256 
and the size of the hidden layer is 1024.

•	 Positional encoding. To make use of the order of 
sequence, “position encoding,” i.e., the relative or 
absolute position of the sequence, is added to the 
input embedding at the top of encoder. The posi-

(6)headi = Attention(QW
Q
i ,KWK

i ,VWV
i )

(7)FFN (x) = max(0, xW1 + b1)W2 + b2

Fig. 5  Structure of transformer-network encoder
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tional encoding (PE) dimension is dmodel=256 , the 
same as input embedding: 

 where pos is the position and i the dimension.

Classification layers
The transformer network is connected to the classifica-
tion layer for multi-classification. The classification layer 

(8)PE(pos,2i) = sin(pos/100002i/dmodel )

(9)PE(pos,2i+1) = sin(pos/100002i/dmodel )

is composed of linear layers and activation layers. The 
classification network outputs the probability that each 
patient may have for each type of heart disease.

Results
Experimental settings
The ECG data of 6877 patients were divided into training 
and test sets in a ratio of 9:1. The experimental param-
eters are shown in the Table 2. The model is trained using 
Adam optimizer. A cross-entropy function was employed 
as the loss function.

Evaluation metrics
In medical diagnosis, a lower misdiagnosis rate relative to 
correct diagnoses is optimal, so F1 score is employed as 
the evaluation metric. F1 score is the harmonic mean of 
the positive predictive value and sensitivity, and is com-
puted as follows:

where Ni,j indicates the number of samples in the ith 
class that are classified into the jth class, and F1,j is the 
value of macro-F1 of the jth class.

Experimental results
Trends in accuracy and F1
Figure 6 illustrates that the training data increase in accu-
racy and recall as the number of iterations increases. 
These results show that the model can extract not only 
effective features in the training data, but also extract the 
same effective hidden features from the unknown test 
data for classification. The results verify the generalizabil-
ity of the proposed algorithm.

Comparisons of classification performance
Five SOTA deep-learning models were employed as base-
lines to compare with CNN_Trans- former_LC: A CNN 
[32], ResNet [33], Multi_channelCNN [34], BiRNN [21], 
and CNN_BiLSTM [30]. We applied the methods of these 

(10)F1,j = 2Nii

/

9
∑

j−1

(Ni,j + Nj,i)

Table 2  Experimental parameter settings

Experimental parameters Size Experimental parameters Size

ECG window size 3000 Step size 1500

Input size 150 Hidden layer size 1024

Batch size 100 Epoch 150

Learning rate 0.001

Fig. 6  Accuracy and F1 of CNN_Transformer_LC in 150 epochs

Table 3  Comparison of classification results of CNN_Transformer_LC and baselines on different Arrhythmia classifications

Bold values indiate the best experimental results under this category

Methods Normal AF I-AVF LBBB RBBB PAC PVC STD STE F1

CNN 0.578 0.709 0.753 0.773 0.825 0.207 0.376 0.562 0.389 0.574

ResNet 0.578 0.787 0.833 0.757 0.847 0.324 0.407 0.610 0.260 0.601

Mutil_channelCNN 0.666 0.733 0.827 0.8 0.821 0.421 0.648 0.575 0.32 0.646

BiRNN 0.738 0.768 0.742 0.705 0.821 0.59 0.807 0.658 0.294 0.742

CNN_BiLSTM 0.723 0.826 0.851 0.829 0.893 0.600 0.818 0.692 0.529 0.751

CNN_Transformer_LC 0.817 0.858 0.878 0.800 0.872 0.618 0.830 0.711 0.686 0.786
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models to the dataset of the paper and obtained experi-
mental results for different models. The experimen-
tal results are reported in Table 3. As can be seen from 
the table, Multi_channelCNN outperforms CNN-based 
models in multiple disease categories. The experimental 
results of the CNN_Transformer_LC model in the verifi-
cation set are better than those of CNN, ResNet, Multi_
channelCNN, and BiRNN. As the CNN can only input 
fixed-length time-series vectors, some feature informa-
tion will be lost, leading to a performance decrease. RNN 
inputs all the signal information, so the RNN experimen-
tal results are better than those of the CNN. At the same 
time, the performance of the CNN_Transformer_LC 

model is better than that of the CNN and BiRNN. The 
CNN and BiRNN classify the extracted artificial features, 
while CNN_Transformer_LC can extract more effec-
tive feature vectors than artificial features. CNN_Trans-
former_LC significantly improves the recognition rate of 
I-AVF, LBBB, and STE.

To investigate the effectiveness of different parts of 
the proposed model, ablation experiments were con-
ducted, the results of which are reported in Table 4. As 
can be seen from the table, the CNN_BiLSTM model 
significantly outperform the CNN. This is because the 
output of convolutional neural layer is time-serially 
related in the ECG signal classification problem. After 

Table 4  Results of ablation experiments on different Arrhythmia classifications

Bold values indiate the best experimental results under this category

Methods Normal AF I-AVF LBBB RBBB PAC PVC STD STE F1

CNN 0.578 0.709 0.753 0.773 0.825 0.207 0.376 0.562 0.389 0.574

CNN_BiLSTM 0.723 0.826 0.851 0.829 0.893 0.600 0.818 0.692 0.529 0.751

CNN_BiLSTM_Attention 0.739 0.867 0.851 0.829 0.889 0.617 0.823 0.679 0.538 0.759

CNN_BiLSTM_LC 0.794 0.857 0.894 0.722 0.870 0.672 0.787 0.688 0.700 0.776

CNN_Transformer 0.810 0.855 0.912 0.769 0.873 0.635 0.750 0.704 0.571 0.764

CNN_Transformer_LC 0.817 0.858 0.878 0.800 0.872 0.618 0.830 0.711 0.686 0.786

Fig. 7  Embedding vectors of nine classes of heart disease
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using a RNN to process the relevant output of the 
CNN, the result obtained is better. This also reflects 
that the RNN can further extract effective features. 
Owing to the dependency of ECG signals , the per-
formance of the CNN with the transformer is greatly 
improved compared with that of a single CNN. This 
also proves that a transformer can effectively extract 
such features. However, it is also found in Table 4 that 
the F1 scores of PAC, STE, and STD are not as good 
as those of other categories, because the limited data 
distribution of the three categories in this dataset 
results in low performance. At the same time, Table 4 
shows that using a link constraint can effectively sup-
press the influence of data imbalance and improve the 
performance to some extent in the PVC, STD, and STE 
categories.

Visualization of embedding vectors
To confirm the ability of feature extraction of the pro-
posed model, dimensionality reduction was performed 
on the embedding vectors using principal components 
analysis (PCA) and the results visualized in Fig.  7. 
It can be seen that the embedding representation 
obtained by the proposed model can effectively sepa-
rate most categories. Because of the link constraints, 
the samples belonging to the same categories are close 
to each other and the samples belonging to different 
categories are far from each other, which can help dis-
tinguish the vectors in different categories.

Embedding similarity matrix
To demonstrate the effect more concretely, center vectors 
Xclass i, i = 1, 2, ..., 9 , are defined for each class, which are 
the closest vectors of each embedding vector in all classes 
in the training set. The nine vectors Xclass i, i = 1, 2, ..., 9 , 
are calculated as follows.

Then, the similarity matrix of the nine vectors is obtained 
by the Pearson correlation coefficient. Figure 8 shows the 
confusion matrix of the proposed method in the testing 
set and the embedding similarity matrix in the train-
ing set. An interesting rule is found from the confusion 
matrix, namely, if classes i and j have a large similarity 
value (correlation coefficient), the examples in classes i 
or j have a high probability of being classified into other 
classes. The smaller the similarity values between two 
classes, the less likely it is that the instances of two classes 
will be misclassified. If two classes have negative simi-
larity, almost no misclassification occurs between them. 
This is the same as the proposed assumption in “” section, 
which confirms the correctness of using link constraints.

Figure 7 shows that the embedding vectors of the nor-
mal and STE classes are very similar, the T waveforms of 
which are morphologically difficult to distinguish. This 
leads to the confusion between the two classes. Similarly, 
the embedding vectors of classes STD and STE are very 

(11)

Xclass i = argmin
x

∑

�x − Xh
embed�

2
2, sampleh ∈ class i

Fig. 8  Confusion matrix and embedding similarity matrix
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different and their T waveforms are quite different, which 
makes it very easy to distinguish classes STD and STE.

Effectiveness of Feature Extraction for CNN
The features extracted by the CNN from the ECG signal 
were visualized and are shown in Fig.  9. One sample of 
first-degree atrioventricular block (I-AVB) was chosen 
and the features output by different CNN layers from the 
sample. I-AVB is a disease of the electrical conduction 
system of the heart, which can be indicated on the ECG 
by a prolonged PR interval larger than 0.20 s [35]. The 
PR interval is marked by a red rectangle on the feature 
captured by different CNN layers in Fig. 9. It can be seen 
from the figure that most CNN layers can capture the 
PR interval when inputting an ECG signal of I-AVB. This 
proves that the CNN can effectively extract the features 
of heart disease from ECG signals for diagnosis.

From Fig. 9, we can see that most CNN layers can cap-
ture the PR interval when input a ECG signal of I-AVB. 

This prove that CNN can effectively extract the feature of 
heart disease from ECG signals for diagnosis.

Conclusions
An end-to-end model combining a CNN and trans-
former to classify ECG signals is proposed in this paper. 
In the model, a window function is employed to divide 
the ECG signal into different numbers of ECG seg-
ments. The feature information extracted by the CNN 
still has temporal characteristics. The combination of the 
CNN and improved transformer finally achieved an F1 
score of 78.6%, which can be of great assistance to doc-
tors or cardiologists [25]. In the future, our focus will 
be on the identification of more types of heart disease, 
such as myocardial infarction. It is hoped that the pro-
posed model can be applied to low-cost ECG devices to 
facilitate diagnosis of heart disease in areas in medically 
underserved areas.

Fig. 9  Features extracted by different CNN layers from ECG signals
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