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Aim: To develop and validate a CpG-based classifier for preoperative discrimination of
early and advanced-late stage colorectal cancer (CRC).

Methods: We identified an epigenetic signature based on methylation status of multiple
CpG sites (CpGs) from 372 subjects in The Cancer Genome Atlas (TCGA) CRC cohort,
and an external cohort (GSE48684) with 64 subjects by LASSO regression algorithm.
A classifier derived from the methylation signature was used to establish a multivariable
logistic regression model to predict the advanced-late stage of CRC. A nomogram
was further developed by incorporating the classifier and some independent clinical risk
factors, and its performance was evaluated by discrimination and calibration analysis.
The prognostic value of the classifier was determined by survival analysis. Furthermore,
the diagnostic performance of several CpGs in the methylation signature was evaluated.

Results: The eight-CpG-based methylation signature discriminated early stage from
advanced-late stage CRC, with a satisfactory AUC of more than 0.700 in both the
training and validation sets. This methylation classifier was identified as an independent
predictor for CRC staging. The nomogram showed favorable predictive power for
preoperative staging, and the C-index reached 0.817 (95% CI: 0.753–0.881) and 0.817
(95% CI: 0.721–0.913) in another training set and validation set respectively, with good
calibration. The patients stratified in the high-risk group by the methylation classifier
had significantly worse survival outcome than those in the low-risk group. Combination
diagnosis utilizing only four of the eight specific CpGs performed well, even in CRC
patients with low CEA level or at early stage.

Conclusions: Our classifier is a valuable predictive indicator that can supplement
established methods for more accurate preoperative staging and also provides
prognostic information for CRC patients. Besides, the combination of multiple CpGs
has a high value in the diagnosis of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common
malignancies, and ranks third in terms of both incidence
and mortality rates. Around 1,47,950 new cases and 53,200
CRC-related deaths are projected for 2020 in the United States
alone (Siegel et al., 2020). The incidence of CRC has increased
by 38% between 2007 and 2017 (Global Burden of Disease
Cancer Collaboration et al., 2019), and is therefore a critical
public health concern.

Tumor node metastases (TNM) staging is currently the “gold
standard” for tumor classification, and accurate diagnosis of
the tumor stage provides valuable prognostic information for
guiding treatment decisions (De Rosa et al., 2016). 5-year relative
survival for CRC patients was 90·1% with localized stage, while
it fell to 69·2% in patients with regional spread and to 11·7%
in patients with distant metastasis (Brenner et al., 2014). For
colon cancer and upper rectal cancer (defined as tumors arising
above 10 cm of the anal verge), radical resection is the most
common treatment for patients with stage I or those stage
II without high-risk relapse. Preoperative lymph node status
assessment and prediction contain instructive information for
the surgical extent between stage I/II and stage III cases (lymph-
node positive) (Hashiguchi et al., 2020). Postoperative adjuvant
chemotherapy is recommended for all stage III CRC without
contraindications after curative resection (Brenner et al., 2014).
Except for adjuvant chemotherapy, preoperative neoadjuvant
therapy, surgical resection and targeted therapies should be taken
into consideration according to multidisciplinary team decisions
for stage IV CRC (Diagnosis And Treatment Guidelines For
Colorectal Cancer Working Group Csococ, 2019). Currently,
computed tomography (CT) and magnetic resonance imaging
(MRI) are commonly used for the preoperative assessment of
CRC stages, although such imaging modalities have low accuracy
due to some potential limitations (Tezcan et al., 2013; Kijima
et al., 2014). Pathological stage is generally conducted after radical
surgical resection rather than by preoperative biopsy. However,
incomplete resection of tumor tissues or nodes missed by the
surgeon may result in inaccurate pathological stage diagnosis
(Mekenkamp et al., 2009). Therefore, it is essential to develop
a reliable and efficient tool for preoperative CRC staging in
order to devise the optimum personalized therapeutic strategy
(De Rosa et al., 2016).

DNA methylation is an epigenetic modification that may
regulate gene expression by altering the spatial conformation of
DNA, and therefore controls a wide range of biological processes.
Furthermore, studies increasingly show a close association
between abnormal DNA methylation and pathological
conditions, especially cancers (Portela and Esteller, 2010).
Thus, aberrantly methylated CpGs are promising biomarkers
for early diagnosis, molecular classification and prognosis in
multiple cancers (Kaur et al., 2019). Previous studies mainly
focused on identifying differentially methylated CpG sites with
diagnostic and prognostic relevance in CRC. To the best of our
knowledge, no study has investigated the predictive ability of
preoperative staging using the methylation profiles of primary
CRC samples. The aim of this study was to develop and validate

a novel methylation classifier coupled with clinical features for
preoperative classification of early stage and advanced-late stage
in CRC patients.

MATERIALS AND METHODS

Data Collection and Preprocessing
The methylation array data of 443 samples from TCGA Colon
and Rectal Cancer cohort (TCGA cohort) was downloaded by
UCSC Cancer Browser1. In addition, the genomic methylation
microarray dataset GSE48684 including 105 samples was
downloaded from Gene Expression Omnibus (GEO, 2) (Luo
et al., 2014). The clinicopathological characteristics and follow-
up information were also extracted for all patients. The criteria
for excluding samples were as follows: (a) non-primary tumors,
(b) any history of neoadjuvant treatment, (c) unclear pathological
stage information, or (d) with more than 5% missing values.
In addition, for duplicated samples, only the sample with
the highest average methylation levels was retained. Since
both datasets had been generated using the Illumina Infinium
HumanMethylation450 platform, the microarray probes were
mapped onto the human genome coordinates using Illumina
official annotation file derived from GEO GPL13534 platform.
For each specimen, DNA methylation was quantified in terms
of beta values for 485,577 individual CpGs. The CpGs probes
i) with beta values undetectable in more than 5% of the
specimens, ii) corresponding to cross-reactive probes in human
reference genome (hg19) (Price et al., 2013) or single-nucleotide
polymorphisms (SNPs) (Zhou et al., 2017), or iii) located on sex
chromosomes (Chen et al., 2013), iv) or beta values with low
variation among samples (the median absolute deviation < 25%)
(Wang et al., 2012; Czamara et al., 2019) were removed from the
analysis. The k-nearest neighbor (KNN) imputation algorithm
implanted in the “DMwR” R package was used to estimate beta
values of the other unidentified probes (Zhang et al., 2018).
All methylation data were normalized, and then correction for
batch effects was performed using “ComBat” function in R “sva”
package before further analysis (Leek et al., 2012). The overall
strategy was outlined in Figure 1.

Candidate CpGs Screening
The methylation status of each CpG site in each sample was
defined according to beta values, labeled as low methylation (beta
value ≤ 0.2), intermediate methylation (0.2 < beta value < 0.6)
and high methylation (beta value ≥ 0.6) (Novakovic et al.,
2011; Yang et al., 2016). And then, those CpGs with three
categories of methylation statuses simultaneously in all CRC
samples were retained. Subsequently, all CRC cases with definite
TNM stage information were then categorized into the early
stage (stage I and stage II) and advanced-late stage (stage III
and stage IV) groups in both cohorts. Finally, the predictive
value of each CpG site methylation status for advanced-late
stage CRC was determined by univariable logistic regression

1https://xena.ucsc.edu/
2https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Flow chart showing the steps involved in systematical analysis.

analysis, and those with both P values (for intermediate
methylation versus low methylation; for high methylation versus
low methylation) < 0.1 were retained.

Features Selection and Methylation
Signature Building
The TCGA CRC cohort was split into training set I and test set I
in a 70/30 ratio, and the patients from GEO cohort (validation
set I) were used for external validation. The most significant
predictive CpGs were screened from the training set I using the
least absolute shrinkage and selection operator method (LASSO)
logistic regression algorithm (Friedman et al., 2010), and the
candidate CpGs with penalty parameter tuning were selected
by 10-fold cross-validation using the “glmnet” R package. The
features with non-zero coefficients were identified based on
the optimal lambda value, and considered the most significant
predictive variables for further modeling. The methylation
signature was developed on the basis of a methylation score that
was calculated for each sample through a linear combination
of selected CpGs weighted by their respective coefficients. The
discriminating ability of the methylation signature was evaluated
by plotting the receiver operation characteristic (ROC) curves in
three cohorts. The areas under ROC (AUC) were calculated and
their confidence intervals (CI) were estimated using bootstrap
resampling method. Finally, the areas under the ROC curves in
test set I and validation set I were compared by the bootstrap test.

Construction and Validation for an
Individualized Nomogram
An optimal methylation signature score cutoff was identified
by the maximum Youden index based on the ROC curve,
and a multiple-CpG-based classifier was constructed. The CRC

cases in TCGA cohort were then categorized into the low- and
high-risk groups according to the classifier. The samples with
incomplete clinical information, including age, gender, personal
history of polyps, preoperative carcinoembryonic antigen (CEA)
and tumor location, etc. were further eliminated from TCGA
cohort. Univariable regression analyses were initially performed
to determine clinical risk factors associated with advanced-late
stage in the remaining samples. Then, clinical factors with p≤ 0.1
on univariable analyses along with the methylation classifier were
tested in multivariable analyses in order to identify independent
predictors of staging. Subsequently, we randomly divided the
remaining cases into training set II and validation set II in a 70/30
ratio. A multivariable logistic regression model was constructed
using those independent risk factors identified by multivariable
analysis in training set II. Accordingly, a clinical epigenetic
nomogram incorporating these predictors was then constructed
based on this model.

The predictive performance of the nomogram was evaluated
with respect to discrimination and calibration. Discrimination
was evaluated with the area under the ROC curve in training set II
and its confidence intervals were estimated employing bootstrap
resampling method. Calibration curves were plotted with the
Hosmer-Lemeshow goodness-of-fit test to assess calibration. For
nomogram validation, we used 1,000 resampled bootstrapping
method to relatively correct AUC in the development set. In
validation set II, the nomogram was also validated by using AUC
and calibration curve.

Prognostic Values of the Classifier and
Diagnostic Values of Multiple CpGs
Survival analysis was conducted on TGCA cohort after excluding
cases with incomplete follow-up data or survival duration shorter
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than 30 days. Kaplan-Meier curves for overall survival (OS),
disease-specific survival (DSS) and progression-free interval
(PFI) were plotted for the risk subgroups, and compared with
the log-rank test. In addition, the Mann-Whitney U test was
used to analyze differences in the methylation levels of the above
selected CpGs and the false discovery rate (FDR) was calculated
to adjust the P values of each CpG site (Huang et al., 2017;
Guo et al., 2018). To fully exploit the methylation status of
those CpGs, a diagnostic model was constructed using LASSO
logistic regression algorithm to distinguish tumors from normal
tissues in a random 70% of samples selected from TCGA cohort
(training set III), the performance of the model was estimated
in the remaining 30% (test set III) and then externally validated
using GEO cohort. Finally, ROC curve was applied to examine
the diagnostic capability of the model in the cases with low CEA
levels or at early tumor stage.

Statistical Analysis
All statistical analyses were conducted using R software
(version3.6.3; 3). Mann-Whitney U test was performed to
compare beta values of the CpGs between CRC and normal
controls. The Chi-square test or Fisher exact probability test was
used for comparing categorical variables. The “glmnet” package
was used for LASSO logistic regression analysis (Friedman et al.,
2010), the “rms” package for logistic regression analysis and
nomogram calibration, the “regplot” package for nomogram
plots, and the “pROC” package for ROC plots (Robin et al.,
2011). A two-sided P value less than 0.05 was considered
statistically significant.

RESULTS

Candidate Sites
A total of 372 CRC samples with well-defined pathological
stages and 45 normal samples from TCGA cohort, and 64 CRC
specimens with detailed stage information and 41 controls from
the GEO cohort were included after applying the exclusion
criteria. The TGCA CRC samples were randomly divided into
the training set I (n = 260) and test set I (n = 112), and the GEO
CRC cases were used as the validation set I (n = 64) as detailed
in the methods. Furthermore, 192,366 CpGs were extracted from
the DNA methylation dataset of TCGA COADREAD based on
the screening criteria, of which 80,691 CpGs with three categories
of methylation statuses in all CRC samples were examined in
univariable logistic regression. Then, according to the previously
described the criteria of P values (see “Materials and Methods”),
1590 CpGs remained strongly associated with the advanced-
late stage.

Methylation Signature Construction and
Validation
After the initial screening of 1590 CpGs by LASSO logistic
regression algorithm in the training set I, the optimal tuning
parameter value of 0.1013 with log (λ) of −2.290 based on the

3http://www.r-project.org

1 standard error of the minimum criteria (the 1-SE criteria) was
selected using 10-fold cross-validation (Figure 2A). Accordingly,
eight CpGs were identified as the most significantly correlated
with CRC staging (Figure 2B), and the methylation score
was calculated for each case as follows: (0.0104 × cg19922435
methylation status) − (0.0845 × cg10368049 methylation status) −
(0.0901 × cg14931884 methylation status) − (0.0032 × cg23023937
methylation status) + (0.0841 × cg05817709 methylation status) −
(0.0834 × cg27284627 methylation status) + (0.1529 × cg03124318
methylation status) + (0.0056 × cg19330334 methylation status). The
annotations for these CpGs are shown in Supplementary
Table S1. A methylation signature was then developed using
the individual methylation scores, and its respective AUC values
for the training set I, test set I and validation set I were
0.788 (95% CI: 0.733-0.844), 0.730 (95% CI: 0.630-0.830) and
0.702 (95% CI: 0.553-0.850). The bootstrap test further indicated
similar discrimination performance of methylation signature
between training set I and test set I (P = 0.308; Figure 2C).
The clinical and pathological information are summarized in
Supplementary Table S2.

A Clinical Eepigenetic Nomogram
Development and Corresponding
Classification Performance
To construct an individualized nomogram, an eight-CpG-based
classifier was developed with 0.496 as the optimal cutoff value
of the methylation signature score. Next, according to this
optimal cutoff value, 372 CRC cases were divided into the
low-risk and high-risk groups. After exclusions, leaving 244
cases with essential clinical information for further analyses.
Univariable logistic regression analyses identified age, CEA levels
and the classifier as the potential risk factors (all P < 0.05).
After adjustment for age and CEA levels, multivariable analysis
indicated a 3.882-fold higher risk of advanced-late stage CRC in
the high-risk compared to the low-risk group (95% CI: 2.510-
6.164, P < 0.001, Table 1). In addition, age and CEA levels
were also identified as independent factors for CRC staging
(both P < 0.05). The 244 patients were randomly further
split into training set II and validation set II, which were
similar in all aspects (Supplementary Table S3). A multivariable
logistic model was then established in training set II using the
identified risk factors, and an inclusive nomogram was derived
for preoperative staging in CRC patients (Figure 3A). The AUC
of the nomogram for stage discrimination was 0.817 (95% CI:
0.753-0.881) in training set II (Figure 3B), which was corrected
to 0.818 via bootstrapping validation (95% CI: 0.750-0.879), and
0.817 (95% CI: 0.721- 0.913) in validation set II. The bootstrap
test indicated no significant differences between the two sets
(P = 0.996). However, a statistically difference was observed
for predictive performance between nomogram and methylation
signature in 244 samples (P < 0.05; Figure 3B). Furthermore,
the calibration curves of the nomogram showed good consistency
between predicted and observed probability both in the training
and validation cohorts, and the Hosmer-Lemeshow goodness-of-
fit test also indicated statistical similarity (P = 0.884 and 0.579,
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FIGURE 2 | (A) Selection of tuning parameter (λ) in the LASSO model used 10-fold cross-validation in training set I by the 1 standard error of the minimum criteria
(the 1-SE criteria). The AUC curve was plotted vs. log(λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1-SE criteria. A λ

value of 0.1013 with log (λ) of –2.290 was chosen. (B) LASSO coefficient profiles of the 1,590 CpGs. A coefficient profile plot was produced against the log (λ)
sequence. (C) ROC curves showing discrimination ability of the methylation signature in training set I, test set I and validation set I.

FIGURE 3 | (A) The clinical epigenetic nomogram was developed in the training set II incorporating age, preoperative CEA levels and methylation classifier. (B) ROC
curves showing the predictive performance of the nomogram in training set II and validation set II. Calibration curves of the nomogram with Hosmer-Lemeshow test
in training set II (C) and validation set II (D). The x-axis represents the predicted and y-axis the actual probability of late stage. The yellow solid line represents the
performance of the nomogram, of which a closer fit to the dashed diagonal blue line indicates ideal prediction.

respectively; Figures 3C, 3D). Taken together, the nomogram was
fairly accurate in classifying CRC staging.

Additional Diagnostic and Prognostic
Values
Furthermore, Violin plots for both TCGA (45 normal and 372
tumor samples, Figure 4A) and GEO (41 normal and 64 tumor
samples, Figure 4B) datasets indicated that four of the CpGs
signature had higher methylation levels (FDR-adjusted P < 0.01),
while cg05817709, cg14931884, cg19922435 and cg27284627
had lower methylation levels in CRC compared to the normal
samples (FDR-adjusted P < 0.001).To improve the stability and
performance of diagnostic model and prevent overfitting, the
LASSO logistic regression model was trained on the selected
8 CpGs. As a result, the optimal tuning parameter of 0.0640,

with log(λ) = −2.749, obtained by performing 10-fold cross
validation via the 1-SE criteria (Figure 4C), we identified another
predictive methylation signature of four CpGs (Figure 4D).
A diagnostic score for each sample based on individualized
methylation status of the four CpGs was calculated as follows:
Diagnostic score = (0.5077 × cg23023937methylation status) –
(0.6461 × cg05817709methylation status) + (0.6302 ×

cg03124318methylation status) + (0.3378 × cg19330334
methylation status). The combination of these four sites showed
high predictive accuracy for CRC, with a calculated AUC of
0.949 (95% CI: 0.924-0.973), 0.916 (95% CI: 0.864-0.967) and
0.940 (95% CI: 0.917-0.962) in training set III, test set III, and
TCGA cohort, respectively (Figure 4E). The AUC of GEO cohort
reached 0.917 (95% CI: 0.864-0.970; Figure 4E). Furthermore,
the diagnostic ability of this model was also satisfactory in
patients with CEA within the normal range (< 5ng/ml) (n = 235,
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FIGURE 4 | The violin plot diagrams depicting the differential methylation pattern of the CpGs in CRC versus normal samples using Mann-Whitney U-test in TCGA
cohort (A) and GEO cohort (B). **representing a P-value < 0.01; ***representing a P-value < 0.001. (C) 10-fold cross validation for tuning parameter selection via
the 1-SE criteria. The optimal λ value of 0.0640 with log (λ) = –2.749 was selected. (D) LASSO coefficient profiles of the Eight specific CpGs in the screening
process. (E) ROC curves demonstrating the ability of four-CpGs combination to identify CRC from normal samples in training set III, test set III, TCGA cohort and
GEO cohort. (F) ROC curves indicating the differentiating ability of four-CpGs combination in CRC patients with low CEA levels or at early tumor stage from the
normal samples in the TCGA and GEO cohorts, respectively. Kaplan-Meier curves showing OS (G), DSS (H) and PFI (I) in the low- and high-risk subgroups. OS,
overall survival; DSS, disease-specific survival; DFI, disease-free interval, and PFI, progression-free interval.

AUC = 0.937, 95% CI: 0.906-0.968; Figure 4F). In patients at
early stage of CRC, it achieved AUC of 0.947 (95% CI: 0.922-
0.973) and 0.881 (95% CI: 0.793-0.969), respectively. Finally,
Kaplan-Meier analysis showed that the OS (n = 361) and DSS
(n = 340) of low-risk group were significantly higher than those
of the high-risk group (both log-rank P < 0.01, Figures 4G, 4H).
In addition, patients in the low risk group had significantly
longer progression-free interval (PFI) compared to the high-risk
group (log-rank P < 0.01; Figure 4I).

DISCUSSION

CRC is a global public health concern due to its high
morbidity and mortality. The TNM stage of CRC remains

an important determinant of therapy since it affects patient
prognosis, recurrence and survival (Kawakami et al.,
2015). Therefore, accurate stage classification is crucial for
individualized treatment decisions at diagnosis, as well as
improved outcomes. Preoperative staging currently relies
on MRI and CT, instead of biopsy. However, the efficacy of
imaging modalities is limited due to high costs, time and
inaccuracy in T or N staging (Tezcan et al., 2013; Kijima
et al., 2014). In addition, the established tumor markers CEA
and CA19-9 also cannot accurately differentiate between
CRC stages at diagnosis. Therefore, it is essential to build
accurate predictive tools for preoperative staging. Studies have
previously utilized differential -omics information to identify
novel predictors associated with CRC development, such as
nucleic acids, cytokines and proteins (de Wit et al., 2013;
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TABLE 1 | Logistic regression analysis of clinical characteristics and methylation classifier.

Characteristics Univariable analysis Multivariable analysis

OR 95% CI P-value* OR 95% CI P-value**

Age (years)

≤66.5 1

>66.5 0.546 0.377–0.785 0.001 0.500 0.321–0.768 0.002

CEAlevels (ng/ml)

≤2 1

2–20 7.250 3.220–20.864 <0.001 5.971 2.498–17.915 <0.001

≥20 2.368 1.368–4.582 0.004 1.943 1.068–3.897 0.040

Methylation classifier

Low risk group 1

High risk group 4.252 2.824–6.560 <0.001 3.882 2.510–6.164 <0.001

*, P-value was generated from univariable logistic regression analysis; **, P-value derived from multivariable logistic regression analysis. OR, odds ratio; CI, confidence
interval; CEA, carcinoembryonic antigen.

Abdulla et al., 2017; Nikolaou et al., 2018). However, small
sample sizes, lack of further validation, and poor reproducibility
in discriminating CRC stages have limited their potential
clinical application.

CRC is characterized by significant molecular heterogeneity
throughout its development (Koncina et al., 2020). Studies
increasingly show that alterations in DNA methylation patterns
are an important factor in CRC onset, progression and metastasis.
As one of the earliest molecular events in cancer, aberrant DNA
methylation is both stable and widespread (Klutstein et al.,
2016; Lasseigne and Brooks, 2018). It is not unexpected that
abnormal DNA methylation can serve as powerful biomarkers
for diagnosis and prognosis, as well as promising targets
for precision medicine in CRC (Liang and Weisenberger,
2017; Weisenberger et al., 2018). The bisulfite treatment-based
methylation microarray (Illumina 450K Infinium) is commonly
used for detecting cancer-related changes in individual CpGs and
regions (Liang et al., 2019; Maros et al., 2020). In genome-wide
methylation studies, the Illumina450k array covers more than
485,000 CpG sites across the entire genome, and allows high-
throughput and relatively cost-effective bioinformatics analysis
(Chen et al., 2016). To the best of our knowledge, the capacity
of CRC methylation signature to differentiate between the
early and late stages of cancer has not been explored so far.
Therefore, the primary objective of this study was to develop an
epigenetic signature with a minimum number of CpGs for CRC
stage prediction.

Classification of cancer stages through epigenomics profiling
is highly challenging compared to simply differentiating
the normal tissues from malignant tissues (Kaur et al.,
2019). Nevertheless, we systematically analyzed the DNA
methylation data of CRC patients by multiple statistic
methods, including LASSO logistic regression algorithm,
univariable and multivariable logistic regression analysis,
differential methylation analysis etc., which helped screen a
set of CpGs related to tumor stage. Four of these CpGs –
cg05817709, cg14931884, cg19922435 and cg27284627 –
had lower methylation levels in CRC samples compared

to normal tissues, and were mapped to the RARRES3,
DIP2C, LOC285419 and NTM genes respectively. The four
remaining CpGs had higher methylation levels in CRC
specimens, and were mapped to the DPYSL4, COL1A2,
USP30 and IQGAP1 genes. As previously reported, most
of the aforementioned genes are involved in tumor genesis
and progression in multiple human malignancies, especially
CRC (Jiang et al., 2005; Morales et al., 2014; Jin et al., 2015;
Wang et al., 2015; Larsson et al., 2017; Ma et al., 2018).
For instance, COL1A2 encodes the pro-alpha2 chain of
type I collagen, which is significantly associated with the
pathological stage in CRC and correlates to patient OS
and disease-free survival (DFS) (Ma et al., 2018; Zhou
et al., 2018). In addition, the absence of DIP2C expression
in CRC cells led to DNA methylation changes associated
with gene expression and promoted cellular senescence and
epithelial-mesenchymal transition (Larsson et al., 2017).
RARRES3 downregulation has been proven in multiple tumor
types, including CRC tissues and re-expression of RARRES3
exerted tumor-suppressive effects (Jiang et al., 2005; Morales
et al., 2014; Wang et al., 2015). IQGAP1 overexpression
resulted in increased cell proliferation and migration via
interaction with β-catenin in hepatocellular carcinoma cells
(Jin et al., 2015).

Serum CEA level is the most accurate indicator of CRC
recurrence following primary curative treatment (Duffy, 2001),
and the positive association of elevated serum CEA with more
advanced TNM stage and worse prognosis in CRC patients
has been documented previously (Nicholson et al., 2015; Saito
et al., 2016; Huang et al., 2018). Huang et al. reported
preoperative CEA level≥ 10 ng/mL as an independent predictive
factor of OS (Huang et al., 2018). Likewise, Nicholson et al.
recommended a CEA threshold of 10 µg/L for monitoring
CRC recurrence following a systematic review of 52 studies
(Nicholson et al., 2015). Not surprisingly therefore, patients
with elevated serum CEA are more likely to be diagnosed
at a more advanced stage. Indeed, patients both in the high
CEA group (≥ 20 ng/mL) and in the median CEA group
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(2-20 ng/mL) in our cohort presented a statistically higher
risk of late-stage disease compared to those with low CEA
levels (≤ 2 ng/mL). Interestingly however, the younger CRC
patients had higher scores in our nomogram. Andrew et al.
analyzed possible risk factors for diagnosing late-stage CRC
in a population-based study, and found that patients with
early-onset CRC (< 50 years old) were more likely to be
diagnosed at a later stage compared to those with late-
onset CRC (≥ 50 years of age; OR 1.81, 95% CI: 1.27-2.58)
(Andrew et al., 2018). This finding was also consistent with
the report of Burnett-Hartman et al. (Burnett-Hartman et al.,
2019). Compared to older patients with sporadic cancer, early-
onset CRC has a higher incidence of adverse histological
features (Chang et al., 2012), frequent absence of methylator
phenotype and constitutively active oncogenic pathways (Kirzin
et al., 2014), suggesting a more aggressive behavior (Meyer
et al., 2016; Burnett-Hartman et al., 2019). Consistent with
a previous study, we found that gender and race were not
significantly related to CRC stage at the time of initial
presentation (Andrew et al., 2018). In contrast to previous
reports, however, we did not observe an association between
history of polyps and lower risk of late-stage diagnosis (data
not shown).

We established a predictive methylation signature using
a panel of multiple CpGs to predict the risk of advanced-
late stage CRC. Liang et al. had developed a 16-feature-
based radiomics signature to preoperatively categorize CRC
into stage I-II and III-IV, which was validated with an AUC
of 0.708 (95% CI: 0.698-0.718) (Liang et al., 2016). Our
methylation signature exhibits moderate predictive ability with
AUC values greater than 0.700, which raises the possibility of
combining two clinical predictors into a novel predictive model
resulting in a greater accuracy. In addition, the classifier based
on this methylation signature was an independent predictor
of advanced-late stage CRC, and significantly improved the
predictive ability of the nomogram.

The methylation signature-based predictive tool can
supplement the currently established imaging modalities
and biopsies in assessing CRC stages, and is particularly
suitable for batch analysis of CRC samples. The methylation
status based on beta values of the multiple CpGs can also
provide additional diagnostic and prognostic information,
and augment the clinical evidence in terms of selecting the
most appropriate treatment strategy. However, our study
has several limitations that ought to be considered. Firstly,
absence of preoperative CEA levels and other clinical data in
the GSE48684 dataset precluded a more rigid validation of the
nomogram in an independent dataset. Secondly, insufficient
preoperative indices, such as histological grade, family history
and carbohydrate antigen 19-9 levels, limited other potential
stage-related variables to be incorporated into our model.
Thirdly, our nomogram still lacks experimental confirmation,
and its reliability and reproducibility need to be verified by
empirical methods. Fourthly, several prognostic models in CRC
have been reported based on the methylation level of multiple
sites, previously (Gündert et al., 2019; Wang et al., 2020). As
an example, Melanie et al. developed a methylation-based

classifier consisting of 20 CpG sites, which could improve
the ability to predict survival in patients with non-metastatic
CRC (Gündert et al., 2019). Regrettably, no overlap was found
between the 8 CpGs and previously reported ones. Future
analyses should further investigate whether our classifier
might also serve as an independent predictor of survival,
and whether it might be involved in a valuable prognosis
model for CRC patients. In addition, even though our method
requires a small amount of tissue, it is still invasive since it
relies on biopsy samples. Finally, it is unclear whether the
methylation changes in tumor tissues are consistent with
those in the peripheral blood samples, and has to be clarified
in future studies.

CONCLUSION

We identified an eight-CpG-based methylation signature
that classified CRC stages with considerable accuracy and
then derivatized a methylation classifier. The nomogram
incorporating the CpG classifier and clinical features had a
satisfactory predictive power, and can potentially augment
imaging and biopsy findings for accurate preoperative staging
and expedited therapy. In addition, the combination of four
CpGs showed a good diagnostic value in CRC patients,
even in those with low serum CEA level or at early
tumor stage, indicating a novel biomarker for early CRC
diagnosis. Our strategy can be further applied to identify
methylation signatures for lymphatic infiltration or distant
metastasis of CRC.
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