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We aimed to compare diagnostic performance in discriminating malignant and benign breast lesions
between two intravoxel incoherent motion (IVIM) analysis methods for diffusion-weighted magnetic resonance
imaging (DW-MRI) data and between DW- and dynamic contrastenhanced (DCE)-MRI, and to determine if
combining DW- and DCE-MRI further improves diagnostic accuracy. DW-MRI with 12 b-values and DCE-MRI
were performed on 26 patients with 28 suspicious breast lesions before biopsies. The traditional biexponen-
tial fitting and a 3-b-value method were used for independent IVIM analysis of the DW-MRI data. Simulations
were performed to evaluate errors in IVIM parameter estimations by the two methods across a range of sig-
nalto-noise ratio (SNR). Pharmacokinetic modeling of DCE-MRI data was performed. Conventional radiologi-
cal MRI reading yielded 86% sensitivity and 21% specificity in breast cancer diagnosis. At the same
sensitivity, specificity of individual DCE- and DW-MRI markers improved to 36%-57% and that of combined
DCE- or combined DW-MRI markers to 57%-71%, with DCE-MRI markers showing better diagnostic perform-
ance. The combination of DCE- and DW-MRI markers further improved specificity to 86%-93% and the
improvements in diagnostic accuracy were statistically significant (P < .05) when compared with standard
clinical MRI reading and most individual markers. At low breast DW-MRI SNR values (<50), like those typi-
cally seen in clinical studies, the 3-b-value approach for IVIM analysis generates markers with smaller errors
and with comparable or better diagnostic performances compared with biexponential fitting. This suggests
that the 3-b-value method could be an optimal IVIM-MRI method to be combined with DCE-MRI for improved
diagnostic accuracy.
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INTRODUCTION

High false-positive rate in breast cancer diagnosis using stand-
ard-of-care imaging methods, including mammography, ultraso-
nography, and magnetic resonance imaging (MRI), remains a
significant healthcare problem, resulting in unnecessary biopsies
of many benign lesions. The American College of Radiology
(ACR) MRI Breast Imaging Reporting and Data System (BI-RADS)
lexicon (1) is routinely used in standard of care for diagnosis of
MRI-detected lesions. This approach mainly relies on interpreta-
tions of lesion morphology and qualitative assessment of con-
trast uptake and washout in the lesion (1). It is well known that
breast MRI, as is currently used in clinical practice, has higher
sensitivity and comparable, but low, specificity for cancer

detection, when compared with mammography and ultrasonog-
raphy (2-6). This, in addition to the high cost generally associ-
ated with an MRI examination, limits the use of MRI for breast
cancer screening to the high-risk population (5-8). Therefore, it
is important to improve diagnostic specificity and overall accu-
racy for MRI to be a valuable and widely used imaging tool for
breast cancer diagnosis.

Two quantitative MRI techniques, dynamic contrast-
enhanced (DCE) MRI and diffusion-weighted (DW) MRI, have
been extensively investigated as a means to improve diagnostic
accuracy for breast cancer. The quantitative parameters esti-
mated from pharmacokinetic (PK) modeling of DCE-MRI time-
course data, such as Krans (volume transfer rate constant) and
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Kep (efflux rate constant), have been shown to be promising
imaging markers for improving discrimination of malignant and
benign breast lesions (9-11). Likewise, the imaging marker
obtained from DW-MRI, apparent diffusion coefficient (ADC),
has also been shown useful for improving specificity in breast
cancer detection (12, 13). DCE-MRI primarily measures micro-
vascular perfusion and permeability, while DW-MRI can be used
to assess cellularity and cell membrane integrity. Because breast
lesions are complex systems characterized by spatial and tempo-
ral heterogeneity in pathophysiology, a quantitative imaging
method that depicts only one aspect of tumor biology is intrinsi-
cally limited. Increasing evidence from recent studies (14, 15)
shows that by interrogating multifaceted tumor biology, a multi-
parametric MRI approach provides better diagnostic performance
for breast cancer than an individual MRI method. Majority of the
reported multiparametric methods combine the information from
DCE- and DW-MRI and show improved diagnostic accuracy
compared with DCE- or DW-MRI alone (16-22).

In the past decade, one variant of DW-MRI in data acquisi-
tion and analysis, intravoxel incoherent motion (IVIM) MRI,
which decodes contributions from tissue diffusivity and microca-
pillary perfusion to DW-MRI signal attenuation (23, 24), has
become an emerging technique for breast tumor characterization
and has been applied for breast cancer diagnosis (25-32) and
therapeutic monitoring (33-35). One attractive feature of the
IVIM-MRI method is that tissue diffusion and perfusion can be
assessed at once in one imaging sequence without the need for
contrast agent injection. The conventional approach for IVIM is
to acquire the data with many b-values (diffusion weighting fac-
tors) to sensitize the signal to both microcapillary perfusion and
tissue diffusion, and fit the data with a biexponential model to
extract the following three parameters: true molecular diffusion
coefficient (D), perfusion-related pseudodiffusion coefficient
(D), and perfusion fraction (f,). A segmented fitting approach
(36) was recently proposed as an alternative method to improve
the precision of IVIM data fitting. However, both fitting methods
generally require the use of >10 b-values, which results in long
data acquisition time. In a recent study (37), a systemic compari-
son of [IVIM analysis using a range of b-values from 4 to 10 indi-
cated that a reduced number of b-values for IVIM analysis may
not compromise the performances of [VIM parameters in charac-
terizing breast tumors. Jalnefjord et al. proposed a 3-b-value
approach (38) in IVIM parameter quantification by directly calcu-
lating the D and f;, parameters. This approach provides a simple
quantitative method that completely avoids nonlinear fitting and
the ill-conditioned problem (39) in biexponential fitting, with the
drawback of being unable to derive the D* parameter. The latter is
well known to be problematic in deriving accurate model parame-
ters from data with low signal-to-noise ratio (SNR), which is often
seen in breast DW-MRI performed in routine clinical studies.
Furthermore, breast IVIM-MRI studies in the literature (12, 13)
have shown that, among the three IVIM parameters, D* is the least
robust in characterizing tumor pathology. Therefore, the 3-b-value
approach could potentially be an optimal breast IVIM-MRI
method, allowing reduced acquisition time and patient discomfort
without compromising diagnostic performance.

In this preliminary study, we performed quantitative DW-
and DCE-MRI studies in a patient cohort with suspicious breast
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lesions. The goal was two-fold: comparing the diagnostic perform-
ance in discriminating malignant and benign lesions between the
two IVIM methods of biexponential fitting and 3-b-value calcula-
tion, as well as between DW- and DCE-MRI; and investigating
whether combinations of DW-MRI markers (ADC and IVIM pa-
rameters) and DCE-MRI PK parameters further improve diagnostic
accuracy compared with individual MRI methods or markers.

METHODOLOGY

Patient Cohort

Twenty-six female patients were recruited and consented to
participate in a local IRB (Institutional Review Board)-
approved research MRI study that included DW- and DCE-
MRI. Twenty-eight suspicious lesions in these women (one
with 2 lesions in the right and 1 lesion in the left breast) were
found by routine mammography and/or ultrasonography
screening and diagnosis with ACR BI-RADS scores of 4 or 5,
and were referred for biopsies as per standard of care. The
MRI studies were performed before the biopsy procedures.
Patient demographic and lesion clinicopathologic character-
istics are shown in Table 1.

Number or
Mean (range)

50 (22-77 years)
19 (4-55 mm)

Characteristic
Age

Lesion size in the longest diameter (measured
by mammography or ultrasonography)

ACR BI-RADS score (mammography or ultrasonography)
4 27
) 1
ACR BI-RADS score (MRI)
Positive finding
4 22
5 1
Negative finding
3 4
2
Biopsy histopathology

—_

Malignant 1
IDC, grade 1
IDC, grade 2
IDC, grade 3
DCIS, high grade
ILC, grade 1
ILC, grade 2
IMC, grade 2 1
Benign 14

— = = N O w N

Abbreviations: IDC, invasive ductal carcinoma; DCIS, ductal carci-
noma in situ; ILC, invasive lobular carcinoma; IMC, invasive mam-
mary carcinoma

149



TOMO @

MRI Data Acquisition

All the MRI studies were performed using a 3 T Siemens Prisma
system (Siemens Healthcare GmbH, Erlangen, Germany) with the
body coil and a 16-channel bilateral phased-array breast coil as
the transmitter and receiver, respectively. In each MRI session,
scout imaging, axial T2-weighted MRI with fat saturation, and
axial T1-weighted MRI without fat saturation were followed by
DW-MRI and then DCE-MRI (both with fat saturation). Both DW-
and DCE-MRI images were acquired in the axial orientation with
bilateral, full breast coverage.

DW-MRI was performed using a single-shot 2D spin-echo
EPI sequence with 12 b-values (0, 10, 25, 50, 75, 100, 150, 250,
450, 800, 1000, and 1200 s/mmz) applied in three orthogonal
directions, with the following parameters: echo time (TE) =
68 milliseconds and repetition time (TR) = 6400 milliseconds, in-
plane matrix size = 192 x 192, field of view (FOV) = 32-34cm,
slice thickness (no gap) = 5 mm, number of averages = 3, and a
parallel imaging acceleration factor of 2 for a total acquisition
time of ~9 minutes.

DCE-MRI was performed using a 3D spoiled gradient echo-
based TWIST (Time-resolved angiography WIth Stochastic
Trajectories) sequence with water excitation only, which uses the
strategy of k-space undersampling during acquisition and data
sharing during reconstruction (40). DCE-MRI acquisition param-
eters included a 10° flip angle (), TE/TR = 2.9/6.2 milliseconds,
parallel imaging acceleration factor of 2, FOV = 32-34 cm, in-
plane matrix size = 320 x 320, and slice thickness = 1.4 mm. The
total acquisition time for a DCE-MRI scan was ~10 min for 32-
40 frames of image volume containing 96-128 slices each and
having a temporal resolution of 14-18 seconds. The variations in
the number of frames, number of slices per frame, and temporal
resolution were due to differences in breast size. The intravenous
injection of a contrast agent, Gd(HP-DO3A) [ProHance (Bracco
Diagnostic Inc., Monroe Township, NJ)] at the dose of 0.1 mmol/
kg and a rate of 2 mL/s, by a programmable power injector, was
timed to commence after the acquisition of two baseline image
frames, followed by a 20-mL saline flush.

To quantify the precontrast native T, value, T, for PK anal-
ysis of DCE-MRI data, proton density-weighted MRI that was
spatially coregistered with DCE-MRI was performed immediately
before DCE-MRI. The data acquisition sequence and parameters
were the same as those for the DCE-MRI scan except for a = 2°
and TR = 50 milliseconds.

IVIM-MRI Simulations

A noiseless biexponential IVIM decay curve was created
using breast tumor parameter values for D, D* and f,
reported in the literature (30). Ten thousand Monte Carlo
simulation runs were performed at each SNR, where random
Gaussian noise was added to each run. In each simulation,
the IVIM parameters were obtained by using standard biex-
ponential fitting (23) [Equation [1], where S and S, are signal
intensities with and without diffusion weighting, respec-
tively] with 12 b-values (0, 10, 25, 50, 75, 100, 150, 250, 450,
800, 1000, and 1200 s/mm?) and by using the 3-b-value (0,
200, 800 s/mmz) method (38) [Equations [2] and [3], where
b,, b,, b; are 0, 200, and 800 s/mmz, respectively; est: esti-
mate]. Ten SNR levels evenly spaced from 10 to 100 were
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simulated. Mean and standard deviation (SD) of the derived
parameter values at each SNR level were calculated. The D
and f}, values, which were derived from both the 12 b-value
biexponential fitting and 3-b-value approach, were then
compared with the reference values used to generate the orig-
inal noiseless curve. The absolute relative error, the absolute
difference (between the mean of calculated value and the ref-
erence value) over the reference value, was calculated.

S=So|fyexp(—bD*) + (1 — f,)exp(—bD)] (1]
1 S(b,)
Dest = mln S(b3) [2]
L S(b,)" R
fp,est - S(bl) (S(b3)b2> [3]

We also used mean squared error (MSE) to compare the two
analysis approaches. Using the standard approach of bias-var-
iance decomposition (41), the MSE can be calculated as E? + V,
where E (the bias) and V (the variance) can both be calculated
from the simulation runs. The method with a smaller MSE value
indicates better overall performance in accuracy and precision of
parameter estimation.

MRI Data Analysis

Clinical MRI Interpretation. All 28 mammography- and/or so-
nography-detected suspicious lesions exhibited MRI contrast
enhancement and were identified by either of the two radiolog-
ists (KYO or NJ; each with >5 years’ experience in reading breast
MRI) on postcontrast DCE-MRI images. The second baseline
image frame and 5 postcontrast image frames were selected from
the high temporal resolution TWIST DCE-MRI series to form a
new dynamic series with a time interval (or effective temporal
resolution) of 70-72 seconds between two consecutive image
frames, closely replicating the institutional clinical breast
DCE-MRI protocol which uses a conventional full-k-space
sampling 3D gradient echo sequence. The newly formed image
series were then submitted to a computer-aided diagnosis
(CAD) system (DynaCad Breast®, Invivo, Gainesville, FL) for
qualitative assessment of contrast kinetics via examination of
the curve shape of signal intensity-time course. For each
patient, the lesion(s) was evaluated by one radiologist in mor-
phology (from postcontrast DCE-MRI and precontrast T1- and
T2-weighted images) and contrast kinetics according to ACR
MRI BI-RADS lexicon (1), and assigned an integer BI-RADS
score (Table 1). A BI-RADS score of >4 was defined as a pos-
itive finding, whereas a score of <3 was defined as a nega-
tive finding. The radiologist was blinded to the pathology
results of the biopsy specimens when interpreting the MRI
images.

DCE-MRI. The breast lesion regions of interest (ROIs) were man-
ually traced by the radiologists on postcontrast (~140 seconds
after the contrast injection) DCE-MRI image slices that contained
the contrast-enhanced lesion. The following procedures for
quantitative DCE-MRI data analysis were performed on voxel-
by-voxel basis.
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Assuming TE < T3, which was the case for this DCE-MRI
study, the signal intensity, S, of a spoiled gradient echo sequence
is given by Equation [4]:
1—exp(—TR- Ry)

4
1 —cosaexp(—TR-R)’ 4

S = Spsin«

where S, is proportional to the proton density of the sample.
Used in PK modeling of DCE-MRI data, the voxel T;o (= 1/R;0)
values were determined with Equation [4] by dividing the signal
intensities of the proton density-weighted images by those of the
second-frame baseline images from the DCE-MRI series (40, 42).
The voxel DCE-MRI signal intensity-time course was then, with
the knowledge of R;,, converted to R; time course, R;(t), which
was fitted to the 2-compartment-3-parameter fast exchange re-
gime (FXR)-allowed shutter-speed PK model (43, 44), expressed
in Equation [5]:

Ri(0) = (1/2)[{2R;; + 1K™ /v, / th(t’)

0

x exp(—K"™ /ve(t — t'))dt + (Rio — Ryi + 1/74)/Ve}

- {[2/7i4+ Ryi— Ryg—1/7)/Ve — rlK"a”s/ve/th(t’)

0

x exp(—K™ /v (t — t))dt]* + 4(1- ve)/7 2ve}'?), [5]

where Cy(t) is the arterial plasma contrast agent concentration
time course or arterial input function (AIF); Ry; is the intrinsic in-
tracellular longitudinal relaxation rate constant and is assumed
to be equal to the tissue R,; r; is the contrast agent relaxivity at
3T, setat3.8mM ‘s ; V. is the volume fraction of extravascu-
lar and extracellular space; and 7; is the mean intracellular water
lifetime (k;, = 1/7;, water efflux rate constant, was quantified and
reported in this study). ke, was calculated as ke, = K""*/v,. The
FXR shutter-speed model takes into account water exchange
kinetics between the intra- and extracellular compartments in
the extravascular space (43, 44).

A population-averaged AIF was used for the PK analysis.
This AIF was obtained by averaging individually measured AlFs
from an axillary artery in a previous prebiopsy breast DCE-MRI
study (10) performed with unilateral coverage in the sagittal ori-
entation and higher temporal resolution (<7 seconds), but with
the same contrast injection protocol, including dose, injection
rate, and injection site (antecubital vein). Voxel values of K™,
Ve Kep, and kj, were estimated from the PK analysis and the cor-
responding voxel-based parametric maps were generated. The
mean lesion PK parameter value was calculated by averaging all
the voxel parameter values within the lesion ROIs which were
registered from the postcontrast images onto the parametric
maps.

DW-MRI. Lesion ROIs were drawn on DW-MRI images in refer-
ence to those drawn on postcontrast DCE-MRI images. The
voxel-based DW-MRI data were analyzed three times and para-
metric maps were generated: once with the biexponential IVIM
fitting (Equation [1]) with all the b-values up to 1000 s/mm? (a
total of 11 b-values) to extract D, D*, and f,; once with the 3-b-
value approach (0, 200, 800 s/mmz) (38) (Equations [2] and [3])
to extract D¢y and fj, os; and once with monoexponential fitting
with 2 b-values (0 and 800 s/mm?) to extract ADC. The lesion
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mean parameter value was calculated by averaging all the voxel
values within the lesion ROIs which were registered from the
DW-MRI images onto the parametric maps.

Statistical Analysis

Descriptive statistical analysis was performed for individual
DW- and DCE-MRI markers. To determine if there was a sig-
nificant difference in each marker between the malignant and
benign lesions, a two-sample unpaired f test was performed to
calculate the f-statistic and P values. Paired sample t test was
performed on the DW-MRI markers from the entire cohort to
determine if different approaches in DW-MRI data analysis
resulted in significant differences between the corresponding
markers: D vs D¢y and £}, vs f}, o, as well as D vs ADC and D
vs ADC.

A linear support vector machine (SVM) (45) was used to gen-
erate a predictive model for classification of malignant and be-
nign lesions. The predictive performance was assessed as ROC
(receiver operating characteristic) AUC (area under the curve) for
each individual imaging marker separately and for a combina-
tion of imaging markers. The combined markers were con-
structed by concatenating individual markers to form feature
vectors with multiple dimensions as follows: IVIM1, combining
D, D%, and f;; IVIM2, combining Des and f}, ost; DCE, combining
Ktrans, kep, Ve, and kj,; DCE + ADC, four DCE-MRI markers and
ADC; DCE + IVIM1, four DCE-MRI and three IVIM (D, D*, and f,)
markers; and DCE + IVIM2, four DCE-MRI, and two IVIM (D
and f, o) markers. Pairwise comparisons of ROC AUC values for
all the markers were performed by calculating the critical ratio
according to the Hanley and McNeil formula (46). In addition to
the classification results, the SVM generated a score indicating
the likelihood of an individual or combined marker value repre-
senting a malignant or benign lesion. These scores were sorted
and cutoff values were selected to achieve the same sensitivity in
discriminating malignant and benign lesion as that from the
clinical MRI reading, and the specificity values were then calcu-
lated accordingly.

Pearson correlation analysis was performed for the diffusion
and perfusion imaging markers, within and between the DW-
and DCE-MRI methods. Pearson correlation coefficients and P
values were calculated.

The statistical significance was set at P<.05 for all the
aforementioned statistical analyses.

RESULTS

Histopathological analysis of the biopsy specimens revealed that
14 lesions were malignant and the other 14 lesions were benign
(Table 1).

DW-MRI SNR was estimated for each voxel within the
lesions ROIs using the multiframe method (47), in which the
voxel SNR was calculated as the mean of signal intensities from
images obtained with three orthogonal diffusion weightings at
b=10 s/mm2 over the standard deviation of signal intensities
from the same images. The selection of the images with the
lowest diffusion weighting used in this study was intended to
estimate the highest possible SNR in the DW-MRI images
(except for those with b =0 s/mm?). Combining all voxel SNR
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values across all available lesion ROIs and all the patients
resulted in SNR = 36.9 = 18.4 (mean = SD) for the breast
DW-MRI data sets.

IVIM-MRI Simulations
Panels A and B in Figure 1 compare the absolute relative errors
at different SNRs in the IVIM parameters derived in simulations
of the two analysis approaches, between D and D (A), f, and f,,
est (B), respectively. The 3-b-value estimated values are shown in
light gray, while the 12 b-value biexponential fitting results are
in black, with each data point representing the average of 10 000
iterations of the simulations. Absolute relative errors for both
sets of parameters decrease with increasing SNR. When SNR <
50, the 12-b-value biexponential fit generates larger parameter
errors than the 3-b-value fit. The errors from the two fitting
approaches converge and reach a plateau near zero when SNR >
60. With the same representations, panels C and D in Figure 1
show the calculated mean D and D.y and f, and £ . values,
respectively, at different SNRs, with associated error bars repre-
senting SD from the simulations. It is clear that simulated param-
eter values from the 3-b-value and 12-b-value methods
converge to the reference value from different directions. For the
12-b-value biexponential fitting, the D and f, parameters con-
verge to the reference values from under- and overestimations,
respectively, with increasing SNR. The opposite is observed for
the 3-b-value method. Although the 3-b-value calculations gen-
erate parameter values closer to the references values than the
12-b-values biexponential fitting at low SNRs, the SD values
from the simulations are actually larger.

Figure 2 shows plots of MSE vs SNR for D and D (Figure
2A) and f, and f} . (Figure 2B), respectively. The lines through
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the data points are meant to guide the eyes only. When compar-
ing 12-b-value biexponential fitting with the 3-b-value
approach at the same SNR, the overall performance of parameter
accuracy and precision, as measured by MSE, of the former is
generally better. However, when correcting for total image ac-
quisition time, that is, making the acquisition time of 3-b-value
DW-MRI equal to that of 12-b-value DW-MRI by increasing or
decreasing the signal averaging of the former or latter, respec-
tively, the effective SNR for the 3-b-value approach could be two
times higher than that of the 12-b-value method. Therefore, the
results in Figure 2 suggest that the 3-b-value approach could be
better than the 12-b-value method in estimated parameter accu-
racy and precision at low SNR under the same acquisition time.
For example, comparison of the 3-b-value method at SNR = 40
with the 12-b-value method at SNR = 20 in Figure 2 shows that
MSE values of both D¢y and fj, o5 are smaller than those of D and
f,, respectively.

DW-MRI

The mean = SD values of ADC, D, D, f;,, and f;, o5 for the entire
28-lesion cohort are shown in Table 2, as well as the P values for
pairwise comparisons among ADC, D, and Dy and between f;,
and f;.q D* is not listed for comparison, as the 3-b-value
method does not generate this parameter. Both ADC and Dy
were significantly (P < .05) larger than D, while there was no sig-
nificant difference between ADC and Dey. £, ose was significantly
(P < .05) smaller than f,.

Diagnostic Performance

The clinical interpretation of the MRI data generated 23 positive
and 5 negative findings (Table 1), which, following correlations
with histopathology results (Table 1), gave 12 true positives, 2
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false negatives, 3 true negatives, and 11 false positives.
Therefore, the sensitivity and specificity for discriminating ma-
lignant and benign lesions from clinical MRI reading were 86%
and 219%, respectively.

Table 3 lists the mean = SD values of all individual imaging
markers for the malignant and benign lesion groups, obtained
from PK modeling of DCE-MRI data and analysis of DW-MRI
data with different approaches (monoexponential ADC fitting,
biexponential IVIM fitting, and the 3-b-value IVIM analysis).
The malignant lesions exhibited significantly (P < .05) higher
K™ and ke, and lower ADC and D values compared with the
benign lesions. No statistically significant differences between
the two lesion groups were found in the other markers. Figure 3
shows postcontrast DCE-MRI image slices (the middle two pan-
els) and the voxel-based color parametric maps of ADC, D, D,
foest Ty D% K™, kep, Ve and ky, from a malignant (top two
rows) and a benign (bottom two rows) lesion. The DCE-MRI para-
metric maps were from the same postcontrast DCE-MRI image
slice which was through the central portion of the lesion, while
the DW-MRI parametric maps were from a slightly different
image slice location owing to the difference in slice thickness
between the DCE- and DW-MRI acquisitions. The color scale for
each parameter was kept the same for comparing the two lesions.
It can be visually observed that, compared with the benign lesion,
the malignant lesion exhibited higher K™"* and ke, but lower
ADC, D¢, and D values.

Table 4 shows the ROC AUC, sensitivity, and specificity val-
ues for discriminating malignant and benign lesions for all the

signal to noise ratio (SNR)

individual and combined imaging markers. Because the sensitiv-
ity of clinical MRI reading was 86%, the specificities for the
quantitative imaging markers (individual or combined) were cal-
culated with sensitivity kept at 86% for fair comparisons. Among
the individual markers, K™, kep, Des, and ADC showed high
diagnostic accuracies with 0.70-0.80 ROC AUC and 36%-57%
specificity, while v, D £}, and f, .. showed low diagnostic accu-
racies with 0.50-0.57 ROC AUC and 149%-28% specificity, simi-
lar to clinical MRI reading with 0.56 ROC AUC and 21%
specificity. Within DCE-MRI or each of the two IVIM-MRI analy-
sis methods, the combination of the imaging markers, DCE,
IVIM1, and IVIM2, improved diagnostic performance with 0.76-
0.88 ROC AUC and 57%-71% specificity. In general, DCE-MRI
outperformed DW-MR], individual or combined markers, in dis-
criminating malignant and benign lesions. The diagnostic accu-
racy was further improved when DCE-MRI markers were
combined with DW-MRI markers, DCE + ADC, DCE + IVIM1,
and DCE + IVIM2, with 0.92-0.93 ROC AUC and 86%-93%
specificity.

Table 5 shows the P values from pairwise comparisons of
ROC AUC values among all the individual and combined imaging
markers. Combined DCE-MRI markers or combined DCE- and
DW-MRI markers (DCE or DCE + ADC, DCE + IVIMI, and
DCE + IVIM2) showed significantly (P < .05) better diagnostic
performance in discriminating malignant and benign lesions, as
measured by ROC AUC, compared with standard clinical MRI
reading. In general, the combined DCE- and DW-MRI markers
showed significantly (P < .05) higher ROC AUC compared with

ADC D
Mean * SD 1.08 = 0.60 0.65 + 0.54
P 6.3x1077* 7.0x 1077**

Desf Ifp IFp,Esl
1.06 + 0.57 0.29 +0.22 0.10 = 0.07
0.48%* 9.9 x 1073*** -

Units for ADC, D, and Dest: x 10> mm?/s.
Paired  test: *ADC vs D; **D vs Dest; ***fp vs fp,est; #ADC vs Dest.
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D(x10~3 D* (x1072 Doy (x1073 ADC (x1073 KgSes kep
Lesion mm?/s) mm?/s) fo mm?/s) o mm?/s) (min~") (min~") Ve kio (s~")
Malignant ~ 0.51 +0.44 3.38x275 024+023 0.80=x0.49° 0.11=0.08 0.83=x0.54° 0.25=0.14° 472436 030=032 257077
Benign 0.80+0.62 3.07+253 035020 1.32+0.54 0.10+0.06  1.33+0.57 0.12 +0.10 2.05 =291 0.39+0.33 2.27£0.87

# P < 0.05, statistically significant difference, unpaired t test comparing the malignant and benign lesions.

any individual markers except for K™ and D, which had high
ROC AUC values themselves (Table 4). No statistically significant
difference was found in pairwise ROC AUC comparison among
the individual markers, IVIM1, IVIM2, and clinical MRI reading;
or among the combined markers—IVIM1, IVIM2, DCE, DCE +
ADC, DCE + IVIM1, and DCE + IVIM2.

Imaging Marker Correlation

Pearson correlation coefficient and P values for pairwise correla-
tions among all the diffusion markers of ADC, D, and Dy, and
perfusion markers of K™, ke, f,, fpes and D* are listed in
Table 6. Within DW-MRI, ADC, D, and D showed strong signif-
icant (P< 1.0 x 10~ ) positive correlations between each other;
while there were also significant (P < .05) positive correlations in
ADC vs D* and ADC vs f,,, as well as D vs D*. The DCE-MRI perfu-
sion markers K™ and k., also showed significant (P < .05) pos-
itive correlation. However, there were no significant correlations
among the perfusion markers from IVIM-MRI (f,, f, s, and D*)
and across IVIM- and DCE-MRI (£, f, e, or D* vs K™ or k).
Unlike D and D, which were significantly correlated, there
was no significant correlation between f, and f, . derived
with the biexponential and 3-b-value IVIM analysis methods,
respectively.

DISCUSSION

Although not statistically significantly better in diagnostic per-
formances in comparison with clinical MRI reading, D, D, and
ADC from DW-MRI and K"™"* and k., from DCE-MRI are prom-
ising individual diagnostic markers for breast cancer, showing
substantially greater ROC AUC and specificity (under the same
sensitivity of 86%) values in discriminating malignant and be-
nign lesions. The worst-performing markers, such as D* f;,, and
V., had diagnostic accuracies similar to clinical MRI reading.
Consistent with previous [IVIM-MRI studies for breast cancer di-
agnosis (12, 13), the D parameter is the most robust among the
three IVIM markers for discriminating malignant and benign
breast lesions. This preliminary study shows that Dy, derived
with the 3-b-value method, has better diagnostic capability
(although not statistically significant) than D, derived with the
traditional biexponential IVIM fitting. Along with ADC, K™,
and kp, Deg; was another individual marker that exhibited statis-
tically significant difference in value between malignant and be-
nign lesions. This suggests that a 3-b-value approach for IVIM-
MRI may be optimal for the purpose of breast cancer diagnosis,
which has the added benefit of reduced data acquisition time and
patient discomfort.
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Combining individual imaging markers within each MRI
method clearly improved diagnostic performance compared to
any individual markers. Although there were no statistically sig-
nificant differences in ROC AUC among the combined markers of
IVIM1, IVIM2, and DCE, the superiority of DCE over standard
clinical MRI reading for discriminating malignant and benign
lesions was statistically significant (Table 5). Whether com-
paring individual or combined markers, quantitative DCE-
MRI PK parameters outperformed quantitative DW-MRI
markers (ADC or IVIM parameters) in accuracy for breast
cancer diagnosis. Therefore, in the foreseeable future, it is
unlikely that noncontrast DW-MRI (with the capacity for
IVIM analysis) will replace DCE-MRI for diagnosis of breast
cancer without fundamental improvements in DW-MRI data
acquisition and analysis.

In agreement with previous studies (16-22, 27, 31), this
study shows that the multiparametric approach of combining
DCE-MRI and DW-MRI (ADC or IVIM parameters) markers fur-
ther improves diagnostic accuracy in discriminating malignant
and benign lesions when compared with each individual MRI
method. The diagnostic performances of DCE + IVIM1, DCE +
IVIM2, and DCE + ADC were statistically significantly better
than clinical MRI reading and any individual imaging markers
except for Dey and K™, which were the two best individual
diagnostic markers. This study differs from the previous multi-
parametric studies (16-22, 27, 31), in that quantitative PK param-
eters were used as DCE-MRI markers here while qualitative or
semiquantitative kinetic parameters were used in those studies.
Even though the D* parameter was missing from the 3-b-value
IVIM analysis method, the diagnostic performance of the com-
bined markers DCE + IVIM2 was essentially the same as that of
DCE + IVIM1, suggesting that, compared with the biexponential
fitting approach with >10 b-values, the 3-b-value IVIM method
is adequate when combined with DCE-MRI for breast cancer diag-
nosis, at least at SNR < 50, which was the case in this study.

To the best of our knowledge, there are two studies (28, 29)
that used and compared quantitative IVIM markers and DCE-
MRI PK parameters for discriminating malignant and benign
breast lesions. Unlike this preliminary study, none of the two
studies combined IVIM and PK parameters to improve diagnostic
performances. Liu et al. (28) found moderate correlation of f;
with v, [plasma volume fraction, derived with extended Tofts
model (48)], but not with K™ or kep- Jiang et al. (29) did not
find any significant correlations between IVIM- and DCE-MRI
parameters. Because insufficient DCE-MRI temporal resolution
causes high variability in v, estimation (49), v, was not included
as a model variable in PK analysis of our DCE-MRI data. In
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D, D, ADC
(x10-3 mm?s)

D* (mm?/s)

fP' fp,est
K trans (min'l)

addition, we used the shutter-speed model-based home-built
software and experimentally measured AIF from an artery near
the breast for PK data analysis, whereas those two studies used
Tofts model-based manufacturer software and a generic popula-
tion AIF derived from arteries that are not anatomically adjacent
to the breast. Despite these differences in PK analysis, the results
of our study are consistent with the results of those two studies,
in that significant correlations were not observed between the
IVIM perfusion parameter, f, (and f, . in our study), and the
DCE-MRI parameters K™ and k.. This is probably because f,
represents volume fraction of microcapillaries, while the parame-
ters K™ and k., are dominated by vessel permeability (44, 48).
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1.75 35
0.075 0.15
0.45 0.9

The latter may also explain why no correlations were observed
between K™ or kep and D, which is related to the microcapil-
lary flow. The lack of associations in perfusion parameters
between IVIM- and DCE-MRI supports the multiparametric
approach of using IVIM- and DCE-MRI as two independent and
yet complementary quantitative MRI methods for improved ac-
curacy in breast cancer diagnosis.

It is well known that fitting of the biexponential decay rate
constants (D* and D in IVIM analysis) is an ill-conditioned prob-
lem (39) at low SNR. For IVIM biexponential fitting, the reliabil-
ities of the estimated D* and D parameters strongly depend on
the SNR of the DW-MRI data, as shown by the simulation results.
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ROC Sensitivity Specificity
MRI Methods AUC (%) (%)
Clinical MRI Reading 0.56 86 21
DW-MRI
D 0.66 86 36
D* 0.52 86 21
s 0.50 86 14
Dest 0.76 86 43
o est 0.56 86 28
ADC 0.71 86 36
DCE-MRI
K'rans 0.80 86 57
kep 0.70 86 43
Ve 0.57 86 14
kio 0.64 86 28
IVIM1 0.78 86 64
IVIM2 0.76 86 57
DCE 0.88 86 71
DCE + IVIM1 0.92 86 93
DCE + IVIM2 0.93 86 86
DCE + ADC 0.92 86 86

Abbreviations: ROC, receiver operating characteristic; AUC, area
under the curve; IVIM1: multivariable combination of D, D*, and f;;
IVIM2: multivariable combination of Deg and f}, ; DCE: multivari-
able combination of K", Kep, Ve, and kio; DCE + IVIM1: multivari-
able combination of K", Kep, Ve, kio, D, D, and f,; DCE + IVIM2:
multivariable combination of K™, k.., Ve, kio, Dest, and fpest; DCE +
ADC: multivariable combination of K™, kep, Ve, kio, and ADC.

At SNR < 50, which was the case for our DW-MRI data, the accu-
racies of D and f;, from the biexponential fitting are poorer than
those of D¢y and fj o from the 3-b-value method (Figure 1).
This may explain why D.s; had a better diagnostic perform-
ance than D in discriminating malignant and benign lesions.
It is not surprising to see the significant differences in D vs
Desi and £}, vs f}, . comparisons in the human breast DW-MRI
data (Table 2), as the simulations show that each set of the
parameters converges to the reference value from the oppo-
site directions with increasing SNR (Figure 1, C and D). f, is
substantially overestimated at low SNR (Figure 1D), which
could be the reason why we observed unrealistic f}, values in
the human study (Tables 2 and 3). In the 3-b-value approach,
the second b-value (200 s/mm?) is chosen based on the
assumption that the pseudoperfusion component is com-
pletely decayed at this b-value, and the third b-value (800 s/
mm?) is chosen to avoid appreciable kurtosis effect (50) in
the IVIM analysis. Thus, the D parameter is essentially cal-
culated (Equation [2]) from the linear region in the semilog
plot of DW-MRI signal vs b-value curve. This happens to be
similar to how ADC is defined and calculated, though the b-
values of 0 and 800 s/mm2 were used in ADC calculation in
this study. This similarity in D.s; and ADC quantification and
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the overestimation of D by the 3-b-value method at low
SNR (Figure 1C) explains why we obtained nearly identical
breast lesion D.;; and ADC values. Furthermore, the simula-
tions show that, when both parameter accuracy and precision
as measured by E2+V (MSE) are taken into consideration
(Figure 2), the 3-b-value approach still has the advantage
over biexponential fitting with >10 b-values under the con-
ditions of low SNR and equal acquisition time. It is important
to note that, in comparing the two analysis approaches, the
majority of the b-values used for biexponential fitting were
between 0 and 200 s/mm2 in this study, while most b-values
were in the range of 200-800 s/mm? in the study by
Jalnefjord et al. (38). In addition, the three b-values used in
this study for the 3-b-value method were optimized from a
DW-MRI study of the liver (38), which likely has different
IVIM parameter values compared with malignant and benign
breast lesions. Thus, further investigations are needed to
determine the optimal b-value distribution for the 3-b-value
method that is tailored to the ranges of breast lesion IVIM pa-
rameter values.

One clear limitation of this study is the small cohort size.
Therefore, the findings are preliminary and need to be validated
in a much larger population. The lack of statistically significant
difference in diagnostic performance between individual imag-
ing markers, even between the best and worst diagnostic
markers, was probably due to the small sample size. The ROC
AUC values were essentially the same among the three multi-
parametric approaches of DCE + IVIM1, DCE + IVIM2, and DCE
+ ADC for this small cohort. Because the DW-MRI data acquisi-
tion time is similar for ADC quantification and for 3-b-value
IVIM analysis, it will be interesting to investigate in a larger pop-
ulation whether the DCE 4+ IVIM2 (the 3-b-value method) combi-
nation performs better in discriminating malignant and benign
breast lesions than the DCE + ADC combination. If not, then
ADC quantification from DW-MRI is adequate when combined
with DCE-MRI for breast cancer diagnosis. Another limitation of
this study is in lesion mean parameter value calculation based
on lesion ROIs drawn manually. The DCE-MRI-based and DW-
MRI-based ROIs were drawn separately. The contrast between
the lesion and surrounding normal tissue was much more
prominent on postcontrast DCE-MRI images than DW-MRI
images. Even with visual reference to the postcontrast DCE-
MRI images, the ROI drawing on DW-MRI images was
expected to be less precise and more prone to random errors.
As a result, there might have been larger random errors in
quantifications of lesion DW-MRI parameters (ADC and IVIM
parameters), which contributed to their lower diagnostic per-
formances compared with DCE-MRI markers such as K"™".
The differences in in-plane spatial resolution and slice thick-
ness between DW- and DCE-MRI are other confounding fac-
tors, in addition to ROI drawing, that affected accuracies in
DW- and DCE-MRI parameter quantifications and, conse-
quently, diagnostic performances differently. Lastly, as this
study focused on comparing the 3-b-value IVIM method with
the traditional biexponential fitting, other IVIM analysis
methods such as segmented fitting (36) with >10 b-values
were not tested and compared for discriminating malignant
and benign lesions.
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®

Clinical

reading D D* fo Dest fpess ADC K™"S
Clinical reading 043 092 034 014 090 023 0084
D 037 089 030 036 071 035
D 029 0.12 097 020 0.069
fo 0.55 028 0.80 0.40
Degt 0.11 0.64 077
fest 0.19  0.063
ADC 0.50
Krrons
Ve
kio
kep
IVIM1
IVIM2
DCE
DCE -+ IVIM1
DCE + IVIM2
DCE + ADC

DCE + DCE + DCE +
Ve kio kep  IVIM1  IVIM2 DCE IVIM1 IVIM2 ADC
0.82 048 0.28 0.098 0.11 0.014* 0.0004* 0.0008* 0.0014*
0.58 092 078 0.24 0.30 0.11 0.014* 0.011* 0.026*
0.74 042 0.24 0.080 0.12 0.012* 0.0011* 0.0002* 0.0002*
0.48 081 0.89 0.28 0.48 0.14 0.0098* 0.028* 0.025*
022 044 067 0.82 0.96 0.36 0.14 0.11 0.17
072 040 0.22 0.073 0.10 0.010* 0.0001* 0.0010* 0.0010*
0.34 0463 091 037 0.56 0.20 0.049* 0.045* 0.084
0.13 0.17 042 0.90 0.80 0.48 0.26 0.21 0.24
0.64 0.40 0.16 0.21 0.013* 0.0040* 0.0008* 0.0006*
0.70  0.32 0.39 0.073 0.017* 0.010* 0.013*
0.54 0.63 0.076 0.045* 0.011* 0.010*
0.80 0.46 0.14 0.17 0.23
0.39 0.12 0.085 0.15
0.68 0.61 0.61
0.89 1.00
0.83

*P < 0.05 (in bold), statistically significant difference in ROC AUC.

CONCLUSION

Both DCE- and DW-MRI provide quantitative imaging markers
that are more accurate in discriminating malignant and benign
breast lesions than standard clinical MRI reading. In general,
individual or combined DCE-MRI markers exhibit better diagnos-
tic performances than individual or combined DW-MRI markers

(ADC or IVIM parameters). The combinations of DCE- and DW-
MRI markers allow further improvement in breast cancer diag-
nostic accuracy. In the low SNR range (SNR < 50) typically seen
in clinical breast DW-MRI studies, the 3-b-value approach
for IVIM analysis generates imaging markers with smaller errors
and with comparable or better diagnostic performances when

E3

ADC D Dest D fo foest K'rans kep
ADC = 0.82 _. 097 . 0.38 0.51 0.053 0.037 -0.28
(1.1x107) (2.8x 107 '§) (0.046) (0.0058) (0.79) (0.85) (0.087)
D = = 0.82 _ 0.63 —0.011 ~0.14 —0.039 ~0.14
(1.0x 1077 (0.00031) (0.95) (0.46) (0.84) (0.48)
Dest = = = 0.37 0.36 0.026 -0.035 -0.35
(0.051) (0.065) (0.90) (0.86) (0.066)
D = = = = ~0.21 0.069 ~0.10 ~0.21
(0.28) (0.73) (0.60) (0.29)
f, = = = = = 0.13 0.083 -0.22
(0.50) (0.67) (0.23)
s — - - - — = 0.044 0.066
(0.82) (0.74)
Ktrcns _ _ — — f— — == 042 "
(0.047)
Kep - - - - - - - -
Pearson correlation coefficient (P value).
* P < .05, statistically significant correlation.
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compared with the traditional biexponential fitting approach.
Therefore, the 3-b-value method could be an optimal IVIM-MRI
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