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Abstract

Motivation: Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints

of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a

reference genome, and specific mapping patterns can be detected called read mapping profiles,

which are distinct from random non-functional degradation patterns. These patterns reflect the

maturation processes that lead to the production of shorter RNA sequences. Recent next-

generation sequencing studies have revealed not only the typical maturation process of miRNAs

but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs.

Results: We developed an algorithm termed SHARAKU to align two read mapping profiles of next-

generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU in-

corporates the primary and secondary sequence structures into an alignment of read mapping

profiles to allow for the detection of common processing patterns. Using a benchmark simulated

dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering

the read mapping profiles with respect to 50-end processing and 30-end processing from degrad-

ation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further,

using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU

succeeded in identifying the significant clusters of read mapping profiles for similar processing pat-

terns of small derived RNA families expressed in the brain.

Availability and Implementation: The source code of our program SHARAKU is available at http://

www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the

same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus

of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence

Read Archive (DRA) under the accession number DRA004502.

Contact: yasu@bio.keio.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since high-throughput sequencing allows for deep sequencing with

high sensitivity, RNA sequencing with a next-generation sequencer

(RNA-seq) can detect not only the complete expression patterns of

transcribed RNAs but also fragments derived due to the splicing,

maturation processing, or non-functional degradation of the RNAs.

RNA-seq studies targeting microRNAs (miRNAs) have revealed the

existence of many different RNA fragments derived from small

RNA species other than microRNA, providing further proof that

derived RNA fragments are not simply random degradation prod-

ucts but are rather stable entities, which might have functional activ-

ity (Martens-Uzunova et al., 2013). The evidence accumulating

about shorter sequences or fragments derived from non-coding

RNAs indicates that post-transcriptional processes are relatively

common mechanisms to derive functional smaller molecules from

various RNA families such as tRNAs and snoRNAs. For example,

the so-called tRNA-derived RNA fragments (tRFs) are derived from

processing at the 50 or 30-end of mature or precursor tRNAs (Lee
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et al., 2009). These sequences constitute a class of short RNAs that

are the second most abundant type of RNA after miRNAs. Since the

discovery of small RNAs derived from tRNAs, a variety of names

have been used to refer to similar entities, such as tRNA-derived

RNA fragments (tRFs) (Lee et al., 2009), stress-induced small RNAs

(tiRNAs) (Yamasaki et al., 2009) and tRNA-derived small RNAs

(tsRNAs) (Haussecker et al., 2010). Their uniform start and stop

sites of cleavage in tRNA, together with their nonrandom size prop-

erty, strongly suggest that tRFs are derived from tRNA cleavage in a

specific and regulated manner (Lee et al., 2009). In addition, several

studies have identified a class of small fragments derived from

snoRNAs (called sdRNAs), some of which may regulate splicing or

translation (Chen and Heard, 2013; Taft et al., 2009).

The biological roles of such sno-derived RNA and tRNA-derived

small RNAs have primarily been investigated in cancer cells

(Martens-Uzunova et al., 2013). tRNA-derived fragments partici-

pate in several types of biological processes, including as signal mol-

ecules in a stress-induced response and as regulators of gene

expression. sdRNAs can function as miRNAs, regulators of alterna-

tive splicing, and tumor suppressors and oncogenes.

The reads for such short derived RNAs are relatively abundant,

i.e. greater than background levels, in small RNA-seq datasets.

Chen and Heard (2013) pointed out that ‘these reads are precisely

mapped to specific regions of primary or secondary structures, and

might contain special motifs or base biases, reflecting the involve-

ment of special enzymes involved in their generation’. Hence, map-

ping a large amount of sequence reads onto a reference sequence can

reveal specific forms of mapping patterns for the maturation process

or random patterns for non-functional degradations (see Fig. 1(a)).

These mapping patterns of RNA-seq short reads constitute the so-

called read mapping profiles (see Fig. 1(b)) (Pundhir et al., 2015).

Chen and Heard (2013) also pointed out that the non-specific deg-

radation products include RNA fragments that are rapidly digested

by the surveillance machinery from RNA molecules, which are de-

fective in processing, folding and functions. Thus, it is crucial to reli-

ably distinguish the true shorter RNAs from their non-functional

degradation products to clearly identify derived and functional small

RNAs and fragments. Therefore, the aim of the present study was to

develop a computational tool for the comprehensive analysis and

rapid identification of the post-transcriptional processing patterns of

non-coding RNAs based on high-throughput RNA-seq data. The al-

gorithm developed in this study was designed to capture specific

forms of read mapping patterns mapped to specific regions of pri-

mary or secondary structures reflecting the functional activities of

enzymes, and to distinguish them from non-functional degradation

products.

There are only a few existing tools (Erhard and Zimmer, 2010;

Hoogstrate et al., 2015; Langenberger et al., 2012; Videm et al.,

2014) to analyze such read mapping profiles of RNA-seq data and

detect footprints of the post-transcriptional processes or degrad-

ations of RNAs. FlaiMapper (Hoogstrate et al., 2015) predicts and

annotates non-coding RNA-derived fragments by determining the

start and stop positions from read mapping profiles. FlaiMapper can

predict miRNA boundaries with high accuracy. deepBlockAlign

(Langenberger et al., 2012), which our present study takes quite a

similar approach to, is an alignment-based method for alignments of

read mapping profiles to find non-coding derived RNAs that share

similar post-transcriptional processing. ALPS (Erhard and Zimmer,

2010) is also alignment-based, but is not designed for the purpose of

identification of short derived RNA fragments. BlockClust (Videm

et al., 2014) computes a similarity score between read mapping pro-

files to detect similar processing patterns and cluster read mapping

profiles. BlockClust includes a high-dimensional feature representa-

tion to encode read mapping profiles and calculates the similarity

scores based on a graph kernel. Therefore, BlockClust does not rely

on alignment-based techniques and is not designed for the purpose

of calculating the alignment of read profiles. However, all of these

methods are computed based only on the information of read map-

ping profiles and do not take the RNA sequence and secondary

structure information into account. Further, those methods did not

address the reliable distinguishability of processing patterns from

the random degradation.

Constructing an alignment for a pair of biological sequences

such as DNA, RNA and protein sequences is a fundamental and ro-

bust method of sequence analysis (Durbin et al., 1998). The pairwise

alignment of biological sequences is achieved according to inser-

tions, deletions and match operations so that the two sequences are

aligned with the same column length. The similarity score of an

alignment is calculated according to the predefined scores for inser-

tions, deletions and matches. Similarly, one can define the alignment

between a pair of read mapping profiles (see Fig. 1(c)).

Fig. 1. (a) Schematic illustration of a derived RNA fragment and the mapping

pattern obtained from sequencing. (b) Read mapping profile and calculation

of coverage. (c) An alignment of two read mapping profiles for SNORD14 and

SNORD21 output by SHARAKU, using the small RNA-seq data for the com-

mon marmoset brain with the annotations of RNA sequence alignment and

the predicted secondary structure. The solid line represents the read cover-

ages of SNORD14, and the dashed line represents the read coverages of

SNORD21. (d) Schematic illustration of the necessity of incorporating the pri-

mary and secondary structures of RNA sequences into an alignment
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In previous work with the deepBlockAlign algorithm

(Langenberger et al., 2012), the alignment program was designed to

compare and align any read mapping profiles regardless of the RNA

family to which they belong. The alignment program was also

applied to the comparison of read mapping profiles of the same

RNA gene across different samples that might be expected to induce

different read mapping profiles (Pundhir and Gorodkin, 2015). This

method is effective for the differential processing analysis of read

mapping profiles of each non-coding RNA gene. In contrast with

previous work, our primary goal was to detect specific forms among

similar read mapping patterns mapped to specific regions of primary

or secondary structures reflecting the functional activities of en-

zymes by alignments of read mapping profiles, and to distinguish

these from non-functional degradation products. We developed a

new read mapping profile alignment program named SHARAKU,

which incorporates the primary and secondary structures of RNA

sequences into an alignment of read mapping profiles. This is ac-

complished in combination with DAFS, a program for the simultan-

eous aligning and folding of RNA sequences (Sato et al., 2012). As a

result, the most advanced feature of SHARAKU is that it simultan-

eously aligns the read mapping profiles and RNA sequences with the

folding RNA secondary structures. Since each type of derived RNA

fragments is cleaved from its precursor with a specific context of pri-

mary sequence and secondary structure, we can expect that the sim-

ultaneous alignment of read mapping profiles with the primary and

secondary structures contributes to precise identifications of the

type of derived RNAs. Thus, application of SHARAKU to the mix-

ture of different RNA families would enable the accurate clustering

of read mapping profiles with respect to 50-end processing or 30-end

processing of each RNA family, and facilitate the detection of com-

mon processing patterns shared among different RNA families (see

Fig. 1(d)). Note that SHARAKU was not designed for classification

of RNA sequences into different RNA families. Further, SHARAKU

produces an alignment of read mapping profiles at the nucleotide-

level resolution, as Figure 1(c) displays. In contrast, deepBlockAlign

uses blockbuster (Langenberger et al., 2009) to generate block

groups and aligns any read mapping profiles at the level of individ-

ual blocks and block groups, including those in unannotated regions

or unknown RNA genes. On the other hand, the current version of

SHARAKU can only be applied to the annotated non-coding RNA

regions.

Several previous studies (Ono et al., 2011; Scott and Ono, 2011)

have explored the similarities and evolutionary relationships be-

tween snoRNAs and miRNA precursors. These similarity features

represent molecules involved in the same processing pathways with

a similar set of processing enzymes and the same RNAi targets.

These similarity features are often confirmed based on the conserva-

tion of their primary and secondary structures, such as structural

characteristics of typical H/ACA or C/D boxes. We hypothesized

that in addition to sequence structure conservation, determining the

similarity among read mapping profiles might help to identify the

functional or processing similarities between snoRNAs and miRNA

precursors.

2 Methods

When read mapping profiles for a pair of non-coding RNAs are ob-

tained, SHARAKU fundamentally aligns two read mapping profiles

by inserting gaps so that the sum of the differences of coverages at

all positions between the two profiles is minimized. Simultaneously,

SHARAKU takes information on the sequence and secondary

structures of RNAs into account when aligning read mapping pro-

files by integration with DAFS, which calculates reliable structural

alignments that maximize the expected accuracy of a predicted com-

mon secondary structure and its sequence alignment. The algorithm

can be efficiently implemented by using dynamic programming.

Second, SHARAKU calculates a similarity score (correlation coeffi-

cient) between two read mapping profiles based on the alignment.

Third, SHARAKU produces a similarity score matrix for all pairs of

read mapping profiles of non-coding RNAs in the target reference

genome. Subsequently, the agglomerative hierarchical clustering is

constructed based on the similarity score matrix.

2.1 Construction of read mapping profiles
Let R ¼ fA;C;G;Ug denotes the four nucleotides and R� denotes

the set of all finite RNA sequences consisting of bases in R.

A set of sequence reads generated by RNA-seq data for non-

coding RNAs are mapped against the reference genome using stand-

ard mapping tools such as BWA (Li and Durbin, 2009) (i.e. align-

ment programs) for a huge number of short reads. The read

coverage, i.e. the number (count) of mapped reads, at each position

in an annotated RNA gene-coding region is calculated from the out-

put of the mapping tool in BAM format. In an RNA gene-coding re-

gion, the read coverage ci at each position i is normalized so that

every normalized value of read coverage is between 0 and 1. For an

RNA sequence, denoted a ¼ a1; . . . ; am, of an annotated RNA gene-

coding sequence, we refer to the sequence of normalized coverages,

ca ¼ ca
1; . . . ; ca

m, as the read mapping profile of the RNA sequence

(see Fig. 1(a)). Note that SHARAKU only deals with the read map-

ping profile within the annotated RNA-gene sequence and calculates

the secondary structure within the annotated RNA-gene sequence.

2.2 Alignment algorithm for a pair of read mapping

profiles
Let a ¼ a1; . . . ; am and b ¼ b1; . . . ; bn denote a pair of RNA se-

quences, ca ¼ ca
1; . . . ; ca

m and cb ¼ cb
1; . . . ; cb

n denote the normalized

read mapping profiles. The optimal alignment of a pair of two nor-

malized read mapping profiles ca and cb is calculated by the follow-

ing recursive formula to minimize the sum of the differences of

coverages at all positions. The mismatch score at a position of an

alignment between ca and cb is simply defined as the absolute differ-

ence of the two coverage values ca
i and cb

j . To define the gap score,

first, the coverage value at a gap inserted between j and jþ1 is

defined as ðcx
j þ cx

jþ1Þ=2 (i.e. the average of cx
j and cx

jþ1). Second, the

gap score between position i of ca and the gap inserted between j

and jþ1 of cb is defined as the absolute difference of ca
i and

ðcb
j þ cb

jþ1Þ=2.

Dði; jÞ ¼ min

Dði� 1; j� 1Þ þmði; jÞ

Dði� 1; jÞ þ r gapði; jÞ

Dði; j� 1Þ þ l gapði; jÞ

8>>>><>>>>:
mði; jÞ ¼ jca

i � cb
j j

r gapði; jÞ ¼
�����ca

i �
cb

j þ cb
jþ1

2

�����
l gapði; jÞ ¼

����� ca
i þ ca

iþ1

2
� cb

j

�����
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at the end of sequence:

r gapði; 0Þ ¼ jca
i � cb

1j

r gapði; nÞ ¼ jca
i � cb

nj

l gapð0; jÞ ¼ jca
1 � cb

j j

l gapðm; jÞ ¼ jca
m � cb

j j

In order to avoid an unnecessary number of gaps inserted, which

could cause artificial alignments, the number of gaps inserted into

the alignment is restricted by the predefined parameter c. This can

be implemented by dynamic programming to control the number of

inserted gaps.

2.3 Alignment of read mapping profiles incorporating

sequence structures
Previously, we developed DAFS (Sato et al., 2012), an algorithm

that simultaneously aligns and folds RNA sequences on the basis of

maximizing the expected accuracy (MEA) of a predicted common

secondary structure and its alignment. That is, DAFS calculates the

maximization of the expected accuracy over all possible structural

alignments of a pair of RNA sequences. Then, DAFS finds one opti-

mal structural alignment, i.e. the most accurate structural alignment

with the most plausible secondary structure of each input RNA se-

quence. Here, we combine the alignment algorithm for read map-

ping profiles with DAFS according to the same MEA principle in

order to incorporate the primary and secondary sequence structures

into the alignment of read mapping profiles.

For an RNA sequence a ¼ a1a2 � � � am 2 R�, let jaj denote the

number of bases appearing in a, which is called the length of a.

Given two RNA sequences a; b 2 R�, let Aða; bÞ denote the set of all

possible alignments of a and b, that is, RNA sequence alignments

without considering the secondary structures. Let SðaÞ and SðbÞ de-

note the set of all possible secondary structures of a and the set of all

possible secondary structures of b, respectively. An alignment

t 2 Aða; bÞ is represented as a jaj � jbj binary-valued matrix

t ¼ ðtikÞ, where tik¼1 if and only if the base ai is aligned (matched)

with bk. A secondary structure x 2 SðaÞ is represented as a jaj � jaj
binary-valued triangular matrix x ¼ ðxijÞi< j, where xij1¼ if and

only if bases ai and aj form a base pair. Let Asða; bÞ denote a set of

all possible structural alignments of a and b, that is, simultaneous

alignment of RNA sequences and their secondary structures.

We write h ¼ ðx; y; tÞ, which means that a structural alignment

h 2 Asða; bÞ consists of an alignment t 2 Aða;bÞ, and two secondary

structures x 2 SðaÞ and y 2 SðbÞ.
First, in DAFS, a gain function Gðh;bhÞ of a structural alignmentbh ¼ ðbx; by;btÞ with regard to the correct structural alignment h

¼ ðx; y; tÞ is defined as the weighted sum of gain functions Gssðx; bxÞ
and Gssðy; byÞ of the respective secondary structures and a gain func-

tion Galnðt;btÞ of the alignment:

Gðh;bhÞ ¼ afGssðx; bxÞ þGssðy; byÞg þGalnðt;btÞ (1)

where a > 0 is a parameter that controls the weight of the secondary

structures and the sequence alignment. Intuitively, the gain function

Gðv; bvÞ can be regarded as a kind of ‘accuracy’ that represents the

weighted sum of the number of true positive predictions and true

negative predictions in bv, which is correlated to balanced accuracy

measures such as Matthews correlation coefficient (MCC) and

F-measure. In the case of the gain function Gssðx; bxÞ for the second-

ary structure, a true prediction in bx is a pair of bases ai and aj such

that bxij ¼ xij. In the case of Galnðt;btÞ for the sequence alignment, a

true prediction in bt is a pair of bases ai and bk such that bt ik ¼ tik.

Second, when we calculate a structural alignment for a pair of

RNA sequences, their correct structural alignment is unknown. In

such case, we compute the expectation of a gain function under the

distribution over all possible structural alignments of the pair of

RNA sequences. The expectation Ehja;b½Gðh;bhÞ� of the gain function

Gðh;bhÞ under a given probability distribution over the space

Asða; bÞ of structural alignments is maximized to find a structural

alignment bh:

Ehja;b½Gðh;bhÞ� ¼ X
h2Asða;bÞ

Pðhja; bÞGðh;bhÞ (2)

where Pðhja; bÞ is a probability distribution of the RNA structural

alignments. To reduce the computational complexity of Equation

(2), the probability distribution Pðhja; bÞ of the structural alignments

is factorized as follows by assuming the independence of the struc-

tures and alignment:

Pðhja;bÞ � PðxjaÞPðyjbÞPðtja; bÞ;

where PðxjaÞ and PðyjbÞ are the probability distributions of RNA

secondary structures over SðaÞ and SðbÞ, respectively, and Pðtja;bÞ
is a probability distribution of alignments over Aða;bÞ. The ex-

pected gain function (2) can then be approximated as follows:

Ehja;b½Gðh;bhÞ� ¼ X
h2Asða;bÞ

Pðhja; bÞGðh;bhÞ
�
X
i;k

p
ða::bÞ
ik � r

h ibt ik

þ a
X
i< j

p
ðaÞ
ij � s

h ibxij þ
X
k< l

p
ðbÞ
kl � s

h ibyk;l

 !
þ C

where p
ðaÞ
ij denotes a base-pairing posterior probability, p

ða::bÞ
ik de-

notes an alignment-matching posterior probability, r and s ð0 � r;

s � 1Þ are balancing parameters between true positives and true

negatives, and C is a constant independent of bh (see Sato et al., 2012

and its Supplementary Material for the derivation).

In order to incorporate the DAFS framework of the simultaneous

aligning and folding of RNA sequences into the alignment of read

mapping profiles on the basis of the MEA principle, we need to de-

fine the expectation of the gain function for alignments of read map-

ping profiles. First, we define the partition function (McCaskill,

1990) for alignments of read mapping profiles. The partition func-

tion is equal to the alignment kernel K(a, b) (Morita et al., 2009;

Saigo et al., 2004) that measures the similarity between two se-

quences a and b by summing the scores obtained from all possible

alignments with the gaps of the sequences. The partition function

Zðca; cbÞ for alignments of read mapping profiles ca and cb are

defined as follows:

Zðca; cbÞ ¼
X

t2Armpðca ;cbÞ
e�b�sðca ;cb ;tÞ

where Armpðca; cbÞ denotes the set of all possible alignments between

a pair of read mapping profiles ca and cb, and sðca; cb; tÞ denotes the

score of an alignment t 2 Armpðca; cbÞ between ca and cb:

sðca;cb; tÞ¼
X
tij¼1

mði; jÞþ
X

tij ¼0 and

gap in row j

r gapði; jÞþ
X

tij ¼0 and

gap in column i

l gapði; jÞ
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The ‘forward’ algorithm to compute the partition function

Zðca; cbÞ for read mapping profiles can be implemented by the fol-

lowing recursive formula:

Fði; j; rg; lgÞ ¼ e�b�mði;jÞ Fði� 1; j� 1; rg; lgÞ
þ e�b�r gapði;jÞ Fði� 1; j; rg� 1; lgÞ
þ e�b�l gapði;jÞ Fði; j� 1; rg; lg� 1Þ

where two variables rg and lg are used for controlling the number of

inserted gaps. The ‘backward’ algorithm to compute Bði; j; rg; lgÞ
can also be defined in a similar manner.

Now, we can define a posterior probability of positions i and j to

be aligned in the alignments of read mapping profiles:

pðði; jÞ; ðrg; cgÞjca; cbÞ ¼ Fði; j; rg; lgÞBði; j; rg; lgÞ
Zðca; cbÞ

p
ðca ::cbÞ
ik ¼

X
0� rg� cr ;0� cg� cl

pðði; jÞ; ðrg; lgÞjca; cbÞ

where cr and cl define the maximum number of gaps inserted at a

row and column in the alignment, respectively.

The expectation Ehja;b;ca ;cb ½Gðh;bhÞ� of the gain function Gðh;bhÞ
for the correct alignment of read mapping profiles, correct sequence

alignments and correct secondary structures under a given probabil-

ity distribution over the space Assrmpða;b; ca; cbÞ of simultaneous

alignments of read mapping profiles, RNA primary sequences and

secondary structures is defined and approximated as follows:

Ehja;b;ca ;cb ½Gðh;bhÞ� ¼ X
h2Assrmpða;b;ca;cbÞ

Pðhja;b;ca;cbÞGðh;bhÞ
�
X
i;k

wrmp p
ðca ::cbÞ
ik þð1�wrmpÞpða::bÞ

ik � r
h ibt ik

þ wss

X
i< j

p
ðaÞ
ij � s

h ibxij þ
X
k< l

p
ðbÞ
kl � s

h ibyk;l

 !
þ C

where Assrmpða;b;ca;cbÞ denotes the set of all possible alignments

between a pair of read mapping profiles ca and cb, taking the pri-

mary and secondary sequence structures between a pair of RNA se-

quences a and b into account, and wrmp ð0 � wrmp � 1Þ is a

parameter that controls the weight of the read mapping profile

alignment and the sequence alignment.

The ‘optimal’ alignment bh can be obtained by maximizing the

expected gain function Ehja;b;ca ;cb ½Gðh;bhÞ� on the basis of the MEA

principle. Further, the maximization of the expected gain function

can be efficiently implemented using the techniques such as ‘dual de-

composition’, ‘subgradient optimization’ and ‘dynamic pro-

gramming’ (see Sato et al., 2012 for more details).

2.4 Similarity score calculation between read mapping

profiles
Let bh be the alignment for a pair of read mapping profiles, ca and cb,

obtained by maximizing the expected gain function

Ehja;b;ca ;cb ½Gðh;bhÞ�. We define the similarity score function denoted

Smðca; cbÞ between ca and cb based on the alignment bh as follows:

Smðca; cbÞ ¼
 X
bh ij¼1

ca
i � cb

j þ
X

bh ij ¼ 0 and

gap in row j

ca
i �

cb
j þ cb

jþ1

2

þ
X

bhij ¼ 0 and

gap in column i

ca
i þ ca

iþ1

2
� cb

j

!,
norm

norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
bhij ¼ 1
or gap in row j

ðca
i Þ

2 þ
X

bhij ¼ 0 and
gap in column i

ca
i þ ca

iþ1

2

� �2

vuuuut

�
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j Þ

2 þ
X

bh ij ¼ 0 and
gap in row j

cb
j þ cb

jþ1
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 !2
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The similarity score Smðca; cbÞ is exactly equal to the normalized

inner product (cosine coefficient) of two gap-inserted read mapping

profiles in the alignment bh. Therefore, Smðca; cbÞ represents the cor-

relation coefficient between two read mapping profiles ca and cb

based on the alignment bh.

3 Results

3.1 Datasets
In order to evaluate the performance of our method, we generated

simulated read data in the form of typical next-generation sequenc-

ing output (based on an Illumina-type of short sequence reads). To

evaluate the clustering ability to detect similar processing patterns,

the labeled data of various classes of different processing patterns

are required, such as 50-end processing, 30-end processing and non-

processing. However, comprehensive annotations of such labels for

all small non-coding RNAs are not available in existing real data

such as the sequence read archive. The only exception is the miRNA

family, for which the mature miRNA annotations are accessible in

the NCBI Reference Sequence Database.

First, we obtained the small RNA annotation and sequence data

for miRNAs (24 genes), snoRNAs (37 genes) and tRNAs (41 genes)

with a length less than 120 nt from the Ensembl genome browser for

the mouse genome (GRCm38). Second, according to the results of

previous studies that analyzed and identified the existence of various

types of small RNA-derived fragments (Chen and Heard, 2013;

Kawaji et al., 2008; Ono et al., 2011; Scott et al., 2012), we deter-

mined the start or end sites of derived fragments that simulated 50-

end processing or 30-end processing in snoRNAs and tRNAs to be

within a few bases from the 50-end or 30-end, respectively. Further,

we set the length of the derived fragments to 20 nt for snoRNAs and

to 30 nt for tRNAs. For miRNAs, we used the annotations for ma-

ture miRNAs in the NCBI Reference Sequence Database. Third, we

generated 88 324 simulated sequence reads that contain the full-

length transcripts of snoRNAs and tRNAs (that is, the complete se-

quence reads exactly identical to the annotated snoRNA and tRNA

sequences), mature miRNAs and their derived fragments. In add-

ition, the set of ‘degradation reads’ was artificially constructed from

the simulated complete reads of snoRNAs and tRNAs. In general,

there are three major classes of RNA-degrading enzymes (Houseley

and Tollervey, 2009): endonucleases that cut RNA internally, 50

exonucleases that hydrolyze RNA from the 50-end and 30 exonucle-

ases that degrade RNA from the 30-end. In our study, we only con-

sidered the degradation of RNA from the 30-end, which is more

reflective of non-functional degradation for unstable RNAs. Thus,

the set of degradation reads was obtained by eliminating 40–60% of

the nucleotides from the 30-end in order to simulate the degradation

process. The degradation reads constituted 20% of the set of simu-

lated complete reads. In total, the simulated read dataset consisted

of the complete reads of snoRNAs and tRNAs, the derived fragment

reads for 50-end processing of miRNAs, snoRNAs and tRNAs, the

derived fragment reads for 30-end processing of miRNAs, snoRNAs

and tRNAs, and the degradation reads. Each of the 102 small RNAs

SHARAKU i373

Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: .
Deleted Text: S
Deleted Text: )
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ; Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2013; Kawaji <italic>et<?A3B2 show $146#?>al.</italic>, 2008
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: Houseley <italic>et<?A3B2 show $146#?>al.</italic>, 2009
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: -
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: ,


used for the simulated data was labeled according to one of the

above-mentioned classes as follows: (i) 50-end processing of

miRNAs, (ii) 30-end processing of miRNAs, (iii) 50-end processing of

snoRNAs, (iv) 30-end processing of snoRNAs, (v) 50-end processing

of tRNAs, (vi) 30-end processing of tRNAs, (vii) degradation of

snoRNAs and tRNAs. These class labels were used for experimental

evaluation of the clustering performance. (See also Supplemental

Figure S1 that displays all read mapping profiles obtained by map-

ping the simulated read data to the 102 annotated small RNA

sequences.)

To demonstrate the practical usefulness of SHARAKU, we used

a real dataset obtained from an RNA-seq experiment of the hippo-

campus of the left brain of a 2-year-old male common marmoset

that was being bred at the Central Institute for Experimental

Animals (CIEA). The total RNA was extracted and was subject to

removal of rRNA and 50Cap, and then the cDNA library of small

RNA was prepared using the TruSeq Small RNA Sample Prep Kit

(Illumina). The small RNA transcripts were sequenced with the

next-generation sequencer MiSeq (Illumina) for a sequence read

length of 270 bp, which enabled generating the complete sequences

of most small RNA families. The short reads were subject to cutting

adapters and quality filtering. The qualified reads were then mapped

to the common marmoset (Callithrix jacchus) draft genome caljac-

3.2 (MGSAC, 2014) by BWA (Li and Durbin, 2009). The tRNA an-

notation was predicted by tRNAscan-SE (Lowe and Eddy, 1997). In

total, the annotation and sequence data for 619 non-coding small

RNAs were obtained (194 miRNAs, 316 snoRNAs, 109 tRNAs)

from the Ensembl genome browser (Ensembl 73 version;

‘Callithrix_jacchus.C_jacchus3.2.1.73.gtf’ file) for the common

marmoset genome (C_jacchus3.2.1).

3.2 Validation of clustering accuracy with the simulated

dataset
We validated the clustering performance based on our alignment method

for all pairs of read mapping profiles using the simulated dataset. First,

the similarity score matrix for all pairs of read mapping profiles was cal-

culated by SHARAKU. We used empirically determined parameters:

b ¼ �3:0; wrmp ¼ 1:0; wss ¼ 4:0; r ¼ 0:0; s ¼ 0:2. Second, the (ag-

glomerative) hierarchical clustering method with group averaging was

applied based on the similarity matrix. The agglomerative method of

hierarchical clustering hclust implemented in the R-package was used for

subsequent analysis. We evaluated how well each processing pattern and

RNA family in the simulated dataset was separated into a distinct cluster

according to the hierarchical clustering. Furthermore, we compared the

clustering performance based on SHARAKU with that of the alignment-

based method deepBlockAlign (Langenberger et al., 2012) using the de-

fault parameters. As the input to deepBlockAlign, the output of block-

buster executed on the input of the simulated dataset was given together

with the sequence annotation information. In the case of the simulated

dataset, this does not affect the result of performance evaluation, because

the sequence reads (except for shorter derived RNAs) in the simulated

dataset are identical to the complete RNA sequences annotated in the

Ensembl genome browser, so that every block that is output by blockbus-

ter with the input of the simulated dataset is identical to one of the anno-

tated RNA sequences. Note that since another alignment-based scoring

system ALPS (Erhard and Zimmer, 2010) was not publicly available, we

did not compare the performance with ALPS.

In the validation experiment using the simulated read dataset,

the simulated reads were mapped to the mouse genome (GRCm38)

by BWA (Li and Durbin, 2009) with the default parameters, except

that -a bwtsw was set as the bwa index. From the output in BAM

format, the normalized read mapping profiles for non-coding RNAs

were obtained and fed to the alignment programs.

We evaluated the overall quality of the clustering tree using the

receiver operating characteristic (ROC) analysis proposed in (Will

et al., 2007). (Note that we can obtain different resultant clusters

from a clustering tree depending on a distance threshold to cut the

branches.) Given a distance threshold, the number of true positives

(TP) was defined as the number of read mapping profile pairs that

have the same class label and are correctly assigned to the same re-

sultant cluster. In the same manner, the numbers of false positives

(FP), true negatives (TN) and false negatives (FN) are defined by

counting the pairs from different class labels but the same resultant

cluster, the pairs from different class labels and different resultant

clusters, and the pairs from the same class label but different result-

ant clusters, respectively. The ROC analysis was performed by plot-

ting the true positive rates TP/(TPþFN) versus the false positive

rates FP/(TNþFP) for different distance thresholds. The quality of

the clustering was measured by the area under the ROC curve

(AUC).

Table 1 shows the results of AUC scores obtained with the three

methods, and Figure 2 (left) shows the ROC curves generated by

SHARAKU and deepBlockAlign. The AUC scores to indicate the

clustering abilities of three methods were calculated for the dataset

of all read mapping profiles (the mixture of read mapping profiles of

miRNAs, snoRNAs and tRNAs) and for the dataset of read mapping

profiles of each family, tRNA, snoRNA and miRNA. For the dataset

of all read mapping profiles, SHARAKU achieved an almost perfect

AUC score, and hence an almost perfect clustering result, and ex-

hibited higher accuracy than deepBlockAlign. SHARAKU also suc-

ceeded in completely discriminating the degradation pattern from

post-transcriptional processing such as 50 or 30-end processing. The

alignment obtained by SHARAKU without considering the primary

and secondary sequence structures (‘SHARAKU without DAFS’)

presented lower AUC scores, which implied that incorporation of

the sequence structure information is required to achieve high

Fig. 2. (Left.) ROC curves representing the true positive rates versus false

positive rates based on clustering trees generated by SHARAKU and

deepBlockAlign. The solid line represents the ROC curve of SHARAKU, and

the dashed line represents the ROC curve of deepBlockAlign. (Right.) An

alignment produced by SHARAKU for a pair of RNAs (Mir92-1 and SNORD63)

in the simulated dataset with the annotations of RNA sequence alignment

and the predicted secondary structure. The solid line represents the read

coverages of Mir92-1, and the dashed line represents the read coverages of

SNORD63

Table 1. AUC scores of the discrimination accuracy based on clus-

tering trees constructed by three methods

SHARAKU deepBlockAlign SHARAKU without

DAFS

ALL 0.985 0.921 0.930

tRNA 1.0 1.0 1.0

snoRNA 1.0 1.0 1.0

miRNA 1.0 1.0 0.497
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clustering accuracy. On the other hand, for the dataset of read map-

ping profiles of each family, both SHARAKU and deepBlockAlign

achieved an AUC score of 1.0, which indicates a perfect clustering

result. This result, together with that obtained for all read mapping

profiles, clearly indicates that the alignment incorporating the sec-

ondary structures is indispensable for the accurate clustering of read

mapping profiles generated from the mixture of different RNA fami-

lies. Figure 2 (right) shows an alignment produced by SHARAKU

for a pair of RNAs (Mir92-1 and SNORD63) in the simulated data-

set that could be successfully separated into two different clusters by

SHARAKU, but were clustered together by deepBlockAlign, thereby

highlighting the importance of taking the secondary structures into

account for alignments of read mapping profiles. (More alignments

are also shown in Supplemental Figs S2 and S3.)

Table 2 shows the computational times required by the three

methods for each simulated dataset. Table 2 indicates that

SHARAKU needs a large amount of additional computational time

compared with deepBlockAlign and SHARAKU without DAFS to

simultaneously align the read mapping profiles and RNA sequences

and calculate the secondary structures.

3.3 Clustering a real dataset of RNA transcripts in the

marmoset brain
A total of 33.8 million (M) sequence reads with a length of 270 bp

for small non-coding RNAs was generated using an Illumina MiSeq

sequencer. After quality filtering, 30.5 M reads were mapped to the

common marmoset (Callithrix jacchus) draft genome caljac-3.2

using BWA. From the output in BAM format, the normalized read

mapping profiles for 619 non-coding RNAs were obtained and fed

to the alignment programs.

The dendrogram of clustering tree of hierarchical clustering

based on the SHARAKU alignments of read mapping profiles of the

619 non-coding RNAs is shown in Figure 4. Most of the read map-

ping profiles were clustered and well separated into five major clus-

ters, representing (1) 30-end processing of miRNAs (containing 80

miRNAs); (2) 50-end processing of snoRNAs and tRNAs (containing

25 snoRNAs, 62 tRNAs and 5 miRNAs); (3) non-processing and

non-degradation of snoRNAs and tRNAs (containing 210

snoRNAs, 10 tRNAs and 1 miRNA); (4) degradation of snoRNAs

and tRNAs (containing 42 snoRNAs, 20 tRNAs and 1 miRNA);

and (5) 50-end processing of miRNAs (containing 81 miRNAs and 2

tRNAs). In addition, the read mapping profiles representing 30-end

processing of snoRNAs and tRNAs (containing 26 snoRNAs,

3 tRNAs and 3miRNAs) were scattered into four different clusters

(6-1), (6-2), (6-3) and (6-4). These 4 clusters could be defined as the

complement of the clusters (3) and (4), which might provide a clear

interpretation.

A representative read mapping profile in each cluster is shown

below the clustering tree. Interestingly, 60% of the tRNAs were pro-

cessed for deriving shorter fragments mostly at the 50-ends, whereas

80% of the snoRNAs were non-processed. A few other interesting

small clusters were obtained and will be discussed below.

In addition to confirming the utility of the new algorithm, this

experiment revealed the post-transcriptional processing and the ex-

pression patterns of small derived RNAs in the marmoset brain. To

the best of our knowledge, this represents the first identification of

the processing patterns of derived RNAs expressed in the brain. The

result of hierarchical clustering based on the deepBlockAlign align-

ments is shown in Supplemental Figure S4.

3.4 Verification of small derived RNA transcripts by

northern blotting
In order to verify that a derived RNA fragment predicted by the

clustering method based on SHARAKU is truly derived and ex-

pressed and not an experimental artifact, we performed northern

blotting analysis with a sample of the marmoset spleen. A small

RNA-seq analysis for the total RNAs extracted from the marmoset

spleen was executed and northern blotting for Leu-CAA-tRNA was

performed. The read mapping profile of this Leu-CAA-tRNA be-

longed to a cluster representing 50-end processing of tRNAs in the

hierarchical clustering tree generated by SHARAKU. Figure 3 shows

the read mapping profile for Leu-CAA-tRNA obtained from the

RNA-seq reads (left), as well as the northern blots for Leu-CAA-

tRNA (lenght: 105 nt) and the derived fragment (expected length:

35 nt) from the tRNA (right). The results clearly proved the actual

presence of the derived RNA fragment.

4 Discussion

Several previous studies (Ono et al., 2011; Scott and Ono, 2011)

have explored the similarities and evolutionary relationships be-

tween snoRNAs and miRNA precursors. As a result, various rela-

tionships between snoRNAs and miRNAs have been identified,

from ‘snoRNAs with miRNA features’ to ‘dual function sno-

miRNAs’ and ‘miRNAs with snoRNA features’. These similarity

features represent molecules involved in the same processing path-

ways with a similar set of processing enzymes and the same RNAi

targets. These similarity features are often confirmed based on the

conservation of their primary and secondary structures, such as

structural characteristics of typical H/ACA or C/D boxes. We

hypothesized that in addition to sequence structure conservation,

determining the similarity among read mapping profiles might help

Table 2. CPU times (seconds) required by the three methods for

each simulated dataset. The CPU time was measured per align-

ment of a pair of read mapping profiles

SHARAKU deepBlockAlign SHARAKU without

DAFS

ALL 0.832 0.054 0.067

tRNA 0.495 0.036 0.036

snoRNA 0.683 0.039 0.047

miRNA 0.554 0.029 0.051
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Fig. 3. (Left) Read mapping profile of Leu-CAA-tRNA from RNA-seq for the

marmoset spleen. (Right) Northern blots for Leu-CAA-tRNA (lenght 105 nt)

and the derived fragments. The band indicated with the arrow represents the

expected size (35 nt) of the predicted derived RNA fragment. Blots were pre-

hybridized, then probes which had been end-labeled with [c�32P] ATP were

added to the hybridization chamber and incubated with the blots. The mem-

brane was then exposed to a phosphoimager and scanned. The largest band

appearing at a distance just short of the 100-nt marker indicates the expres-

sion of the origin tRNA from which the short fragment RNA was derived
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to identify the functional or processing similarities between

snoRNAs and miRNA precursors. An interesting small cluster in the

clustering tree shown in Figure 4 (highlighted with an arrow and as-

terisk) consisted of a mixture of snoRNAs, miRNAs and tRNAs. In

particular, we found that the snoRNA ‘HBII-52’ and the miRNA

‘let-7a’ have quite similar features in their secondary structures and

read mapping profiles, indicating a similar processing mechanism to

produce the derived shorter fragments at 30-ends. Figure 5 shows

these features.

Indeed, small derived RNAs from HBII-52 were previously re-

ported to resemble miRNAs (Chen and Heard, 2013).

Another interesting cluster is cluster (6) of the 50-end processing

of miRNAs. The cluster contained two tRNAs. ‘Pro-TGG-tRNA’

has the typical miRNA-like secondary structure and miRNA/

miRNA* duplex, shown in Figure 6. Supporting this result, previous

work has indicated possible cross-talk between tRNA-derived RNA

fragments and the canonical pathway of miRNAs (Sobala and

Hutvagner, 2011).

Thus, the alignments and clustering of read mapping profiles

using SHARAKU can give insight into revealing the common pro-

cessing patterns in different families of non-coding RNAs and their

derived fragments, which could help to clarify the processing path-

ways and biological functions of derived RNA fragments.

One of the merits of SHARAKU is to calculate the optimal align-

ment based on not only the pattern of read mapping profiles, but

also primary and secondary structures of RNA sequences. Since

each type of derived RNA fragments is cleaved from its precursor

with a specific context of primary sequence and secondary structure,

we can expect that the simultaneous alignment of read mapping pro-

files with the primary and secondary structures contributes to pre-

cise identifications of the type of derived RNAs. To combine the

pattern of read mapping profiles and the primary and secondary

structures of RNAs, a Sankoff-type algorithm is required to be im-

plemented. We implemented SHARAKU with DAFS framework,

which enabled to efficiently combine the pattern of read mapping

profiles and the primary and secondary structures of RNAs by the

dual decomposition technique.

In the present study, we have only dealt with annotated non-

coding RNAs. However, SHARAKU can also be applied to the

alignment and clustering of novel and unannotated regions by em-

ploying tools such as blockbuster (Langenberger et al., 2009) in

order to determine the expressed block regions on the reference gen-

ome that are obtained from RNA-seq reads. As non-functional deg-

radation products, we only considered the degradation of RNA

from the 30-end in the simulated dataset. Therefore, performance

evaluations of SHARAKU to determine the tolerance for the other

two classes of RNA-degradations, endonucleases and 50 exonucle-

ases, are required. These issues will be addressed in our future work.

Fig. 4. Dendrogram of hierarchical clustering based on SHARAKU alignments for the read mapping profiles of 619 non-coding RNAs. Annotations of 5 major clus-

ters plus 4 scattered clusters and a representative read mapping profile in each cluster are shown below the clustering tree

Fig. 5. The secondary structures predicted by RNAfold (Hofacker, 2003) and

annotations with lines indicating the predicted locations of deriving frag-

ments for a snoRNA ‘HBII-52’ and a miRNA ‘let-7a’ found in the clusters. The

line for miRNA secondary structure indicate the predicted locations of the ma-

ture miRNA

Fig. 6. The secondary structures predicted by RNAfold and annotations, with

lines indicating the locations of derived fragments for a tRNA ‘Pro-TGG-tRNA’

and an miRNA ‘let-7b’ found in the cluster of the 50-end processing of

miRNAs. The line for miRNA secondary structure indicates the predicted loca-

tions of the mature miRNA

i376 M.Tsuchiya et al.

Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx2019;
Deleted Text: Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: &hx2019;
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: Sobala <italic>et<?A3B2 show $146#?>al.</italic>, 2011
Deleted Text: &hx2019;
Deleted Text: &hx2019;


5 Conclusion

With the aim of offering computational tools for comprehensively

analyzing the post-transcriptional processing patterns of non-coding

RNAs and detecting their common processing patterns, based on

RNA-seq, we developed a new algorithm called SHARAKU to align

two read mapping profiles of next-generation sequencing data for

non-coding RNAs. SHARAKU incorporates the primary and sec-

ondary structures of RNA sequences into an alignment of read map-

ping profiles by combining with DAFS, which constructs reliable

structural alignments that maximize the expected accuracy of a pre-

dicted common secondary structure and its sequence alignment.

SHARAKU could simultaneously align the read mapping profiles

and RNA sequences with information of the folded RNA secondary

structures. In an experiment using a simulated dataset, SHARAKU

achieved an almost perfect clustering result, and exhibited higher ac-

curacy than deepBlockAlign. In an experiment with real data of

small RNA sequencing for the common marmoset brain,

SHARAKU succeeded in identifying the five major clusters plus four

scattered clusters representing typical processing patterns. This

method also revealed some interesting clusters consisting of mix-

tures of several RNA families that predicted common processing

patterns among different RNA families. These results demonstrate

that SHARAKU can be an indispensable tool for analyses of the pro-

cessing patterns and functions of regulatory non-coding RNAs with

deep-sequencing data.
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