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SUMMARY

Cohort data are often incomplete because some subjects drop out of the study, and inverse probability
weighting (IPW), multiple imputation (MI), and linear increments (LI) are methods that deal with such
missing data. In cohort studies of ageing, missing data can arise from dropout or death. Methods that do not
distinguish between these reasons for missingness typically provide inference about a hypothetical cohort
where no one can die (immortal cohort). It has been suggested that inference about the cohort composed of
those who are still alive at any time point (partly conditional inference) may be more meaningful. MI, LI,
and IPW can all be adapted to provide partly conditional inference. In this article, we clarify and compare
the assumptions required by these MI, LI, and IPW methods for partly conditional inference on continuous
outcomes. We also propose augmented IPW estimators for making partly conditional inference. These are
more efficient than IPW estimators and more robust to model misspecification. Our simulation studies
show that the methods give approximately unbiased estimates of partly conditional estimands when their
assumptions are met, but may be biased otherwise. We illustrate the application of the missing data methods
using data from the ‘Origins of Variance in the Old—old’ Twin study.

Keywords: Discrete-time independent censoring; Dropout; Generalized estimating equation; Imputation; Longitudinal
data; Missing at random; Partly conditional inference.

1. INTRODUCTION
1.1. Motivation

Cobhort studies involve measurements taken repeatedly over time, and studies with long follow-up often
have missing data. A number of methods deal with missing data due to dropout in longitudinal studies
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(e.g. Schafer, 1997; Bang and Robins, 2005; Diggle and others, 2007, van Buuren and Groothuis-
Oudshoorn, 2011), but not many describe how to handle missing data due to dropout and death (e.g.
Kurland and Heagerty, 2005; Seaman and others, 2016).

We are motivated by the ‘Origins of Variance in the Old-Old’ (OCTO) Twin study. OCTO is a study of
Swedish twins aged 80 years or older at recruitment, and it consists of five scheduled biennial visits. One
continuous outcome measured in this study is peak expiratory function (henceforth, ‘lung function’) rate,
which measures the maximal airflow at expiration, after maximal inspiration. In the older adults, lung
function is associated with poor physical and cognitive health and mortality (Fragoso and others, 2007).

We assume a monotone missing data pattern, such as arises when subjects who drop out of the study
do not return later. This is approximately true in the OCTO lung function data. In the OCTO study,
24% of the outcomes are missing due to death, and 27% are missing due to dropout, commonly because
the subject had difficulty using the measuring instrument. Our goal is to estimate the expected lung
function of survivors at each visit, and to understand how lung function is associated with smoking while
subjects are alive. First, we describe estimands that may be of interest when outcomes are truncated
by death.

1.2. Estimands

Suppose there are N subjects in the study, and each subject has J scheduled visits. Let D be the last visit
before the subject dies, regardless of whether the subject actually attended the visit. If D = J, the subject
is still alive at the end of the study. Let ¥; be the continuous outcome of interest at visitj (j = 1,...,J).

Let R; denote the corresponding response indicator, i.e. R; = 1if Y; is observed, and R; = 0 otherwise.
Also let I_/] =M,....Y), andl_?j =R,....,R).Z=(Z,...,7Z,) isavector of p fully observed baseline
covariates. We assume P(R; = 1) = 1.

Three estimands of interest are unconditional, partly conditional, and fully conditional on death
(Kurland and Heagerty, 2005). These are parameters in models for, respectively, E(Y;|Z), E(Y;|1Z,D > j),
and E(Y;|Z, D).

When missingness is due to death, it is important to distinguish between inference for a mortal
cohort and an immortal cohort. Immortal cohort inference makes no distinction between missingness
due to death and missingness due to dropout. Unconditional estimands describe associations in immor-
tal cohorts because the definition of E(Y;|Z) requires an implicit or explicit imputation of Y; for those
subjects who die before j, thereby effectively creating a cohort that never dies (Dufouil and others,
2004). Since outcomes are undefined after death, E(Y;|Z,D < j), and therefore £(Y;|Z), is not mean-
ingful. Hence, unconditional models (i.e. models for £(Y;|Z)) are generally inappropriate when there is
a non-negligible amount of missing data due to death (Kurland and others, 2009). Linear Mixed-effects
Models (LMM) provide immortal cohort inference unless D is included as a covariate or stratified on in
the model.

Partly conditional models (i.e. models for £(Y;|Z, D > j)) make inference about the expected outcome
at a given time among survivors at that time point. Dufouil and others (2004) and Kurland and Heagerty
(2005) favor partly conditional models. They argue that unconditional models would probably not be of
interest unless the outcome and survival processes are independent. In this paper we focus on missing
data methods that provide partly conditional inference.

Partly conditional models can be fitted using generalized estimating equations with independence
working correlation matrix (IEE) when dropout among survivors at each time point is conditionally
independent of the outcomes given Z, but may give biased estimates otherwise. To weaken this assumption,
Kurland and Heagerty (2005) described the inverse probability weighted (IPW) method using IEE to
weight up observed subjects to represent subjects who are still alive but have dropped out. This requires
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the estimation of the probability of dropout among subjects who are alive, given earlier outcomes and
covariates.

Multiple imputation (MI; Schafer, 1997) is a commonly used method for handling missing data.
However, the literature on how to use MI to handle dropout and death is limited (Harel and others,
2007), and this literature does not address the assumptions under which MI gives valid partly conditional
inference.

Diggle and others (2007) introduced linear increments (LI) as a further method for handling missing
data. This method allows the underlying outcome to be measured with an error that is independent of the
covariates and the underlying outcome process. The LI methods developed by Aalen and Gunnes (2010)
allows for non-monotone missing data, but does not allow for independent measurement error (Seaman
and others, 2016). Other work on LI includes Gran and others (2017) who use LI to make causal inference,
and Hoff and others (2014) who provide software in R to implement the LI method. Building on the work
by Aalen and Gunnes (2010) and Seaman and others (2016) provide the underlying assumptions under
which LI is a valid method for making partly conditional inference.

We have several aims in this article. In Section 3, we define and compare the assumptions of MI, LI,
and IPW for making partly conditional inference. In particular, we show that, when we do not stratify on
D or include it as a covariate in the dropout or imputation model, the assumptions of MI and LI about
the dropout and survival processes are different from those of IPW. In Section 4, we describe how to use
MI, LI, and IPW when the imputation or dropout model stratifies on D or includes it as a covariate. In
Section 5, we illustrate graphically the assumptions described in Sections 3 and 4 using Directed Acyclic
Graphs. In Section 6, we propose augmented IPW estimating equations for making partly conditional
inference. These are attractive because they offer double protection against model misspecification. That
is, they provide consistent estimations if the dropout or the imputation models are correctly specified.
In Section 7, we provide simulation studies to compare bias and efficiency of the various missing data
methods under various scenarios. Finally, in Section 8 we apply IPW, MI, and augmented IPW to data on
lung function from the OCTO study. All proofs are in the supplementary material available at Biostatistics
online (http://www.biostatistics.oxfordjournals.org).

2. MOTIVATING EXAMPLE

As a motivating example, we model the association of lung function with time, age at baseline (agepsc),
sex, education, smoking status, and the interactions between time and agey,s., sex, education, and smoking
status in the OCTO study. Figure 1a shows the expected lung function of male smokers and non-smokers
with average baseline age (83 years old) and average years of education (7 years). These means were
estimated using both LMM and IEE. LMM do not distinguish between dropout and death, and IEE do
not address dropout. In both smokers and non-smokers, the estimated means from LMM suggest a more
rapid decline than do those from IEE. This is because unhealthier subjects (meaning those with poorer
lung function) are more likely to die or drop out than are healthier subjects. Whereas IEE calculates the
mean at each visit over only those subjects who have not yet dropped out or died (a healthier than average
group), LMM calculates the mean over all subjects, implicitly imputing the (lower than average) missing
lung functions. Moreover, because average lung function in smokers is lower than in non-smokers, there
is more death in the smokers. Thus, the difference between the LMM and IEE estimates is greater for
smokers than for non-smokers, with the result that LMM suggests smoking has a greater effect on rate
of decline than does IEE. If dropout were independent of lung function, IEE would consistently estimate
mean lung function conditional on still being alive. However, it is not. In the next two sections, we discuss
various missing data methods that require weaker assumptions. A broad overview of these methods can
be found in Table 1. Further discussion of this example can be found in Section §.
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Fig. 1. Expected lung function of men who were 83 years old at baseline with 7 years of education, stratified by
smokers and non-smokers

3. METHODS AND ASSUMPTIONS

In this section, we describe how IPW, MI, and LI can be used to estimate the partly conditional estimand.
We consider IPW, MI and LI where the dropout or imputation model do not stratify on D or include it as
a covariate, but these situations are the focus of Section 4.

3.1. Conditions under which MI produces consistent parameter estimates

Joint multivariate normal MI (Schafer, 1997) is one of the most popular methods for imputing missing
data. It is widely available in many general statistical packages and is particularly suitable for handling
missing continuous outcome variables. As we point out later, MI is closely related to LI when data are
monotone missing.

Let X be a vector that includes Z and possibly also fully observed variables that are predictive of ¥
(so-called ‘auxiliary variables’). Suppose that

V=p+¢/ i +¥/X+¢, V<D 3.1
¢lY1,X,D = j ~N(0,07) (3.2)

In MI, (3.1) and (3.2) are assumed to hold and the data are assumed to be missing at random (MAR). If no
distinction is made between outcomes missing due to death and those missing due to other reasons, then
all missing outcomes are imputed. Consequently, inference obtained using the imputed data will be for a
‘supplemented’ outcome process that consists of the actual pre-death outcomes and additional hypothetical
post-death outcomes (Yp., . . ., ¥;). The pre-death outcomes are assumed to obey (3.1) and (3.2), and the
hypothetical post-death outcomes are defined byf()@lff,_l,X,D <)) =f(Y,.|)_f,«_1,X,D > /).

The joint distribution of ¥, in this supplemented process is ¥;|X ~ N(u, ¥), where i and % are
functions of the p;, ¢;, ¥;, and ojz’s. In MI, given a non-informative prior distribution for 6 = (u, X),
missing outcomes in the supplemented process are drawn from their posterior predictive distribution.
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Table 1. Assumptions and general guidelines for making partly conditional inference

Method  Assumption under which method is valid Guidelines for use

IPW, u-MAR e Model probability of dropout at visit j for those who
(1) u-MAR is equivalent to mortal-cohort survived up to visitj
dDTIC and missingness-independent death e Do not include D in dropout models
(2) u-MAR is the discrete death-time version of e Appropriate when longitudinal and survival processes
MAR in Kurland and Heagerty (2005) depend on one another, and survival process does not

depend on dropout process
e u-MAR assumption can be tested if survival is known
up to the end of study

IPW, p-MAR e Model probability of dropout at visit £ for those who
Note: p-MAR is a weaker assumption than survived up to and including visit j, Vk < j
u-MAR

IPW, f-MAR e For visit each j, model the probability of dropout at

(1) -MAR is a weaker assumption than u-MAR  visit j for those who die between visits j and j + 1 (i.e.
(2) f-MAR is the discrete death-time version of whose D =)
MAR-S in Kurland and Heagerty (2005) e Include D in dropout models

MI, /LI, mortal-cohort dDTIC and independent death e Do not include D in the imputation models
e Delete imputed post-death outcomes before analysis
e Appropriate when survival and dropout processes
depend on one another, and survival process does not
depend on missing outcome process

MI//LI; f-MAR e Include D in imputation models
e Delete imputed post-death outcomes before analysis

AIPW,  either i) u-MAR or ii) p-MAR, f-MAR and e Do not include D in dropout and imputation models
independent death e Delete imputed post-death outcomes
o At least as efficient as [PW,, if dropout and imputation
models are correctly specified and survival process does
not depend on longitudinal process (death still truncates
longitudinal and dropout processes)

AIPW, f-MAR e Valid as long as either dropout or imputation models
are correctly specified
e Include D in dropout and imputation models
e Delete imputed post-death outcomes
o At least as efficient as IPW; if dropout and imputation
models are correctly specified and data are -MAR

Conditional on (u, X), if ¥; is observed but (Yi1,...,Y,) are missing, (Y;1,...,Y,) is sampled from
the distribution £ (Y1, ..., ¥/ ¥, X; 6).

If a marginal model is fitted to all the imputed data including the post-death outcomes, an estimate
of E(Y; | Z) for the supplemented process is obtained. To fit a partly conditional model, it is necessary
to delete the imputed post-death outcomes and retain only the pre-death outcomes. The following two
conditions are then sufficient for consistent estimation of parameters in the partly-conditional model
forj > k: (1) EY)| Vi, Ry = LRy = 0,X,D > )H=E(Y;|¥;,X), and (2) E(Y;|¥;,X) is consistently
estimated. Suppose that condition (2) is true, and Y} is the last observed outcome before visit j. Then the



412 L. WEN AND OTHERS

expected imputed value 7, of ¥; in a data set created by Ml as N — oo, is equal to Y; if R; = 1 and
E(Y;|Y;, X) if R; = 0.

If condition (1) is satisfied, then as shown by Seaman and others (2016), E(n;|Z,D > j) = E(Y;|Z,D >
) and this ensures that the parameters of the partly conditional model are consistently estimated. To
estimate these parameters, we exclude post-death outcomes from the imputed data sets, and use IEE to
analyze each.

Condition (1) is satisfied if the conditional distribution of the missing outcomes in the supplemented
process given the earlier observed outcomes and covariates is the same whether or not the missing outcomes
are after death, i.e. if

S gty S ViV Re = LRy = 0,X,D > j) =f (Yewr, .., V1Y, X), Vizk+1  (33)

Seaman and others (2016) proved that if (3.1) and (3.2) hold, and the two assumptions specified below
(mortal-cohort dDTIC and independent death) are satisfied, then (3.3) (and hence condition (1)) holds. It
can then be shown that these assumptions imply that the data on the supplemented process are MAR. This
then implies that condition (2) holds.

Mortal-cohort discrete-time independent censoring in distribution (dDTIC) is defined by Seaman and
others (2016) as

fY,, R, X,D > j) =f(Y)|Y;1,X,D > ), Vj (3.4)

which is equivalent to P(R;|Y;,X,D > j) = P(R;|Y;-;,X,D > j), i.e. conditional on survival up to
visit j and outcomes prior to visit j, the missingness history up and including visit j does not depend
on the outcome at visit j. Note that mortal cohort dDTIC looks similar to the classical MAR assumption
conditional on subjects alive. However, in Appendix B of supplementary material available at Biostatistics
online, we show that it is not the same.

The independent death assumption is defined by Seaman and others (2016) as, Vj > k:

PID=/ID>j— 1R = L,Ris1 =0,%,X) = P(D = jID = j — 1,Ry = L,Reyy = 0,7, X)  (3.5)

This assumption says the probability of dying between visits j — 1 and j for people who attended visit
k, but not visit k£ + 1, could depend on the past observed outcomes, but not on any subsequent unobserved
outcomes.

In summary, MI is a valid method for making partly conditional inference if (3.1) and (3.2) hold,
mortal-cohort dDTIC and independent death are satisfied, and post-death outcomes are deleted before
analyzing each imputed data set using IEE.

MI assumes that ¢; is normally distributed as described by (3.2). However, as shown in Theorem 4 of
Seaman and others (2016), when data are monotone missing, this assumption is stronger than required
for consistent estimation of the parameters in the partly conditional model. Instead, the following weaker
condition is sufficient:

E(g]Y,1,X,D > j) = 0, and Var(¢;|¥; 1, X, D > j) = Var(g|D > j) < 00 (3.6)

Equation (3.2) is needed, though, for Rubin’s rules (Schafer, 1997) to give asymptotically unbiased
estimation of the variance of the parameter estimators. Bootstrapping can be used to estimate this variance
when (3.6) but not (3.2) holds.
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3.2. A comparison with LI

For monotone missing data, LI imputation (Seaman and others, 2016) is asymptotically equivalent to
MI with an infinite number of imputations. As with MI, the LI imputation method provides consistent
parameter estimates of a model for £(Y;|Z, D > j) provided that (3.1) and (3.6) hold, mortal-cohort dDTIC
and independent death hold, and post-death imputed outcomes are deleted before analyzing the imputed
data using IEE (Seaman and others, 2016). Details about LI imputation are provided in Appendix A of
supplementary material available at Biostatistics online.

3.3. Conditions under which IPW produces consistent parameter estimates
Let u; = n;(Z) = E(Y;|D > j,Z). A subject’s contribution to the IEE is

J
> ZIUD = HR(Y; — )

=1

and the jth element of the estimating equations is ZI(D > j)R;(Y; — ;). In IPW, we multiply the jth
element of the estimating equation by the inverse of P(R; = 1|D > j, )_’j,X ). Since the probability P(R; =
11D >, )_’j,X) is unknown, it needs to be modeled. Let 7;(7) be a model for P(R; = 1 I)_f,-, D > j,X), with
associated parameters 7. The jth element of the estimating equations becomes

Z1D = )R,

(D) ¥ — )

Dufouil and others (2004) provide non-algebraic descriptions of the assumptions of the IPW method.
First, they say that they assume the “probability that [an outcome] is missing may depend on other observed
parts of the response profile, but does not depend on unobserved [outcomes].” Second, they say that they
assume the “mortality rates following dropout from the study are the same as the corresponding rates for
subjects remaining in the study.” The first assumption is ambiguous because it appears to be describing
MAR, which does not distinguish between subjects who are alive and dead, thereby making the assumption
hard to interpret. The second assumption is ambiguous because it does not specify whether the mortality
rates are conditional or unconditional on any of the past outcomes.

Kurland and Heagerty (2005) provide algebraic expressions for the assumptions of IPW and introduce
three ways to model P(R; = 1|D > j, }_’j,X ) when the missingness depends on some of the past observed
outcomes.

Neither Dufouil and others (2004) nor Kurland and Heagerty (2005) compare the assumptions of the
various IPW methods or compare these methods with alternative methods. In this section and the next,
we expand on their work by distinguishing the IPW assumptions and their corresponding estimators, and
compare these assumptions to those of MI and LI imputation.

We distinguish between two MAR-type assumptions: unconditional MAR (u-MAR) and partly-
conditional MAR (p-MAR). u-MAR is the assumption that

PRy =1|R-y =1,Y,,D=j,X) =Py =1|Ri_y = 1,Y,.;,D > k,X) Vk<j (3.7)
which is equivalent to P(R; = 1|D =}, Y;,X) = P(R, = 1|D > k, ¥;_,X), Vk < j. Under u-MAR, the

probability of observing the outcome at visit j given survival up to that time is

J
PR =11%,D = j.X) = [[ PR = 1|Ri1 = 1. ¥41,D = k., X)

k=1
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We can compare this assumption with the assumptions of MI and LI imputation. To do this, we define
missingness-independent death as

P(D>jD>j—1,% 1,R 1,X)=P(D>jID>j—1,Y ,X), V>3 (3.8)

In contrast to independent death, which says that the probability of dying between visits j — 1 and j
does not depend on the past missing outcomes given the past observed outcomes and the time of dropout,
missingness-independent death says that the probability of dying between visits j — 1 and j does not
depend on the past missingness history given all of the past outcomes.

THEOREM 1 u-MAR holds if and only if mortal-cohort dDTIC and missingness-independent death both
hold.

p-MAR 1is the assumption that
PRy =1|R 1 =1,Y,D>j,X) =P(R = 1|[Ryy = 1,Y;,D > j,X) Vk<j (3.9

or equivalently, P(R; = ll)_’j,D > j,X) = P(Ry = 1|Y,_,D > j,X), Vk < j. Under p-MAR, the
probability of observing the outcome at visit j given survival up to that time is

J
P(R; = 11Y,D = j,X) = [ [ PR = 1R 1 = 1, %1, D = . X).

k=1

We might prefer to assume p-MAR rather than u-MAR because it is a weaker assumption than u-MAR.
However, the IPW method based on the p-MAR assumption requires the survival statuses to be known up

to the end of a study in order to fit models for P(R; = 1|R,_; = 1,Y;,D > j, X ), whereas the IPW method
based on the u-MAR assumption requires the survival statuses only to be known up to and including the
time of dropout.

4. METHODS FULLY CONDITIONAL ON DEATH
4.1. IPW
If times of all deaths occurring prior to the end of the study are known, we could instead assume fully
conditional MAR (f-MAR):
PRy =1Ri-1 = 1,Y,,D=j,X) =P(Ry = l|Re1 = LY, ,D=j,X) Vk=<j (41

or equivalently, P(R, = 1|Y;,,D = j,X) = PR, = 1|Y,_1,D = j,X), Vk < j. Under f-MAR, the
probability of observing the outcome at visit j can be written as

J
PR, =1|Y,,D=1,X) = HP(Rk =R =1Y ,D=01X) VIl>j 4.2)
k=1

u-MAR is a stronger assumption than p-MAR and f-MAR, so the IPW method that relies on the u-MAR
assumption (henceforth called IPW,) may be more efficient when this assumption is true than the IPW
methods that rely on the p-MAR and f-MAR assumptions (henceforth called IPW,, and IPW/, respectively).
Moreover, for IPW,,, survival statuses only need to be known up to and including the time of dropout, but
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for IPW, and IPW/, survival statuses need to be known until the end of a study. Note that neither p-MAR
nor f-MAR implies the other.

4.2. Ml and LI

For MI and LI imputation, instead of assuming (3.1) and (3.2), suppose that for those subjects with D = [,

Y =p" + @MY+ @)X + € Vi<l (4.3)

with
e"17_1,X,D =1~N[0, (0")] (4.4)

The vector of outcomes (Y71, . . ., ¥;) then has the joint distribution Y| X,D=1~ N(,u}” s ):j(l) ), where Mj(.l)
and Ej(l) are functions of ,oj(l), j(l), j(l), and oj(”’s. Under (4.3)—(4.4) and f-MAR, if visit % is the last visit
attended before visit j, then as N — oo, the expected imputed value of Y; in a data set created by MI
will be E (Yj|)_’k,X ,D = 1) when R=0. As shown in Appendix H of supplementary material available at
Biostatistics online, it is then valid to use the imputed data to estimate the partly conditional mean.

Henceforth, we will call MI and LI imputation based on (3.1) and (3.2) MI, and LI, imputation,
respectively. We will call MI and LI imputation based on (4.3) and (4.4) MI, and LI, imputation,
respectively.

Instead of stratifying on D (as in (4.3) and (4.4)), we can include it as a covariate in the imputation
model. Doing this may be a more feasible option when the sample size in at least some of the strata defined
by D is small.

5. DIRECTED AcYcCLIC GRAPHS DEPICTING SCENARIOS FOR THE MISSING DATA METHODS
5.1. Graph 1: most complex scenario for u-MAR to hold

The Directed Acyclic Graphs in this section describe data generating mechanisms where the survival
statuses, the longitudinal outcomes, and the dropout statuses are generated in a temporal order. For these
graphs, we define Y; = @ when D < j. Graph 1 (Figure 2a) shows the most complex scenario where
u-MAR holds. It is the most complex scenario because adding a directed edge of the form R, — Y1,
to Graph 1 would allow the mechanism to violate mortal-cohort dDTIC, and adding a directed edge
R; — I(D > j + 1) would allow it to violate missingness-independent death. When u-MAR holds,
IPW,, IPW,, and IPW/ give consistent estimates, provided that the dropout models are correctly specified
(Section 3.3).

Graph 1 allows the data generating mechanism to violate independent death, and so MI, and LI,
imputation may not provide consistent estimates under mechanisms described by Graph 1. However, u-
MAR implies -MAR. Consequently, MI, or LI, imputation would give consistent estimates, provided
that the imputation models were correctly specified (Section 4.2).

5.2. Graph 2: most complex scenario for mortal-cohort dDTIC and independent death to hold

Let Y =Y, if R; = 1and Y'=0 if R; = 0, and let I_/j* = (¥7,....Y). So, if R, = 1, Ry = 0 and
J > k, then I_/j’i] =,.... Y, 9,...,9). Independent death can now be written as

P(D=jID>j—1,R=1,R1=0,Y,X) =P(D>jID>j—1,R = 1,Res1 = 0, ¥, X)
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Fig.2. Directed Acyclic Graphs for scenarios 1 and 2. (a) Directed Acyclic Graph 1 for scenario 1 (Most complex
scenario for u-MAR to hold). (b) Directed Acyclic Graph 2 for scenario 2 (Most complex scenario for mortal cohort
dDTIC and independent death to hold). Dashed lines represent deterministic associations (e.g. Y, is determined by
R2 and Y- 2).

Introducing Y;* allows us to draw a Directed Acyclic Graph that satisfies independent death. Graph 2
(Figure 2b) is the most complex scenario under which LI, imputation and MI,, provide consistent estimates.
This is because adding a directed edge R; — Y;;; would allow violation of mortal-cohort dDTIC, and
adding a directed edge Y; — 1(D > j + 1) would allow violation of independent death.

Graph 2 fails to satisfy missingness-independent death, and so, by Theorem 1, it fails to satisfy u-MAR.
Hence, estimates from IPW,, may be biased. Graph 2 also fails to satisfy p-MAR and f-MAR, because,
for example, the directed edges ¥, — I(D > 3) induce an association between R, on Y, conditional on
{D > 3}, Y, and X (as shown in Appendix C of supplementary material available at Biostatistics online).
Therefore, estimates from IPW,,, IPW,, MI, and LI, imputation may be biased.

6. AUGMENTED IPW

Robins, Rotnitzky, and colleagues introduced the augmented IPW (AIPW) method in a series of seminal
papers including Robins and others (1995) and Scharfstein and others (1999). AIPW methods require
specification of a model for the probability of dropout and an imputation model for the expectation of
each missing outcome. The AIPW method is attractive because it provides consistent parameter estimates
as long as one of these two models is correctly specified.


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
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Bang and Robins (2005) and Seaman and Copas (2009) described AIPW to handle longitudinal data
that are monotone missing due to dropout. We now adapt this method to handle missingness due to dropout
and death. Like the IPW method for partly-conditional inference, this method requires an independence
working correlation matrix.

Let u; = E(Y;|Z,D > j) = B"Z, where B is a vector of parameters of interest, and assume that
D is included in X. Forj € {1,...,J}, let H;(Y;,X;B,y) be amodel for E[U(B)|Y;,X,R; = 1], where
U = U()_’D,D, Z;B) = Zj’;l Zi(Y;— ;). HJ-(I_/j,X; B, v) can be any function of I_K,-,X and parameters y
that obeys Hy(Yp, X; B, y) = U(B). Let frj(f/j,l,X; a) be amodel for P(R; = 1|)_’j,1,X) with parameters
a. Let y and & denote consistent estimators of y and «. A subject’s contribution to the AIPW estimating
equations for g is,

Ve = 5 %8 (’3”2{ R }H(Y X;B8,7) | (6.1)
A, Y ) = ﬂD(YD 1,X Q) — J(Y 1’)( &) 77/’+1(?j,X;6l) (L, A5 P, Y .

The resulting estimators of  will be consistent if either ﬁ/(I_(i_l,X ; ) is correctly specified for all j or
H;(Y;,X; B, v) is correctly specified for all j. If both models are correctly specified, this AIPW estimator
is at least as efficient and usually more efficient than the IPW, estimator.

THEOREM 2 If the data are -MAR, the AIPW gives consistent estimations if either ﬁ,-(f’j_l,X ;) or
H,—()?,—,X ; B,y) is correctly specified. Moreover, consistent estimates of § are still obtained when the
models for ﬁj(l_/j_l,X ;a) and Hj()_f,«,X ; B, y) omit the covariate D (or do not stratify on D) provided
that either (1) u-MAR holds and the dropout model is correctly specified, or (2) f-MAR, p-MAR and
independent death hold and Hj(l?j,X ; B, y) is correctly specified.

When models ﬁj( _1,X;a) and H; ( ,X; B, y) stratify on D or include D as a covariate, the AIPW
method will be called AIPWf When 7; (Y 1,.X; ) and H;(Y;, X5 B, v) exclude D, it will be called AIPW,,.
Note that if the data generating mechanism satisfies u- MAR and independent death, then AIPW, gives
consistent estimations if either ﬁj(f/j,l,X ;a) or Hj()_’j,X ; B, y) is correctly specified. We can use logis-
tic regression to model dropout and Paik’s mean imputation (Paik, 1997) to estimate the conditional
expectation of each missing outcome.

Under the data generating mechanism described by Directed Acyclic Graph 1, we expect AIPW,, to
yield consistent 8 estimates provided that the dropout models are correctly specified, and AIPW, to
yield consistent 8 estimates provided that the dropout or the imputation models are correctly specified.
However, under the data generating mechanism described by Directed Acyclic Graph 2, we expect AIPW,,
and AIPW to yield inconsistent 8 estimates in general.

7. SIMULATION STUDY
7.1. Methods

In the following simulation study, we compare the different assumptions underlying the missing data
methods. The baseline covariate is generated and the parameters for the longitudinal, survival, and dropout
models are chosen to mimic the data from the OCTO study.

We compare the bias, standardized bias and efficiency of the missing data methods. Standardized bias is
100 x [(Average estimate—True parameter)/empirical standard deviation of the parameter estimates]. It has
been suggested that an absolute standardized bias of approximately 40% will be “practically significant”
and will have a “noticeable adverse impact on efficiency, coverage, and error rates.” (Collins and others,
2001).
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Simulations 1 and 2 correspond to simplified versions (shown in Figure D.1 in the Appendix D of
supplementary material available at Biostatistics online) of Directed Acyclic Graphs 1 and 2. In the
simplified version of Graph 1, ¥}, R;, and /(D > j) depend on Y;_;, but not on )_(,-,2. In the simplified
version of Graph 2, Y; and R; depend on Y,_,, but not on I_/j,z; I(D > j) depends on the last observed
outcome, but not on the ones before. In both of the simulations, data are generated in a sequential manner.
For example, under simulation 1, data are generated by:

Y) from f(¥7) and X from f'(X)

I(D > 2) from P(D > 2|D > 1,Y,X)

R, fromP(R, =1|Ry=1,D>2,Y,,X),and PR, = 1|R, =1,D < 2,7,,X) =0
Y, from f(Y,]Y,,D > 2,X) (Y, is not generated for those with D < 2)

L

and so on. More details are given in Appendix D of supplementary material available at Biostatistics
online. Approximately 24% of outcomes are missing due to death, and of those who are alive at each visit,
approximately 27% are missing due to dropout. The analysis model we use for the simulations is

E(Yjlsex,D > j) = Bo + Bil( = 1) + Bo1(G = 2) + B31( = 3) + B4l = 4) + Bsexsex+
Bsex2l( = 2) - seX + Bsexs I = 3) - sex + Beexal(j = 4) - sex (7.1

For each simulation, we generate 1000 data sets, assume J = 5, N = 500 or 1000, and use 30
imputations in each MI procedure. The correct dropout and imputation models are used, with the exception
of the AIPW, method in simulation 1. In simulation 1, we show that AIPW, are doubly robust against
model misspecification by using a misspecified dropout or a misspecified imputation model (omitting sex
in one of the dropout and imputation models).

7.2. Results

In both simulation studies, IEE and complete case (subjects observed at all five visits) analysis overes-
timate the average outcomes in males and females at all visits. Table 2a and Table J.4 in Appendix J
of supplementary material available at Biostatistics online, show, for 500 and 1000 subjects, the bias,
standardized bias, and the empirical standard error for simulation 1. The biases from IPW,, IPW,,, IPW/,
AIPW,,, AIPW,, LI, imputation, and MI, are negligible, but the biases from LI, imputation and MI, are
bigger and/or practically significant. This is because, as explained in Section 5.1, Graph 1 fails to satisfy
independent death.

Table J.1 in Appendix J of supplementary material available at Biostatistics online shows the double
robust property of AIPW,. When the dropout models are misspecified but the imputation models are
correctly specified (and vice versa), the biases from AIPW, are negligible. However, when both the
dropout and the mean imputation models are misspecified, the biases are practically significant.

Table 2b and Table J.5 in Appendix J of supplementary material available at Biostatistics online, show,
for 500 and 1000 subjects, the bias, standardized bias, and the empirical standard error for simulation 2.
The biases from LI, imputation and MI, are negligible, but the biases from IPW,, IPW,, IPW,, AIPW,,
AIPW,, LI, imputation, and Ml are bigger and/or practically significant. This is because, as explained in
Section 5.2, Graph 2 fails to satisfy u-MAR, p-MAR, and f-MAR.

With respect to efficiency, the standard errors under the IPW methods are larger than those under MI
and LI imputation (Table 2a). Moreover, the standard errors under AIPW/, are equal to or less than equal to
those under IPW, when both dropout and imputation models are correctly specified. The standard errors
from IPW,, IPW,,, and IPW, are not very different; the standard errors under IPW,, are slightly smaller
than those under the other two IPW methods. We would expect to see a larger difference if the sample size


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
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were smaller, because unstable weights are more likely to be obtained when using IPW,, or IPW, than
when using [PW,,.

In Appendix E of supplementary material available at Biostatistics online, we show an additional
simulation (simulation 3) to demonstrate bias from methods whose dropout and/or imputation models do
not include D (i.e. IPW,, IPW,, AIPW,, and MI,)) when data are f-MAR. We do not follow the sequential
data generating mechanism in simulation 3. Instead, D is generated first, so that it can be included in the
models for the outcome and dropout process. Tables J.2 and J.3 in Appendix J of supplementary material
available at Biostatistics online show the bias, standardized bias, and empirical standard error for 500
subjects for simulation 3. Biases from IPW,, AIPW, and Ml are negligible, but biases from IPW,,, IPW,,,
AIPW,, and M1, are practically significant.

8. APPLICATION

In the OCTO study, for the subjects who had at least one lung function measurement, 22.5% of the
outcomes are missing due to monotone dropout and 5.8% of the outcomes are intermittent missing. We
ignored the 204 subjects with no data on lung function and forced the missingness pattern to be monotone
by ignoring the relatively small number of outcomes observed after a subject’s first missing outcome. Data
are then available on 437 subjects; 100 (22.9%) of whom have complete data up to visit 5.

To account for the slightly right skewness in the lung function variable (peak expiratory function), we
took its square-root transform. The partly conditional model of interest is

E (YD = j,Z) = Bo+ By + Baj” + BsexSeX + Bagedgeyyee + Beaueducation + Bymosmoke+
Bsex1J - 5€X + Pagel] - 38Cuase + Pedurj - €ducation + Bymor/ - smoke (8.1)

where binary variables sex = 1 if subject is female, and smoke = 1 if a subject has ever smoked.

The dropout and imputation models at visit j include sex, education, smoking status, past outcomes
I_/j_l, and baseline age, Mini-Mental State Exam score, instrumental activities of daily living score, and
health prevention score (a measure of the degree to which a subject’s health prevents him from doing
things that he likes to do). Mini-Mental State Exam score, instrumental activities of daily living score,
and health prevention score can tell us about a subject’s cognitive function, physical ableness, and overall
health status, respectively. Exploratory analyses suggest that these auxiliary variables are all associated
with both lung function and dropout.

If we assume mortal-cohort dDTIC and independent death hold, then the probability of dying between
two visits, given past observed lung function data, missingness history, and covariates such as agepse,
does not depend on the past missing lung function data. But if we assume that the data were u-MAR, then
probability of dying between two visits given covariates and all past lung function data does not depend
on the missingness history. Under u-MAR, the probability of dropout at visit j given past outcomes,
covariates, and survival up to visit j does not depend on lung function data after visit j — 1 and D. But
p-MAR allows this probability to depend on subjects who are alive at future visits, and f-MAR allow this
probability to depend on D.

As a preliminary step in the data analysis we could test the u-MAR assumption if information on death
is available by modeling the association between dropout and D. In the OCTO study, we found strong
associations between the probability of dropout and D while controlling for past outcomes and covariates.
Hence, we deduced that u-MAR was implausible in this example.

The parameters from the dropout models fitted for IPW, showed that dropout was associated with
agepase, lung function at last visit, and the auxiliary variables. The strongest predictor was lung function at
the last visit. For example, for those who died between visits 3 and 4, the probabilities of dropout between
visits 2 and 3 and between 3 and 4 were higher for subjects who had lower lung function at visits 1 and


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx045#supplementary-data
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Methods for handling longitudinal outcome processes 421

2, respectively: the estimated log-odds ratios per unit increase in lung function were respectively —0.23
(p = 0.066) and —0.75 (p = 0.003).

Table 3 shows estimates from the complete case analysis (i.e. using only subjects with observed lung
function at all five visits), LMM, IEE, IPW, AIPW, and MI. Standard errors were calculated by boot-
strapping from the original data. Estimates from the complete case analysis are different from the other
methods. Since subjects with better lung function are more likely to be observed than those with poorer
lung function, the complete cases are not representative of all subjects who remain in the study at each
visit. Hence, the complete case analysis is not valid for partly conditional inference, and we focus on the
results from IPW, MI, and AIPW.

In general, the rate of decline in lung function increases over time (MI;: ;3A2:—O.035, p = 0.004), and
this rate of decline is also estimated to be greater if we assume mortal-cohort dDTIC and independent
death (MI,,: /§2:—0.045, p = 0.000). This is reflected in Figure 1 (b) and (c). The estimated rate of decline
is also different between IPW, and IPW,: IPW,, suggests a steeper rate of decline than IPW, (IPW,,: By =
—0.043 ,p = 0; IPW,: B2 =—0.031,p=0.013).

IPW,, IPW,, and AIPW, suggest the rate of decline in lung function among subjects who are older
at recruitment is not as steep as that of younger subjects (IPW,: ﬁagel =0.03, p = 0.057; IPW,: ,éagel =
0.037,p=0.017; AIPW,: 3age1 = 0.036, p=0.07), but this effect is smaller when determined by MI, and
MI; (ML: Bager = 0.014, p = 0.301; MI;: foger = 0.016, p=0.208).

Overall conclusions about the effects of baseline covariates are, in general, consistent across the missing
data methods (IPW, MI, and AIPW), which is reassuring. Using AIPW, we conclude that holding all other
variables constant, (i) smokers have poorer lung function than non-smokers (ﬁsmo =—0.816, p=0.009), (ii)
the older a person is at recruitment, the poorer their initial lung function is (ﬁage:—0.336, p = 0.000);
MI, suggests a smaller effect than the other methods (,3age=—0.236, p = 0.000), (iii) females have poorer
baseline lung function than males (Bsex:—3.03, p = 0.000), and (iv) the more education a person has, the
better their initial lung function is (Bedu:0.256, p = 0.000).

9. DISCUSSION

We described and compared the assumptions of IPW, LI imputation, MI, and AIPW for making partly
conditional inference. IPW,, require mortal-cohort dDTIC and missingness-independent death to hold.
MI, and LI, imputation require mortal-cohort dDTIC and independent death to hold. AIPW, requires
either (i) u-MAR or (ii) -MAR, p-MAR and independent death to hold. IPW,, LI, imputation, MI, and
AIPW;} require -MAR to hold.

For data sets with a non-negligible number of deaths, the most appropriate method to handle dropout
should be chosen on a case-by-case basis. As a guideline, IPW and AIPW may not be appropriate if
the survival process depends on the dropout process, and LI, imputation or MI,, may not be appropriate
if the survival process depends on the past missing longitudinal outcomes. Contrary to intuition, using
imputation models that condition on D can sometimes induce bias that would not have been present if D
were not conditioned on. This is because, as explained in Section 5.2 and demonstrated in simulation 2,
imputation methods that condition on D are valid when f-MAR is satisfied, but may be biased otherwise,
whereas imputation methods that do not condition on D require other assumptions and so may still be
valid. Hence, conditioning on time of death in the imputation model should not be done automatically.
We suggest that it may be sensible to apply various methods to a data set as a simple form of sensitivity
analysis to see if the conclusions change from one method to another.

When there is dropout and death, Shardell and others (2015) provided an AIPW estimator to measure
the causal effect of a time-varying exposure on a longitudinal outcome. The current paper provides AIPW
estimating equations to obtain partly conditional means of longitudinal outcomes, and to study (possibly
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non-causal) associations between the outcomes and covariates among survivors. Our AIPW estimators
are double robust to model misspecification. Moreover, when the dropout and imputation models are both
correctly specified and the underlying assumptions are met, AIPW is at least as efficient as IPW.

IPW, is a stronger assumption than both IPW,, and IPW, but IPW, may be more efficient when u-MAR
is true than IPW,, and IPW,, which rely on p-MAR and f-MAR. We could assess the u-MAR assumption
if information on death is available by modeling the association between dropout and D. Moreover, if we
know certain auxiliary variables might make u-MAR more plausible, these variables should be included
in the model for dropout.

When the missing outcomes do not follow a multivariate normal distribution, the full conditional
specification (van Buuren and Groothuis-Oudshoorn, 201 1) is an alternative to the joint multivariate normal
MI. Multivariate normal MI and full conditional specification, however, are equivalent for monotone
missing continuous outcomes (Seaman and Hughes, 2016). Note that [IPW methods can easily handle
both continuous and non-continuous outcomes.

If possible, it is better to stratify on D rather than to include D as a covariate in the dropout or imputation
model. This is because stratifying on D gives a richer dropout or imputation model that is less likely to
be misspecified than just including D as a covariate. But stratification should be avoided if the sample
sizes are small in some strata, since we might obtain unstable weights for IPW or obtain very imprecise
estimates of the parameters of the imputation models.

In this article, we have focussed on partly conditional estimation. Interpreting partly conditional esti-
mands, unlike unconditional estimands, does not require defining post-death outcomes, e.g. (non-zero)
lung functions in dead people. Dufouil and others (2004) argued for partly conditional models, saying
that “immortal-cohort inference is generally inappropriate unless the longitudinal and survival processes
are independent.” Note, however, this view is not held universally: Aalen and Gunnes (2010) argued that
an unconditional model provides “a more fair comparison of treatments” when a treatment keeps subjects
with poorer outcomes alive for longer. An alternative estimand when comparing two treatments is the
survivor average causal effect. This is the effect of treatment on outcome in a group of subjects who would
have survived regardless of treatment status. See, e.g. Hayden and others (2005), Egleston and others
(2006), Yang and Small (2016), and references within for estimating this.

Finally, it is important to note that all of the methods in this article rely on the assumption that,
conditional on survival at least to the current visit, the probability of observing an outcome at the current
visit depends only on the past outcomes and not on the current outcome. However, we cannot rule out
the possibility that dropout depends on the current outcome. In the future we will look at ways to assess
the sensitivity of the results to a range of assumptions about the dependence of dropout on the current
outcome.

10. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available on request from the corresponding author (lan.wen@mrc-bsu.cam.ac.uk).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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