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Abstract: Animal studies have shown the interaction between androgens and the gut microbiome
directly and indirectly; however, limited evidence from human studies is available. To evaluate
the association between prostate-specific antigen (PSA) levels within the normal range, reflective
of androgen receptor activity, and the gut microbiota composition, a cross-sectional analysis was
performed in 759 Korean men aged between 25 and 78 years with normal PSA levels of ≤4.0 ng/mL.
We evaluated the biodiversity of gut microbiota as well as the taxonomic and functional signatures
associated with PSA levels using 16S rRNA gene sequencing data. PSA levels within the normal
range were categorized into three groups: lowest quartile (G1), interquartile range (G2, reference),
and highest quartile (G3). The G3 group had higher microbial richness than the G2 group, although it
was dominated by a few bacteria. An increase in Escherichia/Shigella abundance and a reduction in
Megamonas abundance in the G3 group were also detected. A U-shaped relationship was observed
between the three groups across most analyses, including biodiversity, taxonomic composition, and
inferred pathways in the gut microbiota. This study showed different microbiota patterns across PSA
levels within the normal range. Further studies are required to elucidate the role of microbiota in
regulating PSA levels.

Keywords: prostate-specific antigen; androgen receptor activity; gut microbiota; 16S rRNA

1. Introduction

The role of the gut microbiota in various clinical conditions has received considerable
attention over the last decade. The gut microbiome is involved in the synthesis and
regulation of numerous hormone-like chemical compounds; thus, it can play a functional
role as an endocrine organ [1].

The androgen receptor (AR) target gene, known as prostate-specific antigen (PSA),
has been recently reported as a possible marker of AR expression due to the correlation
between PSA expression and the transcription of additional AR genes [2,3]. Our previous
meta-analysis suggested that normal-range PSA levels could serve as a surrogate indicator
of serum testosterone, and another prior study comprising a cohort of apparently healthy
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men showed that normal-range PSA levels, possibly reflective of androgen activity, could
predict subclinical and clinical cardiovascular diseases [4,5].

According to the results of two animal studies, the gut microbiota can alter serum
testosterone and sex hormone levels both directly and indirectly [6,7], while only limited
human studies on this issue have been conducted. To date, only one cross-sectional study
consisting of 31 men and 26 women using 16S rRNA gene sequencing has identified the
correlation between serum testosterone levels and gut microbiota diversity and composi-
tion, but the sample size of the study was small and did not provide microbial functional
pathways [8].

The present study investigated the association between PSA levels within the normal
range and gut microbiota biodiversity and community structure. Additionally, specific
bacterial taxa associated with PSA levels were investigated, and the functional capabilities
of the microbial community were inferred based on 16S rRNA gene sequencing. These
findings may serve as a foundation for further research on the involvement of the gut
microbiome in regulating PSA levels, which reflect androgen activity.

2. Materials and Methods
2.1. Study Subjects and Group Definitions

In this study, we enrolled 1463 Korean men and women aged from 25 to 78 years who
underwent a comprehensive annual or biennial physical examination between June and
September 2014 at Kangbuk Samsung Hospital Healthcare Screening Center, Seoul, Repub-
lic of Korea. Among 1463 samples, subjects who met the following criteria were excluded:
female (n = 559); missing data (n = 2); high prostate-specific antigen (PSA) > 4.0 ng/mL
(n = 18); BPH medication (n = 14); testosterone replacement therapy (n = 0); 5alpha reduc-
tase inhibitor (n = 11); surgery history of prostate cancer (n = 1); prostate cancer (n = 3);
history of malignancy (n = 24); history of liver cirrhosis (n = 2); use of antibiotics within
6 weeks prior to enrollment (n = 28); use of probiotics within 4 weeks prior to enrollment
(n = 9); and samples with less than 5000 sequences (n = 90). Some individuals met more
than one exclusion criterion, and a total of 759 participants were included in the final
analysis (Figure 1).

Figure 1. Enrollment of subjects. G1, lowest quartile (<25 percentile of the PSA range); G2, interquar-
tile (from 25 percentile to 75 percentile of the PSA range); G3, highest quartile (>75 percentile of the
PSA range). † Some subjects met several exclusion criteria.
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Serum PSA levels were measured on the day of blood collection using an electrochemi-
luminescence immunoassay with the Modular E170 system (Roche Diagnostics, Tokyo,
Japan). Subjects were categorized into three groups according to PSA level quartiles: low-
est quartile (<25th percentile of the PSA range, G1), interquartile (from 25th percentile to
75th percentile of the PSA range, G2), and highest quartile (>75th percentile of the PSA
range, G3).

The present study does not include any animal studies. All procedures involved
in this study of human participants were in accordance with the ethical standards of
the institutional research committee and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards. The present study was conducted according
to a protocol approved by the Institutional Review Board of Kangbuk Samsung Hospital
(KBSMB 2013-01-245-12 and 2020-09-003), and all participants provided written informed
consents. Human participants’ names and other HIPAA identifiers were not used during
the study process and were not included in all sections of the manuscript, including
supplementary information.

2.2. Sample Collection, DNA Extraction, and 16S rRNA Gene Sequencing

Fresh fecal samples were collected into a sterile container from each volunteer enrolled
in the study, immediately frozen at −20 ◦C after defecation, and stored at −70 ◦C for 24 h
until further manipulation. Total DNA was extracted from stool samples within 1 month
of storage using the MOBio PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad,
CA, USA) according to the manufacturer’s instructions. To amplify and sequence the V3-V4
hypervariable region of the 16S rRNA gene, specific fusion primers were used (Illumina,
San Diego, CA, USA). Libraries were pooled for sequencing using the full complement of
Nextera XT indices and sequenced on the Illumina MiSeq platform (Illumina, San Diego,
CA, USA) according to the manufacturer’s instructions [9].

2.3. Microbial Profiling and Statistical Analysis

Demultiplexed sequences were processed using DADA2, which is a plugin of the
QIIME2 package (version 2017.11, https://qiime2.org, accessed on 10 November 2017) [10],
and the low-quality regions of the sequences and chimeras were removed. Amplicon
sequence variants (ASVs) were generated by denoising with DADA2 and regarded as 100%
operational taxonomic units (OTUs). A feature table containing the counts of each unique
sequence in each sample was constructed. Features that were present in only one sample
were filtered considering that they did not represent real biological diversity but were PCR
or sequencing errors.

Microbial diversity analyses were performed with rarefied data of 5030 sequences per
sample by random subsampling to minimize differences among samples due to sequencing
depth in the QIIME2 package (version 2020.8, https://qiime2.org, accessed on 7 September
2020). The biodiversity of the samples, α-diversity, was calculated using the number of
ASVs observed in each sample, Shannon index accounting for both evenness and richness,
Faith’s phylogenetic diversity (PD) [11], and Pielou’s evenness. The Kruskal–Wallis test
was used as a non-parametric statistical test to compare the different groups because some
of the variables analyzed were not normally distributed. The average sequencing depth per
sample was 24,694 reads, ranging from 5030 to 91,821 reads. The 3433 features remained in
759 subjects after contingency-based filtering of features. After rarefying the feature tables
to 5030 reads per sample, rarefaction curves showed that all groups tended to plateau,
indicating that the biodiversity was adequately covered with the applied sequencing depth
(Figure S1).

The dissimilarity between samples, β-diversity, was calculated using the UniFrac
distance [12] to estimate dissimilarity among group members by incorporating the phy-
logenetic distances between ASVs. Unweighted and weighted UniFrac distances were
calculated to determine the presence/absence and abundance of ASVs, respectively. Non-
phylogenetic β-diversity indices, such as Bray–Curtis dissimilarities [13], were also used
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for the abundance data. Pairwise permutational multivariate analysis of variance (PER-
MANOVA) with 999 random permutations was used to test the significance of differences
between groups. Microbial community composition was depicted as principal coordinate
analysis (PCoA) plots. All the tests were corrected for multiple tests. Basic statistical
analyses were performed using RStudio (version 1.3.1073, Boston, MA, USA), and plots of
microbial diversity were depicted using the ggplot2 package (version 3.3.2) in RStudio.

For taxonomic structure analysis, taxonomy was assigned to ASVs using a pre-trained
naïve Bayes classifier and the q2-feature-classifier plugin against the Silva database (version
r138.1) of the 16S rRNA sequence database in the QIIME2 package (version 2020.8, https:
//qiime2.org, accessed on 7 September 2020). To investigate significant differences in the
relative abundance of any taxa from phylum to genus levels between groups, two statistical
tools, analysis of composition of microbiomes (ANCOM, v2.1) [14] and generalized linear
models implemented in multivariate association with linear models (MaAsLin2), which
are R packages (R version 4.0.2) were used. After adjusting for age and BMI, we compared
the abundance of taxa between pairwise groups among G1, G2, and G3 groups. ANCOM
compares the relative abundance of taxa among groups by the log ratio of the abundance of
each taxon to the abundance of all the remaining taxa, one at a time. The final significance
was expressed in the empirical distribution of W at each taxonomic level. We used the
taxa-wise FDR option and set the significance level to FDR < 0.05 to generate W statistics
and a threshold of 0.8 for declaring an association as significant. MaAsLin2 set the G2
group as the reference and compared the G1 and G2 groups. The coefficient values and
q-values that passed the significance threshold (Benjamini–Hochberg false discovery rate,
FDR q-value < 0.05) were represented by the MaAsLin2 analyses. Linear Discriminant
Analysis Effect Size (LEfSe) was also conducted to detect potential PSA-specific bacterial
markers [15]. Only taxa with an LDA score (log10) greater than 3 (p-value < 0.05) were
considered significantly enriched.

For functional inferences of the microbial community, Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States 2 (PICRUSt2) (v2.2.0-b) [16] was
conducted with ASVs according to the instructions published at https://github.com/
picrust/picrust2/wiki (accessed on 24 September 2020). We generated metabolic pathway
database (Metacyc) pathway abundance predictions from Enzyme Classification numbers
(EC numbers, as of 21 January 2016)-based gene family predictions [17]. Predicted func-
tional pathways were compared among the groups using statistical analysis of taxonomic
and functional profiles (STAMP) version 2.1.3 [18]. Statistical differences in the pathways
were tested using Welch’s t-test with a Benjamini–Hochberg FDR correction (q < 0.05) to
adjust p-values for multiple testing.

3. Results
3.1. Subject Demographics

Based on PSA levels, 759 men (mean age: 41.77 years) were categorized into the lowest
quartile (G1, n = 189), interquartile (G2, n = 379), and highest quartile (G3, n = 191) (Table 1).
Mean PSA was 0.44, 0.83, and 1.77 in the G1, G2, and G3 groups, respectively. PSA levels
were positively associated with age and HDL-C and negatively associated with BMI, waist
circumference, systolic BP, and triglycerides. No significant differences were observed in
the prevalence of hypertension, diabetes, and obesity among the three groups. There was
no significant difference in nutritional intake among the three groups (Table S1).
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Table 1. Mean values (standard deviation) and the number (proportion) of baseline characteristics of the study participants
by PSA.

Characteristics Overall
Groups by PAS, ng/mL (Minimum–Maximum)

p for TrendG1 (<25 Percentile)
(0.13–0.58)

G2 (Interquartile)
(0.58–1.16)

G3 (>75 Percentile)
(1.17–3.76)

Number (male) 759 (100) 189 (100) 379 (100) 191 (100)
Age (year) 41.77 (±8.95) 41.31 (±8.92) 40.67 (±8.15) 44.38 (±9.95) <0.001

BMI (kg/m2) 24.65 (±2.79) 25.06 (±3.03) 24.72 (±2.78) 24.10 (±2.44) <0.001
Waist circumference (cm) 86.24 (±7.46) 86.91 (±8.02) 86.29 (±7.30) 85.14 (±7.11) 0.021

Systolic BP (mmHg) 114.10 (±12.29) 115.02 (±13.67) 114.43 (±11.68) 112.53 (±11.94) 0.048
Diastolic BP (mmHg) 74.37 (±9.41) 74.58 (±10.19) 74.39 (±9.09) 74.10 (±9.27) 0.625

Current smoker 213 (28.06) 55 (29.10) 110 (29.02) 48 (25.13) 0.441
Alcohol intake 1 265 (34.91) 67 (35.45) 122 (32.19) 76 (39.79) 0.257

PSA (ng/mL) 0.97 (±0.58) 0.44 (±0.10) 0.83 (±0.15) 1.77 (±0.58) <0.001
Glucose (mg/dL) 99.72 (±20.20) 102.24 (±25.65) 97.97 (±16.45) 100.70 (±20.63) 0.463

Total cholesterol (mg/dL) 200.30 (±34.65) 201.47 (±35.51) 200.00 (±34.99) 199.76 (±33.23) 0.632
LDL-C(mg/dL) 123.75 (±30.51) 126.20 (±30.86) 123.03 (±30.25) 122.68 (±30.69) 0.257
HDL-C (mg/dL) 52.88 (±12.82) 50.16 (±10.78) 53.60 (±13.54) 54.15 (±12.86) 0.002

Triglycerides (mg/dL) 118.00 (±78.00) 125.00 (±77.00) 117.00 (±78.00) 116.00 (±75.50) 0.030
hsCRP (mg/dL) 0.73 (±1.63) 0.65 (±1.02) 0.69 (±1.53) 0.87 (±2.20) 0.178

Hypertension 142 (18.71) 35 (18.52) 65 (17.15) 42 (21.99) 0.384
Diabetes 75 (9.88) 21 (11.11) 32 (8.44) 22 (11.52) 0.890
Obesity 551 (27.40) 58 (30.69) 103 (27.18) 47 (24.61) 0.195

Metabolic syndrome 134 (17.65) 39 (10.63) 64 (16.89) 31 (16.23) 0.262

Data are presented as n (%), mean (±SD), or median (interquartile range). PSA—prostate-specific antigen; BMI—body mass index;
BP—blood pressure; LDL-C—low-density lipoprotein cholesterol; HDL-C—high-density lipoprotein cholesterol; hsCRP—high-sensitivity
C-reactive protein. 1 ≥20 g of ethanol per day.

3.2. Comparison Microbial Diversity of among the PSA Groups

With regard to α-diversity, a U-shaped relationship was noted between PSA categories
and microbial biodiversity (Figure 2). The G2 group had significantly lower microbial
biodiversity than the G1 and G3 groups. The number of ASVs observed in each sample
was significantly higher in the G1 and G3 groups than in the G2 group (Figure 2a, G1 vs.
G2, q = 0.048; G2 vs. G3, q = 0.048). Phylogenetic biodiversity, Faith’s PD, was higher in the
G3 group than G2, but did not pass the significance threshold for multiple comparisons
(Figure 2b, p = 0.026, q = 0.079). In contrast, the G3 group had lower evenness than the G2
group, indicating that a few bacteria were predominant in the gut of the G3 group (Pielou’s
evenness, p = 0.024, q = 0.072). The evenness showed an inverted U-shaped distribution
among the three groups (Figure 2d). Overall, the G3 group had high microbial richness
and low evenness; however, this finding did not reach statistical significance (q < 0.05)
in the pair-wise comparison, except for the observed features, although they showed an
unadjusted p-value < 0.05.

Figure 2. Violin plots showing the distribution of alpha diversity as measured by (a) observed ASVs, (b) Faith’s phylogenetic
diversity (PD), (c) Shannon’s index, and (d) Pielou’s evenness, among the PSA groups. Statistics were calculated using
a pair-wise Kruskal–Wallis test. * q < 0.05. The notched boxes indicate the interquartile range (IQR) of the 25th to 75th
percentiles. The median value is shown as a line within the box, and the whiskers extend to the most extreme value within
1.5 × IQR. Each point represents an individual subject.
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In addition to α-diversity, the unweighted and weighted UniFrac distance, Jaccard
dissimilarity, and Bray–Curtis dissimilarity matrix were analyzed to compare similarities
among gut microbial communities (β-diversity). No significant differences were observed
in the β-diversity based on pairwise PERMANOVA (Table S2). Moreover, no significant
clustering was noted in the PCoA plots of all indices for β-diversity; however, G1 and G3
were clustered closer together than G2 (Figure 3).

Figure 3. Beta-diversity of microbial taxa. Principal coordinate analysis (PCoA) plots representing the
β-diversity for (a) unweighted UniFrac distance, (b) weighted UniFrac distance, (c) Jaccard distance,
and (d) Bray–Curtis dissimilarity comparing subjects by PSA. Each point represents an individual
subject. Statistics were calculated using pairwise PERMANOVA with 999 permutations. Ellipses
represent the 95% confidence interval for each group.

3.3. Fecal Bacterial Community Abundance among the PSA Groups

A total of 14 phyla were identified, considering all ASVs defined. Overall, the most
abundant taxa represented were Bacteroidetes (51.71%), Firmicutes (42.92%), and Pro-
teobacteria (3.38%), whereas Actinobacteria, Fusobacteria, Verrucomicrobiota, and Desul-
fobacterota constituted minor phyla, each contributing less than 1% of the total sequences.

To investigate differences in the taxonomic abundance between PSA groups, ANCOM
was first used, as it incorporates the compositionality of microbiome data, has a low false-
positive rate, and allows covariate adjustment [14,19]. The G2 group was used as a reference
based on microbial diversity results. Regarding the phylum to family level, no statistical
differences were revealed among the three PSA groups. Two genera with a normalized W
of at least 0.8 were identified, indicating a significant change in these genera compared to
the rest of the genera in the community in at least 80% of the comparisons (Table S3). Of
the 255 genera, Escherichia/Shigella and Megamonas were statistically significant between
G2 and G3 (W = 221 and W = 212, respectively). There was no significant difference in
taxonomic abundance between the G2 and G1 groups. These results were confirmed with
the MaAsLin (p = 5.49 × 10−4 for Escherichia/Shigella; p = 1.23 × 10−2 for Megamonas).
The abundance of Escherichia/Shigella was 1.41 times higher in G3 than in the G2 group
after adjusting age and BMI (coefficient = 0.34, exponentiated coefficient = 1.41, Figure 4a),
while the abundance of Megamonas was lower in G3 than the G2 group (coefficient =−0.26,
exponentiated coefficient = 0.77, Figure 4b).
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Figure 4. Relative abundance of genera associated with PSA. (a) The genus Escherichia/Shigella was
more abundant in the G3 group than in the G2 group. (b) The genus Megamonas showed lower
abundance in the G3 group than in the G2 group. Plots were depicted using MaAsLin2. MaAsLin
analyses were performed using default options with adjusting for age and BMI.

To further analyze the fecal microbiota pattern between the G2 and G3 groups, a linear
discriminant analysis coupled with LEfSe was performed. The forest plot (Figure 5a) and
the cladogram (Figure 5b) were generated from the LEfSe analysis, which showed the
most differentially abundant taxa enriched in microbiota with green for the G3 group
and red for the G2 group. The significance of Escherichia/Shigella in the G3 group was
confirmed by the high LDA score in LEfSe. Additionally, the order Enterobacterales and
the family Enterobacteriaceae, which were upper taxa of Escherichia/Shigella were also
significantly enriched in the G3 group (LDA > 3, Figure 5). Megamonas belonged to
the order Veillonellales/Selenomonadales, and the genus Lachnospira were significantly
enriched in the G2 group in comparison with the G3 group.

Figure 5. Linear discriminant analysis effect size (LEfSe) analysis of microbial abundance among PSA groups. A forest plot
and Cladogram showing taxa that were significantly differentially abundant between (a) the G1 (red) and G2 (green) groups
and (b) the G2 (red) and G3 (green) groups, respectively, as determined using the Kruskal–Wallis test. LDA score (effect size)
indicating significant differences in bacterial taxa (LDA score >3.0; alpha value p < 0.05). Cladogram generated using the LEfSe
method showing the phylogenetic distribution of microbes associated where taxonomic levels of phylum, class, and order are
labeled, whereas the family and genus are abbreviated. Plots were depicted using the LEfSe of the Galaxy of the Huttenhower lab.
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3.4. Predicted Functional Pathways

PICRUSt2 was performed to explore the functional profiles of gut microbiota associ-
ated with PSA. Using the Metacyc database, the superpathway of methylglyoxal degrada-
tion was significantly more abundant in G3 than in G2 (Figure 6a). Two pathways, inosine
5′-phosphate biosynthesis III and methylphosphonate degradation I, were significantly
more abundant in G1 than in G2 (Figure 6b,c, respectively).

Figure 6. Predicted functional pathways were differentially abundant among the PSA groups. Pathway Database (Metacyc)
pathways using PICRUSt2 analysis. (a) Superpathway of methylglyoxal degradation was more abundant in the G3 group
than in the G2 group (q = 0.032), (b) inosine 5′-phosphate biosynthesis III (q = 0.037), and (c) methylphosphonate degradation
I (q = 0.041) were more abundant in the G1 group than in the G2 group. The box plots denote the top quartile, median,
and bottom quartile, and the white stars represent the average value. All differences were analyzed using MaAsLin2 with
adjusting for age and sex. The Benjamini–Hochberg FDR method was used to correct multiple comparisons. * q < 0.05.

4. Discussion

Evidence from animal studies has demonstrated that steroid metabolism and sex
hormone levels can be affected by gut microbes [1,20]; however, human studies on this
topic are limited, and the underlying mechanisms have not been fully elucidated. This
study sought to examine the composition of gut microbiota and the inferred microbial
functions across different PSA levels, possibly reflective of androgen activity. Recently, the
gut microbiota has received attention as a major regulator of androgen metabolism in the
intestine, affecting androgen levels [21]. Correlation between androgen activity and the
gut microbiome has been reported in only one study with a small sample size of 31 men
and 26 women [8].

In the current study, changes in the biodiversity and composition of the gut microbiota
induced by PSA within a normal range were evaluated. The highest quartile PSA (G3)
group had more diverse bacteria than the interquartile PSA (G2) group, but the intestines
of the highest quartile group were likely to be dominated by a few bacteria.

Shin et al. reported no difference in the bacterial community between males and
females, but men with high levels of testosterone (>4.55 ng/mL) had more gut microbial
diversity and evenness compared to those with medium levels of testosterone [8]. Biodiver-
sity showed a U-shaped trend in the previous study, similar to the alpha diversity results
in the current study, although PSA levels in all the participants in this study were within
the normal range.

Interestingly, a U-shaped relationship between normal range PSA levels and the
gut microbiota was identified in most of the analyses, including biodiversity, taxonomic
composition, and pathway analyses based on 16S data. The lowest and highest quartile
groups of normal range PSA showed similar characteristics of gut microbiota. Some studies
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have shown that gut microbiota can alter serum testosterone and sex hormone levels [6,7],
while androgen exposure has been reported to affect gut microbiota dysbiosis [22,23]. Thus,
the gut microbiota and androgen levels might affect each other. The cross-sectional design
of this study could not determine the temporal directionality of the association between
PSA levels and gut microbiota. Further longitudinal studies with repeated measurements of
PSA, sex hormones, and gut microbiota may help better understand their interrelationships.

Research on mouse models revealed that the ratio of Firmicutes to Bacteroidetes in the
gut microbiome was elevated when hypogonadism was induced [24]. Recent studies have
also reported that endogenous and exogenous testosterone are correlated with fluctuations
in the gut microbiota composition [20,24]. Firmicutes and Bacteroidetes were also the
most dominant in the participants tested in this study, but were not significantly different
among the PSA groups, indicating that the two phyla are not associated with PSA levels
(Figure S2).

An increase in Escherichia/Shigella abundance and a reduction in Megamonas abun-
dance was detected in the highest PSA quartile group (G3). Both Escherichia and Shigella
are Gram-negative bacteria but cannot be distinguished by their 16S rRNA gene se-
quence [25], and as such, have been grouped together as one genus in the Silva DB.
It has been reported that sex steroid hormones act as substrates of E. coli multidrug efflux
(MDE) pumps, which are important factors in resistance against bile acids [26]. Recently,
a correlation analysis between serum metabolites and sex-biased bacteria revealed that
the serum concentration of androgen-related metabolites was positively correlated with
Bulleidia and Escherichia [27]. In this study, the highest PSA group had a higher abundance
of Escherichia/Shigella than the G2 group. This might be due to the role of Escherichia
in androgen-related metabolites, in which beta-gluconidase released from Escherichia
separates glucuronide and androgen conjugates, increasing the reabsorption of free andro-
gens [28]. Another study performed using a mouse model also supports the finding that
elevated amounts of testosterone correlate with conventional microbiota colonization and
Escherichia/Shigella abundance [29]. Although they did not investigate the correlation
with testosterone level, Singh et al. [30], in a human study, reported sexual differences
in the overall gut microbiota and that Escherichia was more abundant in males than in
females. This finding supports a model wherein Escherichia in the gut might increase host
testosterone by regulating androgen metabolism, or that in which host testosterone can
increase the abundance of Escherichia in the gut.

In a recent study, the genera Megamonas, Actinobacter, Dorea, and Ruminococcus
were found to be positively correlated with serum testosterone concentrations in men,
based on 16S rRNA sequencing results [8]. In another study on sexual differences in gut
microbiota, the genera Megamonas, Prevotella, Fusobacterium, and Megasphaera were
found to be more abundant in males than in females [31]. In contrast, in our study, the
abundance of Megamonas was lower in the group with high PSA level (G3) than in that
with intermediate PSA level (G2); moreover, we observed no association between PSA
level and other previously reported genera [8,31]. Given the differential androgen measure-
ments and smaller sample size in this study compared with those in the abovementioned
previous reports [8,31], the potential role of Megamonas in androgen metabolism warrants
further studies.

We further found that the taxa related to the methylglyoxal (MGO) degradation
pathway were more enriched in the G3 than in the G2 group. MGO is a toxic, physiological
reactive metabolite of glucose and a potent precursor of cytotoxic advanced glycation
end products (AGEs) [32]. Recently, ovarian tissue has been identified as a target of
excessive AGE deposition, which has been associated with either a high-AGE diet in
experimental animals or hyperandrogenic disorders such as polycystic ovarian syndrome
in humans [33]. MGO has further been shown to be capable of inducing apoptosis in
prostatic cancer PC-3 cells, thus acting as a potential prostate cancer treatment agent [34].
Further research on the clinical implications of the MGO degradation pathway at high PSA
levels is therefore needed.
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Several limitations in the current work must be noted. First is the failure to specify the
levels of direct androgen activity or androgens, including serum testosterone. Nevertheless,
PSA has been demonstrated in earlier studies to have the potential as a surrogate marker for
androgen activity [2,3]. Prioritizing androgen activity over sex hormones is justified, given
that androgen activity, which could be construed as a receptor of androgen expression,
could be of clinical significance. Second, the correlation between obesity and the gut
microbiome was not addressed. Male individuals are more prone to morbidities associated
with obesity because of their tendency to develop an apple-shaped constitution with
significant deposits of adipose tissue around the viscera [35]. Nevertheless, this is the largest
population-based study that demonstrates the association between the gut microbiota
and PSA within the reference range, showing differences in biodiversity and taxonomic
composition across different PSA concentrations.

5. Conclusions

An exclusive correlation between PSA and distinctive microbiota patterns had not yet
been reported. This study showed different microbiota patterns across PSA levels within
the normal range. Further longitudinal and mechanistic studies are required to elucidate
the role of microbiota in PSA levels or vice versa.
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