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Motion guided Spatiotemporal 
Sparsity for high quality 4D-CBCT 
reconstruction
Yang Liu   , Xi Tao, Jianhua Ma, Zhaoying Bian, Dong Zeng, Qianjin Feng, Wufan Chen &  
Hua Zhang

Conventional cone-beam computed tomography is often deteriorated by respiratory motion blur, which 
negatively affects target delineation. On the other side, the four dimensional cone-beam computed 
tomography (4D-CBCT) can be considered to describe tumor and organ motion. But for current on-
board CBCT imaging system, the slow rotation speed limits the projection number at each phase, and 
the associated reconstructions are contaminated by noise and streak artifacts using the conventional 
algorithm. To address the problem, we propose a novel framework to reconstruct 4D-CBCT from the 
under-sampled measurements—Motion guided Spatiotemporal Sparsity (MgSS). In this algorithm, we 
try to divide the CBCT images at each phase into cubes (3D blocks) and track the cubes with estimated 
motion field vectors through phase, then apply regional spatiotemporal sparsity on the tracked 
cubes. Specifically, we recast the tracked cubes into four-dimensional matrix, and use the higher order 
singular value decomposition (HOSVD) technique to analyze the regional spatiotemporal sparsity. 
Subsequently, the blocky spatiotemporal sparsity is incorporated into a cost function for the image 
reconstruction. The phantom simulation and real patient data are used to evaluate this algorithm. 
Results show that the MgSS algorithm achieved improved 4D-CBCT image quality with less noise and 
artifacts compared to the conventional algorithms.

Three-dimensional cone-beam computed tomography (3D-CBCT) has been widely used in image guided radi-
ation therapy (IGRT)1–3. It can provide the volumetric information for tumor localization in IGRT. But for 
thoracic and upper abdominal regions, the 3D-CBCT image is often deteriorated by motion blur4. To address the 
problem, four-dimensional CBCT (4D-CBCT) imaging that incorporating temporal (phase) information on the 
basis of 3D-CBCT was proposed5–7. Compared to 3D-CBCT imaging, 4D-CBCT can provide the patient-specific 
respiratory motion information and multiple three-dimensional volumes to represent the different status in 
the breathing cycle8–10. For 4D-CBCT imaging, the respiratory signal is recorded or estimated and motion con-
tained cone-beam projections are usually sorted into 8–10 subsets according to the respiratory signal. However, 
the gantry rotation speed and frame rate of the flat-panel imager limit the total number of cone-beam projec-
tions (usually 600~800), which result in relatively fewer projections in each respiratory phase. Consequently, the 
reconstructed CBCT images by using the conventional Feldkamp–Davis–Kress (FDK) algorithm11 suffer from 
significant artifacts and noise12,13. In addition, the randomness of breathing would lead to the cone-beam pro-
jections bunched into several clusters, and the bunched sampling scheme will aggravate the noises and artifacts 
level in the reconstructed images14.

To address this problem, various strategies have been proposed to improve the image quality of 4D-CBCT15. 
On one side, increasing the number of angular sampling, multiple-gantry rotation and slow-gantry rota-
tion schemes were structured7,13. But these schemes will prolong the time of data acquisition and increase 
the risk of motion embracing. On the other side, lots of reconstruction algorithms16–18 have been proposed to 
improve the quality of 4D-CBCT image, such like the total variation minimization based algorithms15,19,20, the 
McKinnon–Bates (MKB) algorithm21,22, the prior image constrained compressed sensing (PICCS) algorithm23 
and the auto-adaptive phase correlation (AAPC) algorithm24. As shown in the study by Frank Bergnera et al., 
the reconstruction algorithms using an iterative scheme can remarkably reduce the 4D-CBCT specific artifacts25. 
Nevertheless, algorithms that use the full data set, at least for initialization, such as MKB and PICCS algorithm, 
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are only a trade-off and achieve sub-optimal temporal resolution, of which the residual motion could still be 
found in the reconstructed 4D-CBCT images26. On the other hand, algorithms that only use the projections 
assigned to the current phase to reconstruct the final image can fully achieve the temporal resolution, such as the 
total variation minimization based algorithm. For these algorithm, when the projection number is very low or 
there exist small size and low-contrast objects, tiny structure may be usually erased with the piecewise smooth 
constraint.

In recent years, the image restoration or denoising algorithms based on block processing have shown increas-
ing vitality. The earliest concept of ‘patch’ was proposed in Haralick’s study on textural features for image classi-
fication27. In 1980, JS Lee pioneeringly used this concept for image enhancement28. Latterly, algorithms such like 
the dictionary learning based image reconstruction/restoration approaches29, the nonlocal means filter30 and 
the BM3D algorithm31, et al.32–34, have been successfully developed. Local patches often experience much less 
distortion than the global image and therefore it becomes easier to define the similarity between local patches. 
Low-rank and sparsity can be better reflected in patch based processing.

In this work, we propose to reconstruct 4D-CBCT volumes from the subset projections of current phase and 
incorporate the image domain phase-correlated information into the iterative procedure. Motived by the success 
of block based image restoration, we propose a Motion guided Spatiotemporal Sparsity (MgSS) to formulate 
the regularization for 4D-CBCT reconstruction. In this scheme, CBCT images of different phases are divided 
into small cubes (three-dimensional blocks) and the cubes are tracked with estimated motion vector fields 
through time (phase). After then, regional spatiotemporal sparsity is applied on the tracked cubes. Specifically, 
we recast the tracked cubes into four-dimensional matrix, and use the higher order singular value decomposition 
(HOSVD)35 technique to analyze the regional spatiotemporal sparsity. Finally, a cost function is formulated with 
embedding the block based spatiotemporal sparsity. One simple but effective optimization algorithm was used 
for the cost function solution.

This paper is structured as follows: In the method part, we first present the flow chart of the proposed MgSS 
scheme and then give detailed introduction of each step. After this, we formulate the reconstruction framework 
that incorporates the MgSS scheme. In the experiment part, we exhibit the results of the NCAT phantom simula-
tion data, 4DCT based simulation data and real patient data by using FDK, SART-TV and the MgSS algorithms. 
Lastly, in the discussion part, we simply discuss the superiority and limitation of the proposed algorithm.

Methods
Flow chart of the proposed MgSS algorithm.  In this work, the proposed Motion guided Spatiotemporal 
Sparsity (MgSS) applying to 4D-CBCT reconstruction comprises the following steps;

	(1)	 Estimate the motion maps for each voxel between adjacent phases of the 4D-CBCT images.
	(2)	 Divide the CBCT sequence images into cubes (3D blocks), and track the cubes through time using the 

three-dimensional motion maps obtained in step 1.
	(3)	 Stack the tracked cubes and apply regional spatiotemporal sparsity on the tracked cubes by framing the 

4D-CBCT reconstruction problem to be a constrained optimization problem, and then optimize the prob-
lem to get the reconstructions.

In the following sections, we will introduce these steps in detail.

Motion Maps Estimation.  In this study, we are not devoted to develop new algorithm to achieve the 
three-dimensional motion vector fields (3D-MVFs) between CBCT images of adjacent phases, but rather we use 
the Real-Time Image-based Tracker (RTIT)36 toolbox to estimate the three-dimensional motion maps. The RTIT 
toolbox is an available open source with implementation of the optical flow based registration algorithms37,38. 
Assume that we obtain the initial/current 4D-CBCT estimation, with the RTIT, we can achieve the pixel based 
motion vector fields consisting of the changes in space coordinates that describe the distribution of the apparent 
motion velocities of intensity patterns in the sequences of images.

Cubes Tracking with MVFs.  For the task of cubes tracking, we define the voxel space-time position as 
u x y z t( , , , )= , where x, y, z and t represent the spatial position of the voxel in the CBCT volumetric image and 
the temporal phase index, respectively. In MgSS, we fetch the cubes (3D blocks) from the images of the first phase 
and use the 3D-MVFs to track structurally similar cubes in the other phases. Specifically, the first phase image 
was initiated with highly overlapping cubes. In the extreme case, all the voxels in the first phase image can be 
defined as the central voxel of one cube, but this may result in huge computation burden. Thus in this study, rather 
than sliding by one voxel to every next, we use a step of Nstep = 2 voxels to define the cubes. For the motion track-
ing, considering one cube ∈ × ×B u X( ) N N N

1 1
b b b, here u x y t( , , z , )1 1 1 1 1=  indicates the central pixel position of the 

cubes with spatial position to be x y( , , z )1 1 1  and temporal phase index to be t1. By using Δu to denote the dis-
placement of the central voxel in the cube between t1 and t2 phases, we can use u1 + Δu to track the center pixel 
location for cube in the t2 phase. Considering u1 + Δu might be non-integral, the next block center voxel was 
taken as u2 = {u1 + Δu2}, where “{}” is a rounding operation. Extracting the voxels centered from u2, we can con-
stitute a new cube B(u2) with the same block size. Following this schedule, B(un) can be tracked with 
un= {u1 + Δun} using the above block-center-tracking method. A block cluster can be ulteriorly constructed: 

B u B u B u[ ( ), ( ), , ( )]MgSS Nt1 2Θ = ... . Here the cluster ΘMgSS is a four dimensional matrix with the size of 
× × ×N N N Nb b b t. Based on the fact that not all the chest is moving during the CBCT scan, the tracked cubes 

for the static parts should be noisy blocks with same anatomy structures. As shown in Fig. 1, compared to the 
blocks of the same spatial position in the original phases, the tracked blocks exhibit more mutual similarity.
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Regional Spatiotemporal Sparsity.  The technology about matrix rank sparsity has been successfully 
investigated in the field of dynamic image reconstruction, such as the k-t SLR method39. In some previous stud-
ies40, matrix rank sparsity was often used to dispose the entire image. But the recent studies, such like 
Low-dimensional-structure self-learning and thresholding (LOST)41 and compartment-based k-t principal com-
ponent analysis42 have indicated that the spatiotemporal sparsity and reconstruction quality could be further 
promoted by separating the entire image into blocks. Under the patch-based processing theory, decomposition of 
the tracked regions of dynamic datasets using the singular value decomposition (SVD) algorithm has been 
reported43. In Chen’s work, blocks in the clusters were vectorized and each cluster Θ was first rearranged into a 
2-D matrix  N N N( )N N

s b b
s tΘ ∈ = ×

∼ × . The SVD technique was then adopted to decompose the cluster: 
US Vsvd svdΘ =

∼ ⁎. If the cluster is truly spatiotemporal sparsity, a least number of significant values will be found in 
the singular matrix Ssvd. For the standard SVD, the image blocks are manually vectorized and then the image 
structural properties in the spatial domain are ignored. To address the problem, the higher order singular value 
decomposition (HOSVD), which is able to directly decompose dynamic datasets into a multidimensional singu-
lar matrix rather than unfolding the blocks into column vectors, has been reported35. Also, in this work, we use 
the HOSVD to decompose the clusters due to its naturality and flexibility. By using the HOSVD technique, a 
four-dimensional tensor Θ can be decomposed as:

Θ = × × × ×S U U U U (1)hosvd 1
(1)

2
(2)

3
(3)

4
(4)

where U(1), U(2), U(3), U(4) are orthogonal matrices that contain the orthonormal vectors spanning the column 
space of the matrix Θ. Here, the symbol ×n stands for the n-th mode tensor product. The core tensor Shosvd is not 
necessarily diagonal matrix, which implies that each dimension of the tensor can have a different rank. Generally, 
noise and artifacts can be attenuated by approximating the rank of the core tensor. However, the computation 
of the best rank approximation requires an iterative alternated least-square (ALS) algorithm and is quite time 
consuming44. Moreover, the approximation obtained from simple truncation has been proved to be in most cases 
quite similar to the optimal approximation45. Base on this, in our study, we apply a soft-thresholding strategy on 
the HOSVD coefficients to reduce noise and artifacts. The thresholding of the rank coefficients can be represented 
as follows:

= τŜ H S( ) (2)hosvd hosvd

where Hτ denotes the soft-thresholding operator with threshold τ. Then a new tensor can be synthesized by the 
inverse HOSVD transformation with truncated coefficients Ŝhosvd and the orthogonal matrices U(1), U(2), U(3), U(4):

ˆ⁎Θ = × × × ×S U U U U (3)hosvd hosvd 1
(1)

2
(2)

3
(3)

4
(4)

The above operation is repeated for each reference cube, thus provides multiple estimates at the same coor-
dinate. For this reason, the final estimates are aggregated by weighted averaging all the obtained block-wise esti-
mates that overlapped at each voxel.

Figure 1.  An example of blocks tracked (red squares) and not tracked (yellow squares) through all the frames.
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MgSS based 4D-CBCT reconstruction.  To incorporate the motion tracking induced blocky spatiotem-
poral sparsity into the CBCT reconstruction framework, in this section, we formulate the following minimization 
scheme:

T f

s t Af y

miniminze ( )

(4)
f u u,

2 δ

Φ ⋅

. . − <

where f represents the estimated dynamic images, A is the CBCT imaging system matrix with elements of aij, y 
denotes the projection measurements. Operator Φ is the cube based sparsity penalties, while ⋅T fu  denotes the 
dataset that includes a sequence of 4D matrix of the tracked cubes. Operator Tu includes two steps: (1) Track 
three-dimensional blocks with the motion vector, and (2) Rearrange the three-dimensional blocks into 4D 
matrix.

To optimize the problem in (4), in this work, inspired by the techniques used by Pan et al.46, we present an 
efficient way to solve (4), which can be summarized as:

(1) SART47 step:
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Here λ is an over-relaxed factor.
(2) MgSS step: = Θ

∼+ +( )f W f( )n
MgSS

n( 1) ( 1/2)⁎
 Here, Θ∼ +⁎

f( )MgSS
n( 1/2)  denotes the restored block-based clusters 

based on f n( 1/2)+  by using the HOSVD approach

Figure 2.  Results of 4D NCAT phantom with 21 projections for each phase. First row shows the begin-
expiration phase of digital phantom. Second row shows the 3D-CBCT reconstructed from all projections by 
FDK. The third to last rows show 4D-CBCT images at the begin-expiration phase reconstructed by using FDK, 
SART-TV and proposed MgSS algorithm, respectively. The transverse, coronal, and sagittal planes have been 
shown in the first, second and third columns, respectively.
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ˆ⁎ S U U U U (6)MgSS MgSS 1
(1)

2
(2)

3
(3)

4
(4)Θ = × × × ×

W is a weighted averaging operator indicates how the cubes are merged back into the image. The elements of 
W is the reciprocal of the times which one pixel was overlapped by different cubes.

In our implementation, the MgSS step is carried out after 10th iteration of SART step until f fn n( ) ( 1) 2
ξ− <−  

or reached the predetermined iterative number. Also one implicit motion vector field estimation step was per-
formed using the intermediate reconstructions of SART.

Results
Data acquisition of digital simulation.  NCAT phantom based simulation.  In this work, the 4D NURBS-
based Cardiac-Torso (NCAT)48 phantom, which is capable of providing the realistic model of human anatomy 

Figure 3.  Reconstructions of 4D NCAT phantom with 31 projections for each phase. The first to third 
rows show 4D-CBCT at the begin-expiration phase reconstructed by FDK, SART-TV and proposed MgSS 
algorithms, respectively.

Figure 4.  Reconstructions of 4D NCAT phantom with 51 projections for each phase. The first to third 
rows show 4D-CBCT at the begin-expiration phase reconstructed by FDK, SART-TV and proposed MgSS 
algorithms, respectively.
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Figure 5.  Horizontal profiles of reconstructions shown in Fig. 2. The profiles located at the pixel position x 
from 0 to 256 and y = 46 (a), y = 67 (b). The ‘black line’ generated from the NCAT phantom acts as the ground-
truth for comparison.

Figure 6.  Motion trajectories extracted from the result of 4D-CBCT along the superior–inferior direction.

Views Method

PhaseNumber (Tumor diameter:10 mm)

one two three four five six seven eight nine ten

21

FDK 8.72E-03 8.77E-03 8.90E-03 9.02E-03 9.11E-03 9.14E-03 9.13E-03 9.04E-03 8.90E-03 8.72E-03

SART-TV 2.16E-03 2.16E-03 2.17E-03 2.15E-03 2.16E-03 2.17E-03 2.17E-03 2.16E-03 2.18E-03 2.19E-03

MgSS 9.11E-04 9.10E-04 9.09E-04 9.05E-04 9.07E-04 9.10E-04 9.09E-04 9.09E-04 9.15E-04 9.17E-04

31

FDK 8.33E-03 8.38E-03 8.53E-03 8.67E-03 8.77E-03 8.83E-03 8.82E-03 8.74E-03 8.59E-03 8.41E-03

SART-TV 1.99E-03 1.93E-03 1.97E-03 1.98E-03 1.96E-03 1.98E-03 1.97E-03 1.98E-03 1.97E-03 1.98E-03

MgSS 8.73E-04 8.74E-04 8.74E-04 8.70E-04 8.71E-04 8.71E-04 8.68E-04 8.67E-04 8.66E-04 8.69E-04

41

FDK 8.12E-03 8.07E-03 7.92E-03 7.79E-03 7.68E-03 7.62E-03 7.63E-03 7.71E-03 7.86E-03 8.04E-03

SART-TV 1.80E-03 1.81E-03 1.82E-03 1.81E-03 1.83E-03 1.80E-03 1.79E-03 1.82E-03 1.81E-03 1.80E-03

MgSS 8.11E-04 8.10E-04 8.11E-04 8.08E-04 8.11E-04 8.10E-04 8.10E-04 8.09E-04 8.11E-04 8.13E-04

51

FDK 8.00E-03 7.96E-03 7.82E-03 7.68E-03 7.58E-03 7.52E-03 7.53E-03 7.62E-03 7.76E-03 7.93E-03

SART-TV 1.74E-03 1.75E-03 1.74E-03 1.73E-03 1.76E-03 1.74E-03 1.75E-03 1.76E-03 1.73E-03 1.74E-03

MgSS 7.96E-04 7.93E-04 7.96E-04 7.92E-04 7.94E-04 7.93E-04 7.92E-04 7.89E-04 7.93E-04 7.95E-04

Table 1.  rRMSE measures on the reconstructions of the FDK, SART-TV and MgSS reconstructions, 
respectively.
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and simulating cardiac and respiratory motion simultaneously, was used for data simulation. A dynamic phantom 
with ten respiratory phases and breathing period set to be 5 s was generated. The maximum diaphragm motion 
and the maximum chest anterior–posterior motion is 20 mm and 5 mm. We manually added several tumors with 
different sizes, contrast and shapes in the right lung field of phantom to test the robustness of the MgSS algorithm. 
The diameters of the spherical tumors were: 6 mm, 10 mm, 16 mm and 22 mm. The long diameter and short 
diameter of the non-spherical tumor is: 28 mm and 22 mm. For all simulations, the size of the digital phantom 

Figure 7.  Reconstructions of 4D NCAT phantom with 21 projections. The first to the fourth columns show 
the transverse planes of 4D NCAT phantom with tumors of diameters: 6 mm, 16 mm, 22 mm and 28 mm, 
respectively.

Figure 8.  Reconstructions of 4D NCAT phantom with 21 projections. The first to the fourth columns show the 
coronal planes of 4D NCAT phantom with tumors of diameters: 6 mm, 16 mm, 22 mm and 28 mm, respectively.
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is 256 × 256 × 150, with voxel size of 2 × 2 × 2 mm3. The projections were generated by utilizing fast ray-tracing 
technique. The projection size of each angular view is 300 × 200 with detector pixel size 2 × 2 mm2. In the process 
of simulation, projection views are evenly distributed over 360 degrees with the projection number of each phase 
range from 21 to 51. The noisy signal Si at each detector bin i was simulated based on the Poisson noise model:

S Poisson I y Normal( exp( )) (0, ) (7)i i e0
2σ= − +

Here I0 and σe
2 represent the incident x-ray intensity and the background noise, respectively. I0 is set to be 2 × 106 

and σe
2 is chosen to be 10.

4DCT based simulation.  To further evaluate the performance of the MgSS algorithm, the 4DCT based digi-
tal phantom simulation was also performed. The 4DCT images were acquired on a 16-slice helical CT scanner 
(Brilliance Big Bore, Philips Medical Systems, Andover, MA). The three dimensional CT volumes at each phase 
were first interpolated to be isotropic data set with voxel size 1.0254 × 1.0254 × 1.0254 mm3. Then CB projections 
were computed from the reference 3D CT image using the projection matrix. The scan geometry was chosen 
according to the Varian On-Board Imager® and True Beam™ CBCT units.

Data acquisition of patient.  The patient data was downloaded from an open data website (http://wiki.
openrtk.org/index.php/ RTK/Examples/MCCBCTReconstruction). The cone-beam projections were acquired 
on the Elekta Synergy system. The clinical dataset consisted of 644 projections and were sorted to 10 phases based 
on the AS method49. The size of the digital flat panel is 512 × 512 with the pixel size of 0.8 × 0.8 mm2. In our 
experiments, the isotropic reconstruction target resolution was set to be 1.2 × 1.2 × 1.2 mm3 on a 256 × 256 × 200 
matrix.

Evaluation metrics.  To quantitative evaluate the performance of the proposed algorithm, we calculate the 
relative root mean square error (rRMSE) between the phantom images and the reconstructions. The rRMSE is 
defined as:

Figure 9.  The UQI measures on the ROIs in Fig. 8 for ten phase.

http://wiki.openrtk.org/index.php/%20RTK/Examples/MCCBCTReconstruction
http://wiki.openrtk.org/index.php/%20RTK/Examples/MCCBCTReconstruction
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Here, f denotes the target image, fp denotes the phantom image, and m is the voxel index.
The universal quality index50 (UQI) index was utilized to conduct region of interest (ROI) based analysis by 

evaluating the degree of similarity between the reconstructed and the reference images. We select ROIs including 
the tumor and lung details within the reconstructed and reference images, the mean, variance and covariance of 
intensities in the ROIs can be respectively calculated as:
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Figure 10.  Ten phases reconstructions from -21 projections with block size set to be 5 × 5 × 5, 7 × 7 × 7, 
9 × 9 × 9, 13 × 13 × 13, 17 × 17 × 17, 23 × 23 × 23.
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Figure 11.  The averaged rRMSEs of ten phases reconstructions with different cube size.

Figure 12.  The convergence curve of the MgSS algorithm.

Figure 13.  The rRMSE measures as a function of the number of iterations for the MgSS algorithm with and 
without motion tracking.
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the fture denotes the golden standard image, m is the voxel index, and Q denotes the number of voxels within the 
ROI. The UQI can be calculated as follows:

UQI
cov f f f f

f f

2 ( , ) 2

(12)
ture

ture

ture

ture
2 2 2 2σ σ

=
+ +

UQI measures the intensity similarity between the two images, and its value ranges from zero to one. A UQI value 
closer to one suggests better similarity to the reference image.

Digital NCAT phantom study.  Visual inspection.  Figure 2 shows the results of the NCAT phantom 
reconstructed by using different methods at transverse, coronal, and sagittal planes for phase #1 with the projec-
tion number set to be 21. The columns one to three show the transverse, coronal, and sagittal images, respectively. 
First row in Fig. 2 shows the designed digital phantom images. The second row shows the results which were 
reconstructed by using the FDK algorithm from all projections. As we can see, the motion blurring artifacts are 

Figure 14.  Results of realistic digital phantom with 21 projections for each phase. First column shows the 
begin-expiration phase of the 4DCT images. The second to last columns show 4D-CBCT images at the begin-
expiration phase reconstructed by using FDK, SART-TV and proposed MgSS algorithms, respectively.

Figure 15.  The UQI tests on ten phases reconstructions from -21views projection at the transverse, sagittal and 
coronal planes separately.
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obvious. The third row shows the phase correlated 4D-CBCT images reconstructed by the FDK algorithm, and 
we can see that the FDK reconstructions are full of noise and streak artifacts. For the SART-TV reconstructions, 
the fine structures inside the lung area are severely blurred though the view aliasing artifacts are suppressed. 
Compared to FDK and SART-TV algorithms, the proposed MgSS approach can yield images with superior qual-
ity. Moreover, Figs 3 and 4 demonstrate the reconstructions of -31 and -51 views, which further illustrate the gains 
of the proposed MgSS approach.

Figure 16.  Results of patient data reconstructed by using different methods. The left to the right columns show 
the 4D-CBCT reconstructed by FDK, SART-TV and proposed MgSS algorithm, respectively.Each row shows 
images at the different phases in the breathing cycle: 20–30%, 40–50%, 60–70%, 80–90%.
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Quantitative evaluation.  Table 1 presents the results of rRMSE measures with the projection views range from 
21 to 51 for each phase. The rRMSEs of ten phases reconstructions by using the proposed MgSS reduced by an 
average of 43% compared to those of FDK reconstructions. It can be obviously seen that the MgSS algorithm can 
achieve smaller rRMSE values compared to the other algorithms, which suggests the promising performance of 
the proposed MgSS approach.

Figure 5 illustrates the horizontal profiles of the transverse plane images in Fig. 2. It can be observed that the 
profiles obtained from the MgSS reconstructions match much better than the others, which suggest that the pres-
ent MgSS approach achieves more noticeable gains than other approaches.

Motion trajectory accuracy.  Because of the various applications of IGRT is interested in the tumor position 
information, we are devoted to extract the motion trajectories from different reconstruction schemes: FDK, 
SART-TV and the proposed MgSS algorithms. We define the motion trajectories which extracted from the NCAT 
phantom with high-contrast tumor as a reference. In this paper, we extract the movement information from the 
center of tumor. The motion trajectories have been showed in Fig. 6. As we can see, the motion information of 
tumor extracted from MgSS algorithm matches well with the reference trajectory, while the trajectories extracted 
from the FDK diverges the reference trajectory.

Low contrast lesion detection study.  To test the robustness of the MgSS algorithm in reproducing the low contrast 
lesion, Figs 7 and 8 present the reconstructions of NCAT phantom with different tumor sizes and shapes at the 
transverse and coronal planes. The first row shows the designed phantom image used for visual comparison. The 
second to fourth rows show 4D-CBCT at the begin-expiration phase reconstructed by using FDK, SART-TV and 
proposed MgSS algorithms, respectively. It can be seen, the low contrast tumors in the NCAT phantom can’t be 
completely rebuilt by the FDK and SART-TV algorithms. The morphology of tumors is partly destroyed. The 
phenomenon is particularly evident for tumors with small size. On the contrast, the MgSS algorithm can mostly 
recover the tumors with relatively complete morphological structures. Furthermore, Fig. 9 presents the UQI 
test on the ROIs shown in Fig. 8. All the results suggest that, with the introduction of phase-correlated infor-
mation, the MgSS algorithm has better lesion detection ability than algorithms that only using the single phase 
information.

Parameter selection.  In our method, there are two parameters need to be tuned: (1) the tracked cube size; (2) the 
soft-thresholding coefficients for the HOSVD processing. The cube size plays an important role in our work as 
it not only directly affects the accuracy of the results, but also affects the computation time. Traditionally, for the 
block-based techniques, the size of the cube is an empirical parameter specified by the user. A reasonable cube 
size can help us attend to the local structure characteristics while removing undesirable distortions.

To study the influence of the cube size on the proposed algorithm, we experimentally change the size of cube 
to get the associated reconstructions and calculate the rRMSEs between the reconstructions and the designed 
phantom image. We reconstruct the NCAT phantom from -21 projections with block size set from 3 × 3 × 3 to 
23 × 23 × 23. Figure 10 shows the reconstructions of cube size to be 5 × 5 × 5, 7 × 7 × 7, 9 × 9 × 9, 13 × 13 × 13, 
17 × 17 × 17, 23 × 23 × 23. As shown in Fig. 10, on one hand, boundary distortion could be observed when the 
cube size is too small. On the other hand, the image blur increases with the increase of the cube size. This phe-
nomenon is due to the large cube contains too much structural information, the movement of central voxel in 

Figure 17.  The zoomed tumor areas in the reconstructions of ten phases. The first to the third rows show the 
tumor image which were reconstructed by FDK, SART-TV, and MgSS, respectively.
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the cube is not enough to describe the whole cube. Thus, to generate high quality 4D-CBCT image, appropriate 
size of the cube is needed. Moreover, as shown in Fig. 11, the averaged rRMSEs of ten phases reconstructions 
indicate that with the cube size range from 7 × 7 × 7 to 11 × 11 × 11, we can get relative smaller rRMSEs. In order 
to balance the reconstruction quality and computational time, in our other experiments, the cube size was fixed 
to 9 × 9 × 9.

For the parameter of thresholding coefficients for the HOSVD processing, we choose with a threshold of 
σ p2log 2  to manipulate the coefficients of core tensor. This is also an experiential selection as used in other 
works51. Here, σ is defined as the standard deviation of a uniform region in the intermediary images during the 
iteration and p is the cube size.

Algorithm convergence.  To validate and analyze the convergence of the present MgSS method, the 
− −f fn n( ) ( 1)  (absolute value of differences between two adjacent estimations) measuring on the entire 

to-be-reconstructed NCAT phantom image were performed. Figure 12 shows the f fn n( ) ( 1)−−  measures 
with respect to the number of iterations. Results show that the present MgSS algorithm can yield a steadily con-
vergence solution.

Influence of motion tracking.  To demonstrate the effect of the estimated motion fields on the reconstruction, we 
plot the rRMSE measures as a function of the number of iterations for the MgSS with and without motion track-
ing. Figure 13 shows the benefits of motion guidance, as MgSS with motion tracking can obtain reduced rRMSE 
as compared to MgSS without motion tracking. Figure 13 also illustrates the convergence of the proposed MgSS 
algorithm.

Realistic 4D CT based digital phantom study.  Figure 14 shows the results of the realistic digital phan-
tom reconstructed by using different methods at transverse, coronal, and sagittal planes for phase #1 with the 
projection number set to be 21. First column in Fig. 14 shows the 4DCT images using as the golden standard for 
comparison. The second column shows 4D-CBCT images reconstructed by the FDK algorithm. It can be seen 
that the FDK reconstructions are seriously contaminated by noise and artifacts, and some anatomical structures 
can’t be clearly seen. For the SART-TV reconstruction, some fine structures have been erased though most of the 
view aliasing artifacts are suppressed. Compared to FDK and SART-TV algorithms, the proposed MgSS approach 
can yield images with superior quality. In addition, the UQI test between the reconstructions and golden stand-
ard image were calculated. Figure 15 shows the test results of then phases at the transverse, sagittal and coronal 
planes, separately. For then phases, the UQI values of MgSS reconstructions are always higher than 0.95, which 
suggests the promising performance of the proposed MgSS algorithm.

Patient study.  Figure 16 shows the representative reconstructions of patient data by using the FDK, 
SART-TV and MgSS methods. Each row of Fig. 16 shows the image of 4D-CBCT at different phase in respiratory 
cycle: 20–30%, 40–50%, 60–70%, 80–90%. The first column in Fig. 16 shows the sagittal view of 4D-CBCT images 
reconstructed by conventional FDK. Because of the limited number of projections at each phase, severe noise 
and artifacts present in the FDK reconstruction. The second column of Fig. 16 shows the results of SART-TV 
algorithm. Although noise and artifacts have been remarkably reduced, details within the lung area and edges 
of bony structure can’t be clearly seen. Last column of Fig. 16 shows the images reconstructed by MgSS method, 
from which we can observe noise is suppressed. The boundaries of bony structures as well as fine structures inside 
the lung are well preserved. To further illustrate the performance of our algorithm, zoomed images of the tumor 
areas in the then phasesof the reconstructions by using different reconstruction are presented (Fig. 17).

Discussion
In this work, we developed a MgSS algorithm to improve the image quality of 4D-CBCT. This algorithm is devel-
oped on the assumption that there exists high structural similarity between the images of neighbored phases, 
which is similar with Chen’s work on dynamic MR reconstruction43. In Chen’s work, two dimensional patches are 
tracked with estimated motion maps and then SVD was used to decompose the tacked cluster. For the standard 
SVD, the image blocks are manually vectorized and then the image structural properties in the spatial domain are 
ignored. For the proposed MgSS algorithm, the 3D-MVFs between phases were utilized to track the three dimen-
sional cubes and then form the cluster ΘMgSS with the size of N N N Nb b b t× × × . To preserve the structural 
properties, in this work, the higher order singular value decomposition which is able to directly decompose 
dynamic datasets into a multidimensional singular matrix rather than unfolding the cubes into column vectors, 
was used to process the four dimensional cluster ΘMgSS. The MgSS algorithm can reveal the fine details shared by 
grouped blocks and preserve the essential unique features of each individual block. Results of digital phantom and 
patient data demonstrate the proposed approach can significantly suppress the view aliasing artifacts and noise.

One important step in the proposed MgSS algorithm is: cube based motion tracking. We utilize the Real-Time 
Image-based Tracker (RTIT)36 toolbox to obtain the voxel-by-voxel displacement maps between 3D images of 
different phases. Specifically, we rely mainly on the displacement of the center voxel of cube in the current phase 
to determine the cube in the next phase. We assume the displacements of region are changing smoothly. Thus, 
the central voxel is sufficient to describe the cube motion. And in this case, the accuracy of 3D-MVFs estimation 
would play an important role in finding cubes with similar structures. In this work, the initial 3D-MVFs are gen-
erated after the first SART iteration, which may not so accurate. Notably, as the iteration goes on, the 3D-MVFs 
would be updated with intermediate reconstructions, and therefore both the image quality and the accuracy of 
the 3D-MVFs will be improved. Other approaches such like the 3D-MVFs initialized with those got from the 4D 
planning CT of the same patient can be considered. There is a very important parameter need to be tuned for the 
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proposed MgSS approach: the tracked cube size. A large size cube may include more details and local geometry, 
but on the other side, if the cube size is too large, the central voxel will be insufficient to describe the whole cube 
motion and also result in increasing computation time. Thus, the proper selection of the cube size is critical. In 
our studies, we change the block size from 3 × 3 × 3 to 23 × 23 × 23 and generate the reconstructions as shown 
in Fig. 10 and rRMSEs between the reconstructions and the phantom images. For visual inspection, too small 
or large cube size would lead to image blur or distortion. The rRMSE results suggest that when the cube size set 
to be 9 × 9 × 9, we can get relative higher quality image with smaller rRMSE for the NCAT phantom. Also as 
illustrated in other studies of HOSVD technique, the appropriate selection of the cube size should base on the 
structural complexity of the target image and may be different for different images. But overall, in our work for 
lung CT imaging, we found the cube size set to be 9 × 9 × 9 is robust enough to balance the structural informa-
tion and computation time. Another issue of the proposed MgSS algorithm is the heavy computation burden. It 
takes about 30 minutes on a desktop computer (3.60 GHz Intel(R) i7 CPU with 8GB RAM) to run one iteration. 
On one hand, as mentioned above, we can short the computation time with a relatively small cube size as well as 
an elegant initialization. On the other hand, we can use a step of Nstep pixels in transverse, coronal, and sagittal 
directions, respectively. Hence, the number of overlapping cubes is decreased by 1/Nstep

3. But with large Nstep or 
large motion, gaps between moved blocks may appear, then a mask of the uncovered areas (gaps) on the n-th 
frame after block motion tracking can be detected and non-motion tracking is performed for the gap blocks to 
avoid potential additional gaps. Other techniques including using the graphics processing unit (GPU) can be also 
considered to short the computation time.

In summary, we have developed a MgSS algorithm to improve the image quality of 4D-CBCT. This method 
effectively utilizes the correlated information from other phases to reconstruct any particular phase of 4D-CBCT. 
By enforcing the regional spatiotemporal sparsity on the tracked cubes, noise and artifacts can be suppressed and 
the image quality of 4D-CBCT can be substantially improved.
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