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Small renal masses have been diagnosed increasingly in recent decades, allowing surgical treatment by partial nephrectomy. This
treatment option is associated with better renal function preservation, in comparison with radical nephrectomy. However, for
obtaining a bloodless field during surgery, occlusion of renal artery and veins is often required, which results in transitory ischemia.
The renal ischemia-reperfusion injury is associated with increased reactive oxygen species production leading to renal tissue
damage. Thus, the use of antioxidants has been advocated in the partial nephrectomy perioperative period. Several antioxidants
were investigated in regard to renal ischemia-reperfusion injury.The present manuscript aims to present the literature on the most
commonly studied antioxidants used during partial nephrectomy.The results of experimental and clinical studies using antioxidants
during partial nephrectomy are reported. Further, alimentary sources of some antioxidants are presented, stimulating future studies
focusing on perioperative antioxidant-rich diets.

1. Introduction

Renal cell cancer (RCC) arises mainly from the renal
parenchyma and accounts for over 90% of kidney cancers.
Incidence rates of RCC vary greatly worldwide, from 1.2
cases/100,000 in females from South Korea to 15.3/100,00
in males from Czech Republic [1]. In the United States
the incidence of RCC rose consistently over the past three
decades specially among early stage tumors [2]. Risk fac-
tors related to RCC include cigarette smoking, obesity, and
hypertension. Physical activity and diets rich in antioxidants
are inversely related to RCC. A status of increased reactive
oxygen species (ROS) production and lipid peroxidation
has been implicated in RCC carcinogenesis [3]. In favor of
this hypothesis, several studies have evidenced a protective
mechanism of antioxidants against RCC [4, 5].

As small renal masses are diagnosed more frequently, the
incidence of nephron-sparing procedures has also increased
[6]. Partial nephrectomy (PN) is the preferred treatment

option for localized renal tumors according to most urologi-
cal associations achieving oncological outcomes comparable
to radical nephrectomy [7, 8]. In order to achieve a bloodless
field during surgery, occlusion of renal artery and veins is
often required.

Ischemia has been considered historically as a major fac-
tor in reducing renal function after PN [9]. Several measures
to decrease the effects of ischemia have been used such as
hypothermia and pharmacologic interventions [10, 11]. In this
review, we assess some of the antioxidants that may be used
for renal function preservation during PN.

2. Renal Ischemia-Reperfusion (I/R) Injury

Thekidney is an organ supplied by end arteries, whichmeans
that the area irrigated by a given arterial branch will become
ischemic if blood flow is interrupted by any reason. In con-
trast, the venous drainage has no segmental organization and
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Figure 1: During ischemia, transmembrane ion gradients are dissipated, allowing cytosolic concentrations of calcium to rise, which in turn
activates protease that irreversibly converts xanthine dehydrogenase into xanthine oxidase. At the same time, cellular ATP is catabolized
to hypoxanthine, which accumulates. During the reperfusion, xanthine oxidase using readmitted oxygen and hypoxanthine generates
superoxide and hydrogen peroxide. Scheme derived from Granger et al. (1986).

anastomoses freely. During partial nephrectomy, ischemia
may occur by both arterial and venous occlusion. However,
the proceduremay be carried by arterial occlusion only. Clin-
ical and experimental studies have shown that when renal
artery is clamped alone instead of both renal artery and vein,
the injury is attenuated [12, 13]. Therefore, ischemic injury
during partial nephrectomy may occur heterogeneously.

There are regions of the kidney that are more sus-
ceptible to ischemic injury. Epithelial cells located in the
corticomedullary region are more susceptible to ischemia,
since they have a greater oxidative activity and are located in
an area with low oxygen reserve. The cells of the renal papilla
reside in a naturally hypoxic environment and can withstand
short periods of ischemia with anaerobic metabolism. The
outer cortex is usually more resistant to ischemia because of
its greater oxygen reserve [14]. Nevertheless, for very long
periods of warm ischemia, all regions of the kidney are
affected.

As previously mentioned interruption of arterial supply
is often necessary during PN, and it gives rise to a chain
of events that culminates in cell death if blood flow is not
restored in a timely manner. Sutton and colleagues proposed
a division of the clinical events of ischemic acute renal failure
into 4 phases [15]: initiation, extension, maintenance, and
recovery phase.

The initiation phase is characterized by cellular adenosine
5’-triphosphate (ATP) depletion with subsequent cellular
electrolyte shifts, cellular swelling, and the induction of
cellular stress responses. There are two biochemical events
that must be emphasized as consequence of ATP depletion:

rise in the concentration of hypoxanthine [16] and rise in both
mitochondrial and cytosolic calcium levels [17].

Hypoxanthine is a breakdown product of ATP meta-
bolism and is, normally, oxidized by the enzyme xanthine
dehydrogenase to uric acid. Hypoxanthine can also be oxi-
dized by xanthine oxidase (XO), which is an isoform of
xanthine dehydrogenase and transfers an electron to oxygen
forming the free radical superoxide (O

2
∙-). Conversion of

xanthine dehydrogenase to oxidase may be influenced by
several mechanisms during ischemia, and it takes about
30 minutes to occur in the kidney [18]. This may be a
biochemical explanation for the safety limit of 25 minutes of
warm ischemia observed in the clinical setting [19], although
experimental studies have not supported this theory [20, 21].
Dysfunction of ATP-dependent membrane ion pumps with
consequent rise in both mitochondrial and cytosolic calcium
levels is another important event. Calcium overload leads
to mitochondrial membrane dysfunction and irreversible
damage (Figure 1).

The extension phase is characterized by the restoration
of renal blood flow that starts various inflammatory events.
Although blood flow is restored, reperfusion may lead to fur-
ther injury as already shown in other organs [22]. Production
of oxygen-derived free radicals is a major event that leads to
tubular, vascular, and interstitial injury [23]. The segment S3
of proximal tubules is particularly susceptible to I/R injury
[24]. Decreased renal function may ensue by backleak of the
glomerular ultrafiltrate across the tubular epithelium. Also,
tubular obstruction by cell debris may contribute to reduced
glomerular filtration rate. Microvasculature injury is another
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Figure 2: Role of superoxide anion in the generation of other reactive species. O
2
∙- (superoxide);H

2
O

2
(hydrogen peroxide); OH− (hydroxyl);

Fe2+ (iron); H
2
O (water); O

2
(oxygen); NO- (nitric oxide); ONOO− (peroxynitrite); H+ (hydrogen); HOONO (peroxynitrous acid); NO

2

(nitrogendioxide); Br− (bromide); Cl− (chloride); HOBr(hypobromous acid); HOCl (hypochlorous acid); SOD (superoxide dismutase); CAT
(catalase); GPx (glutathione peroxidase); MPO (myeloperoxidase).

important event during extension phase [15]. Endothelial and
epithelial cells secrete inflammatory cytokines and express
adhesion molecules that promote the activation of lympho-
cytes, margination, and diapedesis. Leukocyte infiltration,
especially by neutrophils, leads to further production of
cytokines and oxygen-derived free radicals, which in turn
cause additional injury of to the epithelium and stroma.

During the maintenance phase, glomerular filtration rate
stabilizes as cellular repair processes are initiated in order
to maintain and reestablish organ integrity. The repair phase
is characterized by cell proliferation and tissue repair with
the recovery of subsequent kidney function and may last for
weeks or months.

3. Free Radicals

A free radical, also known as reactive oxygen species (ROS),
has one ormore unpaired electron and so is chemically highly
reactive. ROS are commonly related to aerobic metabolism
and birth immunity. On the other hand, they may have
also important signaling and/or regulatory function in living
organisms [25]. In the renal parenchyma, free radicals are
produced by components of connective tissue, epithelial and
muscular, like fibroblasts, endothelial cells, vascular smooth
muscle cells, mesangial cells, tubular cells, and podocytes
cells [26].OrdinaryROS implicated in ischemic kidney injury
are as follows: superoxide (O

2
∙-), hydrogen peroxide (H

2
O

2
),

hydroxyl (OH−), nitric oxide (NO), and the peroxynitrite
anion. O

2
∙- is a byproduct of normal cellular metabolism

and is generated as oxygen accepts a single electron and can

inactivate specific enzymes but, more meaningfully, it may
lead to production of two other highly reactive species: H

2
O

2

and OH−. The dismutation of O
2
∙- by superoxide dismutase

(SOD) generates H
2
O

2
, which in turn can inactivate DNA

[27], impair ATP synthesis, and inhibit glycolysis [28] lead-
ing to elevation in intracellular calcium, disruption of the
cytoskeleton, blebbing of the plasma membrane, and finally
cell death. The deleterious effects of superoxide, however, can
be offset by catalase (CAT) and glutathione peroxidase (GPx)
(Figure 2).

The interaction of O
2
∙- and H

2
O

2
catalyzed by molecular

iron (Fenton reaction) originates OH− [29].The OH− radical
is extremely reactive and is supposed to be in charge for most
of the cellular damage that occurs from ROS [30] (Figure 2).
Fortunately, there are several scavengers that stabilize OH−

effect, comprehending tryptophan, histidine, ascorbate, and
alpha-tocopherol [31].

NO and O
2
∙- anions can react to compose peroxynitrite,

which may lead to oxidation of a wide chain of biological
targets including amino acids such as cysteine, methionine,
tyrosine and tryptophan, nucleic bases, and antioxidants [32].
Peroxynitrite reacts with aim molecules through two poten-
tial pathways: it may react directly with a target molecule
or it can dissociate in peroxynitrous acid and homolyze to
form nitrogen dioxide and OH− radicals, which in turn react
with the aim molecule (Figure 2). S-methylisothiourea, an
iNOS inhibitor, and mercaptoethylguanidine, a scavenger of
peroxynitrite, have shownprotective effect on renal I/R injury
[33].

One of the most abundant enzymes liberated on neu-
trophil activation, myeloperoxidase (MPO), is a 140-kDa
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heme protein released by activated phagocytes in the course
of inflammatory process. It catalyzes the reaction of H

2
O

2

with physiological convergences of chloride and bromide
anions to produce hypochlorous acid (HOCl) and hypobro-
mous acid (HOBr), respectively [34], which are oxidants and
electrophiles that react easily with biological components
such as proteins, lipids, and DNA as well [35–37] (Figure 2).
Thus, cellular damage resulting from excessive or misplaced
production of hypohalous acids has been implicated in reper-
fusion injury [38]. A research usedMPO-deficientmice (Mpo
-/-) compared to controls after kidney I/R found 24 hours
later significant reduction in renal function decrease in Mpo
-/- mice compared with I/R controls, as a reduced neutrophil
influx [39]. Another study used the porcine kidney with gene
deletion for MPO+ neutrophils and found a 91% decrease of
apoptosis in nephrotic tubule cells and amelioration of renal
function after I/R [40].

To evaluate the role played by ROS, indirect biomarkers
are usually searched [39, 41], because it is difficult to perform
straight assessment of such unstable reactive species [42].
The antioxidant activity is measured through enzymes as
CAT, GPx, MPO, and SOD. Besides the enzymes, the lipid
peroxidation may be evaluated through TBARS determina-
tion (directly related to the production of malondialdehyde
(MDA)). SOD, CAT, GPx, and MPO are evaluated from
tissues samples by immunohistochemistry and TBARS by
Enzyme-Linked Immunosorbent Assay (ELISA). To systemic
assessment, f2-isoprostanes (F2IP) fromplasma can be useful
to observe lipid peroxidation [43–45].

4. Antioxidants and Renal I/R Injury

Several antioxidants are investigated regarding I/R injury.
Commonly studied antioxidants are listed in Table 1. A
brief description of some of the most important antioxidants
follows.

4.1. Naturally Occurring Enzymatic Antioxidants. Catalase
(CAT): Enzyme which is present mainly in the peroxisomes
of mammalian cells. If the concentration of H

2
O

2
is high,

CAT acts catalytically and removes H
2
O

2
by forming H

2
O

and O
2
[46]. A study made use of this chemical reaction

both to determine whether the inhibition of the H
2
O

2

catalyzing enzyme would influence ischemic renal injury and
to determine the rates of H

2
O

2
formation after ischemia.

Inhibition of CAT prior to ischemia led to an increasement
of ischemic injury. The production of H

2
O

2
occurs in both

normal and ischemic kidneys even though intracellular sites
and production rates are likely to be diverse. CAT is an
essential protective enzyme, since its inhibition leads to
exaggerated post-ischemic renal dysfunction [47]. Overex-
pression of CAT prevented apoptosis-inducing factor (AIF)
translocation from mitochondria to the nucleus, reducing
ROS charge after ischemia [48]. A research in rats concluded
that CAT protein overexpression by adenoviral CAT gene
(Adv-CAT) transfection improved I/R-induced injury in the
kidney by reducing H

2
O

2
, serum urea, and glutathione s-

transferase levels. During post-ischemic reperfusion, leftover

ROS production frommitochondria begins apoptosis via the
release of cytochrome c from it, which was restrained by
Adv-CAT, accordingly, depressing I/R-enhanced autophagy-
related proteins and apoptosis-mediated proteins expres-
sion. This technique does not impel nephrotoxicity and
CD4+/CD8+-mediated immune response in the treated
kidneys, which gives to this kind of treatment a greater
translational aspect [49].

Glutathione peroxidase (GPx): This enzyme is one of
the main endogenous antioxidant defenses that work in
higher organisms and catalyze the reduction of H

2
O

2
or

organic hydroperoxides to H
2
O or analogous alcohols. A

classic study in rats used the redox ratio of GPx to assess
levels of peroxidation through the H

2
O

2
present in the renal

parenchyma to fix upon the severity of the ischemic injury
and obtained significant results [50]. There is a research
which used the murine model with human GPx1 and GPxP
gene overexpression that showed upmore resistant to damage
caused by I/R in the kidneys by reduction of mortality and
serum urea and creatinine levels, tubular necrosis, apoptosis,
oxidative stress and lipid peroxidation, MDA, MPO activity,
expression of mRNA, and inflammatory cytokines six hours
after reperfusion. The most relevant of cytokines was MIP-
2, related to greatest migration of leukocytes which also
had a lower activity in the transgenic groups GPx1 and
GPxP. There was also a decrease in the activity of NF-kB, a
transcription factor acknowledged to be responsible for the
activation of numerous genes mediating the inflammatory
process in general as well as during I/R in groups GPx1
and GPxP, so GPx seems to be involved in the inhibition of
the activation of the MIP-2 promoter gene by NF-kB [51].
Zemlyak and colleagues tested the overexpression of GPx
in cells after ischemia and it prevented apoptosis-inducing
factor (AIF) translocation frommitochondria to the nucleus.
This could reflect mainly non-specific scavenging ROS [48].
Another study shows that the use of glutamine amino acid
supplementation, a precursor of GPx, prior to renal I/R
elevates this powerful endogenous antioxidant in rats, which
again proved to be efficient as an endogenous scavenger that
preserved renal function [52].

Superoxide dismutase (SOD): It is possible that SOD is
an enzyme with real anti-aging consequences and can act
positively over all the degenerative processes. The preventive
effects of intravenously exogenous SOD on acute renal failure
were investigated in the kidneys of rats exposed to warm
ischemia. In an experiment, SOD was given just before
primary ischemia and in the early recirculation phase. It
was found to ameliorate the red cell aggregation in the
renal medulla in the inner stripe of the outer zone. The
volume of trapped red cells decreased in treated animals, thus
allowing better restoration ofmedullary blood flow. SOD also
restored the capillary macromolecular permeability as shown
by standardization of plasma to lymph transport of proteins.
Ischemically damaged but untreated kidneys had the tubules
obstructed and that the proximal tubular pressure rose to
such a level that the net driving force for filtration approached
zero, explaining the marked decrease in glomerular filtration
rate (GFR) from a normal value [53]. Dogs were used as
models for evaluationwhether the administration of SODcan
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alleviate I/R renal damage and whether there is a relationship
between oxygen free radicals and thromboxane (Tx). Blood
samples were drawn from the renal vein before ischemia and
after reperfusion to assess serum levels of thromboxane B2
(TxB2). All untreated dogs died within seven days of renal
failure and the treated ones demonstrated transient renal
failure, with a significant difference being found between
groups. A significant difference in TxB2 levels was found in
the untreated dogs before and after ischemia and between
the two groups after reperfusion. Animals that were treated
with exogenous SOD after the ischemic event has occurred
but before reperfusion showed a favorable clinical course in
terms of survival and renal function [54]. A study in rats
showed that the renal protective effect of free SOD on warm
ischemic-reperfusion injury is conditional on the time of
administration, being further effective when given prior to
reperfusion. On the other hand, the renal protective effect of
liposomal SOD did not depend on the time of administration
since efficacy was similar when given before reperfusion or
ischemia. It was concluded that liposomal SOD shows a
higher renal protective effect in warm ischemia than free
SOD [55]. Zemlyak and colleagues tested the overexpression
of CuZnSOD (extracellular and cytosolic SOD) or MnSOD
(mitochondrial SOD) in cells after ischemia and both pre-
vented AIF translocation from mitochondria to the nucleus
which could reflect broadly non-specific protection due to
reducing ROS [48].

4.2. Naturally Occurring Exogenous Antioxidants. Cur-
cumin: Curcumin is a frequently studied phenolic
compound. Extracted from Curcuma longa, curcumin
is a bifunctional antioxidant, often added to mustard,
condiments, and sauces and it exerts antioxidant activity in
a direct and an indirect way by scavenging reactive oxygen
species or inducing an antioxidant response, respectively
[56]. In a study, rat kidneys with I/R injury were analyzed
for serum and tissue NO, protein carbonyl, MDA, SOD,
and GPx levels. Histopathological examinations were also
performed. Reduction of serum GPx was significantly
improved by curcumin, but SOD enzyme activity was not
altered. Treatment with curcumin also resulted in significant
reduction in serum and tissue MDA, NO, and protein
carbonyl. In histological examination, the rats treated with
curcumin had nearly normal morphology of the kidney [57].
Another research, also with rat kidneys, aimed to investigate
the role of N-methyl-d-aspartate (NMDA) receptors in
curcumin-mediated renoprotection against I/R injury. In
separate groups, NMDA receptor agonists (glutamic acid
and spermidine) were injected prior to curcumin treatment
followed by renal I/R, and administration of curcumin
resulted in significant protection against I/R injury in
the sham group. However, glutamic acid and spermidine
pretreatments prevented curcumin-mediated renoprotection
allowing the conclusion that NMDA receptor antagonism
significantly contributes towards curcumin-mediated protec-
tion against I/R injury in rats [58].

Ferulic acid belongs to the phenolic acid group com-
monly found in plant tissues [59] and is most commonly
found in grains, spinach, parsley, grapes, rhubarb, and cereal

seeds, being more easily absorbed and stays in the blood
longer than any other phenolic acids [60]. The antioxidant
mechanism of ferulic acid is based on raising inhibition and
scavenging of ROS and on blocking enzymes that catalyze
their production, such as MPO, and is also an enhancer
of scavenger enzyme activity [61–64]. Antioxidant activity
of ferulic acid is forming stable phenoxyl radicals by the
reaction of the radical molecule with the stable antioxidant
molecule andmay also act as hydrogen donor. As a secondary
antioxidant, ferulic acids and their related compounds can
bind transition metals such as iron and copper, preventing
the formation of toxic OH− radicals [65]. A recent study
in the rodent model of I/R showed that ferulic acid signifi-
cantly attenuated kidney damage by decreasing levels of urea
and creatinine, pathological structural changes, and tubular
cells apoptosis, inhibited I/R-induced renal proinflamma-
tory cytokines and neutrophils recruitment, and increased
adenosine generation and CD39 and CD73 expression
[66].

Ligustrazine: Ligustrazine is an alkaloid isolated from
the rhizome of Chuanxiong (Ligusticum chuanxiong Hort),
which is notorious by its antioxidant, anti-inflammatory,
anti-fibrosis, and immunomodulative effects [67]. It is found
in cocoa bean or soybean-based fermented foods, Chinese
alcohols, and soybeans culture media of Bacillus subtilis,
among others. The effects of ligustrazine on oxidative stress,
neutrophils recruitment, proinflammatory mediators, and
adhesion molecules caused by renal I/R injury were assayed
in mice, and its pretreatment attenuated dramatically the
injuries in kidneys caused by warm ischemia, reducing
MPO activity and decreasing MDA level, while SOD activity
increased, suggesting an effective reduction of oxidative
stress. Moreover, ligustrazine also inhibited cell apoptosis,
abrogated neutrophils recruitment, and suppressed the over-
expression of tumor necrosis factor-alpha (TNF-𝛼) [68].

Quercetin: Quercetin is one of the most potent scav-
engers of ROS in the family of polyphenolic compounds [69],
found in fruits (citrus fruits, apples, grapes, dark cherries,
and dark berries), vegetables (onions, parsley, and sage), tea,
olive oil, and red wine. TBARS, protein carbonyl content,
TNF-𝛼, GSH levels, MPO, CAT, and SOD activities were
determined in renal tissue in a study with renal I/R rat model.
Its administration previously to I/R decreased the oxidation
and inflammatory parameters (TBARS, TNF-𝛼 levels, MPO
activity, and protein carbonyl content). Quercetin treatment
significantly increased reduced glutathione (GSH) levels and
activities of SOD and CAT when compared to the I/R
group [70]. This substance made MDA levels significantly
decrease after I/R in another research in rats and signifi-
cantly increased glutathione level. In histological results, the
number of apoptotic and endothelial nitric oxide synthase
(eNOS) expression levels were significantly decreased in the
quercetin treated group [71]. A third study determined the
effects of quercetin on AMPK and autophagy signals in the
kidneys of mice after I/R. Quercetin significantly increased
the phosphorylation of AMPK and decreased the phospho-
rylation of the mammalian target of rapamycin (mTOR), one
of the downstream targets of AMP-activated protein kinase
(AMPK) [72].



6 BioMed Research International

Table 1: Antioxidants commonly used in renal ischemia-reperfusion injury.

Antioxidant Mechanism of action Improvement
of I-R injury Reference

Allopurinol Xanthine oxidase inhibitor Yes [85]

Amifostine Increase in glutathione
peroxidase Yes [86, 87]

Bilirrubin
Superoxide scavenger /
peroxyl radical trapping

antioxidant
Yes [88, 89]

Catalase Superoxide scanvenger Yes [46–49]

Ceruloplasmine ROS scavenger / Fenton
reaction inhibition Yes [90]

Coenzyme Q10
ROS scavenger / enhance
antioxidants / quench

perferryl radical
Yes [91, 92]

Crocin ROS scavenger Yes [93]

Curcumin ROS scavenger / enhance
antioxidants Yes [56–58]

Desferrioxamine Iron-chelator / enhance
antioxidants Yes [90, 94]

Edaravone ROS scavenger Yes [95]

Ferulic acid
ROS scavenger/ enhance
antioxidants/ Modulates
MPO and other enzymes

Yes [61–66]

Glutathione
peroxidase

ROS scavenger / NF-𝜅B
pathway inhibitor Yes [48, 50–52]

Ligustrazine ROS scavenger Yes [67, 68]

Mannitol ROS scavenger / enhance
antioxidants Yes [81]

Nitric Oxide
Modulates xanthine
oxidase activity /
vasodilation

Yes [96–99]

Quercetin ROS scavenger Yes [69–72]
Resveratrol ROS scavenger Yes [71–76]
Superoxide
dismutase Superoxide scavenger Yes [48, 53–55]

Vitamin C ROS scavenger / enhance
antioxidants Yes [77–79, 100–102]

Vitamin E ROS scavenger / enhance
antioxidants Yes [81–84]

Resveratrol: As quercetin, it is a bioflavonoid. Resvera-
trol is a polyphenolic compound found in grapes, berries,
and peanuts. It possesses a variety of bioactivities, includ-
ing antioxidant, anti-inflammatory, and renal protective
effects [73]. Previous studies have shown that resveratrol
can directly scavenge reactive oxygen species (ROS) [74].
In addition to scavenging ROS, exogenously administered
resveratrol modulates the expression and activity of antiox-
idant enzymes, such as SOD, GPx, and CAT, either through
transcriptional regulation via nuclear factor E2-related factor
2 (Nrf2), activatorprotein (AP) 1, and forkhead box pro-
tein O (FOXO), or through enzymatic modifications [75].
A recent study demonstrated that resveratrol activates 2
homolog sirtuin 1 (SIRT1) that may regulate multiple cellular
functions, including apoptosis, mitochondrial biogenesis,

inflammation, glucose/lipid metabolism, autophagy, and
adaptations to cellular stress, through the deacetylation of
target proteins through the activation of AMPK [76].

Vitamin C: Ascorbic acid, also known as vitamin C,
is found in fruits (citrus fruits, mango, and avocado) and
vegetables (broccoli, cauliflower, peppers, and asparagus)
being widely accepted as an anti-oxidant and is an essential
nutrient required for various metabolic reactions. The active
part of ascorbic acid is ascorbate ion that acts as an electron-
donating entity and is involved in biosynthesis of steroids,
collagen, and peptide hormones. Vitamin C is a redox catalyst
which itself gets reduced and neutralizes ROS such as H

2
O

2
.

The donation of one electron by ascorbate results in semi-
dehydroascorbate radical that is reduced by glutathione and
NADPH-dependent enzymes [77]. Moreover, ascorbic acid
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increases the activity of endogenous antioxidant defense
including SOD, GSH, and CAT in rats whose had induced
I/R injury [78]. The administration of ascorbic acid in a
study with rats showed significant increase in NO level along
with decrease in oxidative stress. NO level may be due
to scavenging of oxidative species such as O

2
∙-. The same

research proves thatNOand soluble guanylyl cyclase pathway
finds its definite involvement in ascorbic acid mediated pro-
tection against I/R injury [79]. Vitamin C supplementation
preserved kidney morphology and renal function following
I/R injury and decreased resistance index of renal artery,
ameliorating oxidative stress secondary to I/R in a recent
research performed in rat model [80].

Vitamin E: This liposoluble vitamin acts as a scavenger,
protective against free oxygen species occurring during the
reperfusion phase after renal ischemia, prevents lipid peroxi-
dation, and acts against the effects of oxidative stress. Various
foods provide vitamin E such as meat (egg and fish), nuts,
seeds, vegetable oils, and fruits (tomato and avocado) [81].
A study in rats showed that the administration of vitamin E
before and after renal I/R normalized the parameters of GSH,
y-glutamyl-transpeptidase, and TBARS. It also improved the
survival rate in adult rats up to 100% [82]. Another research
used young adult, middle-aged, and aged rats to prove
that a diet with vitamin E supplementation is essential for
protecting aging kidneys against ischemic acute renal failure.
The older animals with vitamin E deficiency had aggravated
acute damage caused by I/R and in the absence of vitamin
E and MDA levels increased with age [83]. Histopathologic
examination of the rabbit kidney submitted to I/R pretreated
with vitamin E showed normal histologic appearance with
no sign of tubular necrosis and the nontreated showed
moderate to severe ischemic changes. So, the intensity of I/R
injury is less extensive in rabbits that received intravenous
pretreatment with vitamin E before surgery [84].

4.3. Other Studied (and Utilized) Antioxidants in Renal I/R
Injury. Allopurinol: Allopurinol is an inhibitor of XOwhich
inhibits the conversion of hypoxanthine into xanthine and
then uric acid as the final product of purine catabolism.
During hypoxanthine conversion, O

2
∙- and another ROS

are generated. The inhibitory effect of allopurinol blocks
the chain of events of the oxidative stress in an early stage.
Recently, Prieto-Moure and colleagues [85] reviewed several
studies in which the renoprotective effect of allopurinol was
assessed. In most studies, allopurinol was administered prior
to the ischemia period and the effective dose was 100 mg/kg.
Clinical studies showed that allopurinol can be safely used
in patients with chronic kidney disease (CKD) [103]. It also
may delay progression of CKD although confirmation is still
needed. Allopurinol is also used in organ transplantation.
One of the most used preservation solutions developed by the
University of Winscosin has allopurinol on its formulation
[104]. Future studies to address the role of allopurinol in the
context of partial nephrectomy are needed.

Mannitol: Mannitol, an osmotic diuretic, is used in the
clinical perioperative setting in the belief that it exerts reno-
protective properties. Bragadottir and colleagues evidenced
renal vasodilation and redistributes systemic blood flow to

the kidneys [105]. In the rabbit model, administration of
mannitol before ischemia and before reperfusion reduced
ROSproduction significantly. Glomerular functionmeasured
48 h after reperfusion was significantly better after pre-
treatment mannitol [106]. A study using rats as a model
showed that mannitol treatment significantly decreased the
level of MDA, SOD, and MPO activity and increased GSH
level (nonenzymatic antioxidant in the kidney tissues). His-
tological evaluation of kidneys demonstrates that mannitol
significantly decreased tubular necrosis and inflammatory
infiltration [81]. A recent study used the porcine model of I/R
with positive results: kidneys subjected to ischemia displayed
decreased weight, volume, and number of glomeruli in
comparison to the sham operated and mannitol groups and
concluded that using this antioxidant significantly reduces
nephron loss during warm ischemia in this animal model
[107].

Nitric Oxide (NO): Endogen endothelial NO is an auta-
coid whose primary function is to decrease renal vascular
resistance. There is a basal level of NO release, which acts to
prevent excessive vasoconstriction in the kidneys, allowing
a good excretion of sodium and water. It has been noticed
that NO, this small molecule with multiple physiological
functions, plays an important role inmodulating tissue injury
and renal blood flow in the healthy kidneys as well as several
pathologic kidney conditions. The role of NO in I/R injury is
controversial [108]. Exogenous NO has a beneficial effect in
renal I/R injury, while endogenous NO does not appear to be
an important contributor to renal I/R injury. The infiltration
of neutrophils (migration) was decreased in a study in
animals pretreated with the NO donor: Na-nitroprusside
[96]. In vitro studies have shown that NO and peroxynitrite
at high concentrations regulate XO activity [97]. A study
utilized an exogenous Na-nitroprusside, to treat rats during
reperfusion. The lipid peroxidation level was measured to
determine oxidative damage, XO specific activity to evaluate
O

2
∙- production as well as renal GSH level, GPx, and SOD

specific activities to determine the antioxidative capacity in
renal tissue. It was examined whether exogenous NO has an
in vivo inhibitory effect on XO activity in renal I/R injury
and whether it has a protective effect on oxidative stress. GSH
levels were lower in all treated kidneys compared to their
control counterparts. The XO activity of ischemic kidneys of
the group treated with Na-nitroprusside was lower than those
of the other groups. Histological evaluation revealed that the
median value of the damage grade of the Na-nitroprusside
group was lower than that of the control group [98].

5. Antioxidants and Partial Nephrectomy

Several measures to decrease the impact of ischemia or even
to avoid ischemia have been developed for the treatment
of renal neoplasms. An experimental imaging study using
in vivo murine model of renal ischemia made contribution
showing usefulness of novel imaging technologies (electron
paramagnetic resonance, EPRI) in measuring renal reduc-
ing activity and the evaluation of oxidative stress in post-
ischemic renal disease [109]. In the surgical field, abla-
tive procedures such as cryoablation and radiofrequency
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ablation are examples of procedures that avoid ischemia
of the remaining parenchyma. Technical modifications of
the partial nephrectomy procedure have also been used to
reduce ischemia. “Zero ischemia” PN has been described by
Gill and colleagues [110], although systemic hypotension is
induced during tumor resection which may cause ischemia
in a lesser degree. Partial nephrectomy assisted by focal
radiofrequency is another example of nonischemic technique
[98]. Even though occlusion of renal vessels during PN is
necessary in several occasions, ablative procedures such as
radiofrequency and cryoablation may also be used without
ischemia. Nonetheless, PN remains the standard treatment of
renal cell cancer in most cases.

Antioxidants have already been used in clinical practice
to decrease renal I/R injury in transplant procedures. Clinical
studies on the use of antioxidants during partial nephrectomy
are scarce. The most frequently used renoprotective medica-
tion is mannitol [111], which is supposed to exert antioxidant
effects [106, 112] as well as diuretic activity. Nonetheless,
its beneficial effect on renal function is controversial. Two
retrospective studies have shown no advantage from the
administration of mannitol during partial nephrectomy [113,
114]. In both studies, however, a randomized controlled trial
is suggested in order to clarify the role of mannitol during
partial nephrectomy.

An ideal renoprotective medication for PN should be
effective in preventing I/R injury as well as having low inci-
dence of adverse events. Vasoactive drugs and medications
that interfere with coagulation should be of concern because
of the risk of bleeding in the intra- and postoperative period,
for example. Also, medications should have a favorable
posology and low cost.

In addition to the potential benefits of antioxidants in the
acute setting of PN, their long-term usemight also be investi-
gated.The relation of lipid peroxidation to the pathogenesis of
renal cell cancer as stated byGago-Dominguez et al. [4] opens
a great field of investigation in the preventive medicine. The
effect of antioxidants on cancer recurrencemay be considered
for those already treated with curative intent.

6. Conclusions

Since the beginning of renal surgery, studies with medica-
tions to help preserve kidney function have been suggested.
Nonetheless, little progress has been made in the context
of PN. Antioxidants have the potential to improve the
functional outcomes of partial nephrectomy, although both
experimental and clinical data are still missing. Most studied
antioxidant for application during partial nephrectomy can
be found in dietary sources. Pre- and postoperative diets with
nutraceuticals (antioxidant) aliments should be investigated
for possible applications in partial nephrectomy periopera-
tive nutrition.
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[78] M.Conti, P. Eschwège,M.Ahmed et al., “Antioxidant enzymatic
activities and renal warm ischemia: Correlation with the dura-
tion of ischemia,”Transplantation Proceedings, vol. 32, no. 8, pp.
2740-2741, 2000.

[79] R. Hansson, S. Johansson, and O. Jonsson, “Kidney protection
by pretreatment with free radical scavengers and allopurinol:
Renal function at recirculation afterwarm ischaemia in rabbits,”
Clinical Science, vol. 73, no. 3, pp. 245–251, 1986.

[80] S. Bratell, G. Haraldsson, H. Herlitz et al., “Protective effects
of pretreatment with superoxide dismutase, catalase and oxy-
purinol on tubular damage caused by transient ischaemia,”Acta
Physiologica Scandinavica, vol. 139, no. 3, pp. 417–425, 1990.

[81] H. Sies, “Carotenoids and tocopherols as antioxidants and
singlet oxygen quenchers,” Journal of Nutritional Science and
Vitaminology, vol. 38, no. Special, pp. 27–33, 1992.

[82] C. Fleck,D.Haubold, T.Hillmann, andH. Bräunlich, “Influence
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