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Glycans are essential building blocks of life that are located at the outermost surface of all
cells frommammals to bacteria and even viruses. Cell surface glycans mediate multicellular
communication in diverse biological processes and are useful as “surface markers” to
identify cells. Various single-cell sequencing technologies have already emerged that
enable the high-throughput analysis of omics information, such as transcriptome and
genome profiling on a cell-by-cell basis, which has advanced our understanding of
complex multicellular interactions. However, there has been no robust technology to
analyze the glycome in single cells, mainly because glycans with branched and
heterogeneous structures cannot be readily amplified by polymerase chain reactions
like nucleic acids. We hypothesized that the generation of lectins conjugated with DNA
barcodes (DNA-barcoded lectins) would enable the conversion of glycan information to
gene information, which may be amplified and measured using DNA sequencers. This
technology will enable the simultaneous analysis of glycan and RNA in single cells. Based
on this concept, we developed a technology to analyze glycans and RNA in single cells,
which was referred to as scGR-seq. Using scGR-seq, we acquired glycan and gene
expression profiles of individual cells constituting heterogeneous cell populations, such as
tissues. We further extended Glycan-seq to the profiling of the surface glycans of bacteria
and even gut microbiota. Glycan-seq and scGR-seq are new technologies that enable us
to elucidate the function of glycans in cell–cell and cell–microorganism communication,
which extends glycobiology to the level of single cells and microbiomes.
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INTRODUCTION

The human body is composed of 37 trillion cells, which are covered in a dense layer of glycans with a
diameter of ~30 nm (Martinez-Palomo et al., 1969). Cell surface glycans have been determined to
play important roles in diverse biological processes, including development (Haltiwanger and Lowe,
2004), pluripotency (Alisson-Silva et al., 2014; Nishihara, 2018), tumorigenesis (Dube and Bertozzi,
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2005; Lau and Dennis, 2008), and immune escape (van Kooyk
and Rabinovich, 2008). Cell surface glycans are known to vary
depending upon the cell type and state, such as the degree of
differentiation and tumorigenesis (Tateno et al., 2011; Hasehira
et al., 2012; Taniguchi and Kizuka, 2015; Shimomura et al., 2018).
Therefore, glycans are often referred to as a “cell signature” that
reflects cellular characteristics (Naoki et al., 2013; Krištić et al.,
2014). Most glycans are attached to proteins or lipids to form
glycoconjugates, such as glycoproteins, glycolipids,
proteoglycans, and glycosylphosphatidylinositol (GPI)-
anchored proteins (Gahmberg and Tolvanen, 1996; Kinoshita
et al., 1997; Maccioni et al., 2002). Glycans are composed of
approximately ten different monosaccharides (Glc, GlcNAc, Gal,
GalNAc, Man, Xyl, GlcA, Fuc, NeuAc, and IdoA), which are
linked by glycosidic bonds (Cummings and Pierce, 2014;
Seeberger, 2015). Anomers and linkage isomers exist in the
glycan structure; thus a variety of isomers are possible (Laine,
1994; Werz et al., 2007). Unlike genes and proteins existing as a
linear sequence, glycans typically exhibit a branched structure,
which is regulated by the substrate specificity of the
glycosyltransferases (Varki, 2017). Glycan structures are
evolving rapidly, and they are different depending on the
organismal species (Varki, 2006; Varki, 2017). Glycans are the
secondary products of genes, which are synthesized by the activity
of various glycogenes (as of a total >200), such as
glycosyltransferases, glycosidases, sugar-nucleotide transporter
synthases, and sugar-nucleotide transporters (Yarema and
Bertozzi, 2001). As a result, glycan structures may be
influenced by intrinsic and extrinsic environmental changes
and cannot be easily predicted simply from gene expression
profiles. Therefore, it is necessary to develop technologies to
analyze cell surface glycans directly.

LECTIN-BASED GLYCAN PROFILING

Various strategies have been developed to analyze the glycome,
which represents the total set of glycans expressed in a cell or
tissue. These techniques include mass spectrometry (MS), high-
performance liquid chromatography (HPLC), nuclear magnetic
resonance (NMR), and capillary electrophoresis (CE) (Haslam
et al., 2006; Yamaguchi and Kato, 2010; Nakano et al., 2011). In
2005, a lectin-based glycan profiling technology, known as lectin
microarray, emerged. Since then, it has been noted to play a
pivotal role in surveying and mapping the structure of complex
glycans in various biological samples (Kuno et al., 2005; Pilobello
et al., 2005; Narimatsu et al., 2010; Narimatsu et al., 2018;
Hirabayashi et al., 2013; Ribeiro and Mahal, 2013). In lectin
microarrays, specific lectins with various glycan-binding
specificities, which can discriminate structural isomers such as
anomers and linkage isomers of glycans, are immobilized onto
glass slides. Glycoproteins extracted from cells or tissues are
incubated with the lectin microarray, wherein the binding
profiles of lectins can be acquired. Because the specificity of
each lectin is known, the glycan profiles and their differences
in cells and tissues can be predicted. Lectin microarrays have also
been applied to the analysis of not only glycoproteins but also

small vesicles, such as exosomes (Gerlach et al., 2013; Shimoda
et al., 2017; Shimoda et al., 2022; Saito et al., 2018); viruses
(Stevens et al., 2006; Hiono et al., 2019); whole cells, such as live
mammalian cells (Zheng et al., 2005; Lee et al., 2006; Tateno et al.,
2007; Tao et al., 2008); and bacterial cells (Hsu et al., 2006; Gao
et al., 2010; Yasuda et al., 2011). However, there are limitations to
lectin microarrays as well as these other analytical methods. For
example, 1) glycans cannot be analyzed at the single-cell level, 2)
the glycan profile of each cell type in a mixed cell population
cannot be obtained without prior separation, and 3) the
relationship between the glycome and transcriptome in single
cells cannot be determined.

CONCEPT OF GLYCAN PROFILING BY
SEQUENCING

High-throughput single-cell sequencing has been transformative
for the identification and study of complex cell populations
(Stuart and Satija, 2019). Recently, simultaneous profiling of
multiple types of molecules within a single cell has been
developed in order to establish a more comprehensive
molecular view of the cell (Peterson et al., 2017; Stoeckius
et al., 2017; Stuart and Satija, 2019). However, there are no
techniques yet to simultaneously analyze the glycome and
transcriptome in single cells. One reason is that, unlike DNA
and RNA, glycans cannot be amplified by methods such as the
polymerase chain reaction (PCR). Therefore, we hypothesized
that the generation of lectins conjugated with a DNA sequence
(DNA-barcoded lectin) would enable the transformation of
glycan information to gene information, which may be
amplified and further measured using a DNA sequencer, such
as a next-generation sequencer (Figure 1A). In addition, the
simultaneous analysis of the glycome with other molecular
profiles, such as the transcriptome, may be realized.

GLYCAN-SEQ

In 2016, we began developing a technology to analyze glycans in
single cells based on the aforementioned concept as a Japan
Science and Technology Agency (JST) PRESTO project. Lectins
with known specificity were conjugated to DNA oligonucleotides
containing a barcode sequence for the identification of the
specific lectin, thus enabling the lectins to be specifically
identified by sequence analysis (Figure 1A) (Minoshima et al.,
2021). The lectins were conjugated via their amino groups with
the photocleavable dibenzocyclooctyne-N-hydroxysuccinimidyl
ester (DBCO-NHS), which allowed the efficient conjugation with
5′-azide-modified oligonucleotides. The oligonucleotides were
released from the lectin following ultraviolet (UV) exposure
(Odaka et al., 2022). We prepared a panel of 39 DNA-
barcoded lectins that covered various glycans, such as
sialylated, galactosylated, GlcNAcylated, mannosylated, and
fucosylated glycans that are present in glycoconjugates
(Minoshima et al., 2021), whereas DNA-barcoded mouse and
goat IgG were used as negative controls. In total, 41 DNA-
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FIGURE 1 | Single-cell glycan and RNA sequencing (scGR-seq). (A) Principle of converting glycan information into gene information by DNA-barcoded lectins. (B)
Schematic experimental workflow of scGR-seq. (C) hiPSCs after 0- (red), 4- (green), and 11-day differentiation (blue) into neural progenitor cells were analyzed by
scGlycan-seq (left panel), flow cytometry (middle panel), and principal component analysis (right panel). (D) Dimensional reduction and clustering. UMAP visualization
based on only the scRNA-seq data (left panel), only the scGlycan-seq (middle panel), both scRNA-seq and scGlycan-seq (scGR-seq, right panel) data of hiPSCs (n
= 53, red), and NPCs (n = 43, green). (E) PLS regression. A heatmap showing the association between each lectin and each component inferred by PLS regression.
Rows represent lectins, and columns represent components. (F) Correlation between lectin signal and glycosyltransferase gene expression. A heatmap showing the
association of glycogenes and lectins inferred by PLS regression. Rows represent genes, and columns represent lectins. Figures are reprinted from Minoshima et al.
(2021) (Minoshima et al., 2021).
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barcoded proteins were incubated with 1 × 105 cells, and the
unbound lectins were removed by washing (Odaka et al., 2022)
(Figure 1B). Then, the bulk or single cells were separated into a
PCR tube and exposed to UV light. After centrifugation, the
supernatants containing the released DNA barcodes were
recovered, amplified by PCR, and analyzed by a next-
generation sequencer to count the DNA barcodes (Odaka
et al., 2022). We refer to this method as Glycan-seq.

We evaluated the ability of Glycan-seq in a comparative
analysis of the following bulk samples: human-induced
pluripotent stem cells (hiPSCs) vs. human dermal fibroblasts
(hFibs), Chinese hamster ovary cells vs. glycosylation-defective
Chinese hamster ovary mutants, and hiPSCs vs. hiPSC-derived
neural progenitor cells (NPCs) (Minoshima et al., 2021). The
results were compared by flow cytometry using fluorescence-
labeled lectins as the gold standard. Essentially, the Glycan-seq
data were consistent with the flow cytometry data (Minoshima
et al., 2021). Therefore, bulk Glycan-seq can capture distinct and
quantitative differences in glycan profiles in various cell
populations as confirmed via flow cytometry.

Next, we tested the applicability of Glycan-seq in single cells,
which we termed single-cell Glycan-seq (scGlycan-seq)
(Minoshima et al., 2021) (Figure 1C). We applied scGlycan-
seq for comparative analysis of hiPSCs and hFibs and hiPSCs
before and after differentiation into NPCs. The relative
quantitative differences in the rBC2LCN signal for hiPSCs
before (day 0) and after differentiation to NPCs (days 4 and
11) observed by flow cytometry were also captured by scGlycan-
seq (Minoshima et al., 2021) (Figure 1C, left and middle panels).
The principal component analysis clearly separated single cells on
days 0, 4, and 11, and the cells were clearly ordered with respect to
the progression of differentiation (Minoshima et al., 2021)
Figure 1C, right panel). Therefore, scGlycan-seq enabled
glycan profiling in single cells and revealed cellular
heterogeneity in the glycan profiles.

SCGR-SEQ

scGlycan-seq was then combined with scRNA-seq for the
simultaneous analysis of glycan and RNA profiles in single
cells (scGR-seq) (Minoshima et al., 2021) (Figure 1B). For
scRNA-seq, we used a plate-based method known as RamDA-
seq, which is a full-length single-cell total RNA-sequencing
method (Hayashi et al., 2018). We performed scGR-seq on
human-induced pluripotent stem cells (hiPSCs) and hiPSC-
derived NPCs (11-days differentiation). Using UMAP, a
nonlinear dimensional clustering based on only the mRNA or
glycan data, the two cell types (hiPSCs and NPCs) were partially
separated (Minoshima et al., 2021) (Figure 1D). In contrast,
when we performed UMAP based on both the mRNA and glycan
data, the two cell types were clearly separated (Minoshima et al.,
2021) (Figure 1D). Therefore, the combination of mRNA and
glycan profiling techniques has further characterized the cell
identities. Simultaneous transcriptome and glycome profiles
can associate genes with glycans at the single-cell level. A PLS
regression analysis was able to identify a group of mRNAs and

lectins that were associated with one another differently per
component (Minoshima et al., 2021) (Figure 1E). This
analysis allowed us to infer each glycan’s potential function
and role as a marker through the set of genes associated with
the glycan. We also established the overall relationship between
lectins and glycosylation-related genes (Minoshima et al., 2021)
(Figure 1F). Therefore, scGR-seq is useful for finding potential
relevance between the transcriptome and glycome profiles.

GLYCAN-SEQ OF THE GUT MICROBIOTA

The gut microbiota is known to be populated with diverse
microbial communities, of which the bacterial communities
are present in high numbers (Costello et al., 2009; Neish,
2009). It is estimated that the human gastrointestinal tract is
home to approximately 100 trillion (1014) microbes, including
1,000 species of bacteria, which is similar to the number of cells in
the entire human body (Sender et al., 2016). The interactions
between these microbial communities and the host provide
important physiological functions that can affect human health
(Sekirov et al., 2010; Kho and Lal, 2018; Valdes et al., 2018; Fan
and Pedersen, 2021). Mammalian and bacterial cells are coated
with glycans, which serve as an interface for crosstalk with the
host (Mescher et al., 1974; Comstock and Kasper, 2006). Bacterial
cell surface glycans are highly complex and quite different from
those of eukaryotes: Gram-positive bacterial cells are enclosed by
a single membrane covered by a thick peptidoglycan layer and
lipoteichoic acids (Whitfield, 1988; Rajagopal and Walker, 2017),
whereas Gram-negative bacterial cells are covered by two cell
membranes (inner and outer membranes) separated by a
periplasm containing a thin peptidoglycan layer and the outer
membrane consisting of lipopolysaccharides (Figure 2A)
(Beveridge, 1999; Casey et al., 2008). Understanding the cell
surface glycans of gut bacteria may provide better insight into
the interactions between the host and the gut microbiota.
Previously, we and others used lectin microarrays to
demonstrate that the cell surface glycans of bacteria are
different from strain to strain and with culture conditions
(Hsu et al., 2006; Gao et al., 2010; Yasuda et al., 2011).
Utilizing lectin microarrays for glycan analysis of the gut
microbiota is challenging for the following reasons: 1) it is
difficult to fluorescently label all of the bacteria comprising the
microbiota with the same intensity, 2) a large number of cells is
required, and 3) bacterial cells are frequently washed out during
the washing steps. Therefore, there has been no robust technology
for glycan profiling of the gut microbiota.

We began developing technology for glycan profiling of the
gut microbiota as an AMED-Prime project in 2018. For this
purpose, the Glycan-seq technique described earlier was modified
and implemented for the analysis of bacterial surface glycans. We
first evaluated the applicability of Glycan-seq to bacterial glycan
profiling in cultured bacteria: Gram-positive (Deinococcus
radiodurans) vs. Gram-negative (Escherichia coli) bacteria
(Oinam et al., 2022). After incubation of bacteria with DNA-
barcoded lectins, the barcodes were released from the lectins
bound to the bacteria by UV irradiation. The recovered DNA
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FIGURE 2 | Glycan profiling of the gut microbiota and 16S rRNA sequencing. (A) Illustration of the typical cell wall architecture of Gram-positive and negative
bacteria. (B) Schematic experimental workflow of glycomic profiling, bacterial composition analysis, and the identification of lectin-reactive bacteria. (C) Hierarchical
clustering heatmap of the gut microbiota of mouse pups (n = 3) and adult mice (n = 3) obtained from the Glycan-seq data. The column shows the pups and adult mouse
sample separation, and the row shows the name of the lectins used in the Glycan-seq analysis. (D) The stacked bar graph represents the differential abundance of
the bacterial family identified by 16S rRNA sequencing from each sample. Each colored bar represents the bacterial family identified. Figures are reprinted from Oinam
et al. (2022) (Oinam et al., 2022).
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barcodes were amplified by PCR, and the number of barcodes
derived from each lectin was counted by a next-generation
sequencer, which corresponds to the resulting bacterial glycan
profiles (Oinam et al., 2022). The Glycan-seq analysis revealed
that the glycans were different between Gram-positive and Gram-
negative bacteria. To confirm the Glycan-seq data, lectins
differentially detected in the cultured bacteria were subjected
to flow cytometry analysis, the gold standard for cellular lectin
staining. The results indicated that the identified lectins are
bound to the bacteria, which is in agreement with the Glycan-
seq data and suggested that Glycan-seq data may be applied to
bacterial cell surface glycan analysis (Oinam et al., 2022). The
specific lectin binding was confirmed using a competition assay
with saccharide inhibitors and glycosidase treatment, followed by
flow cytometry.

After confirming the applicability of glycan analysis to
cultured bacteria, Glycan-seq was used to analyze the gut
microbiota along with genomic profiling of the bulk gut
microbiota from pups (14–20 days old) and adult (12-month
old) mice (Figure 2B) (Oinam et al., 2022). Glycan analysis
revealed that the glycans of mouse pups and adult mice were
different (Figure 2B) and lectins identifying sialylated glycans
were higher in pups (Figure 2C). The genome content was
isolated from the bacterial cells, and the V3-V4 region of the
16S rRNA was amplified by PCR (Oinam et al., 2022). The 16S
rRNAwas then sequenced to determine the bacterial composition
of the gut microbiota (Oinam et al., 2022). The composition of the
two microbiota was different as bacterial families belonging to
Lactobacillaceae, Enterobacteriaceae, Pseudomonadaceae, and
Gemellaceae were more abundant in pups (Figure 2D)
(Oinam et al., 2022). Sialylated bacteria were then enriched by
lectin pulldown using Sia-binding lectins and subjected to 16S
rRNA sequencing. The sialylated bacteria identified were
Lactobacillaceae, Lachnospiraceae, Enterobacteriaceae, and
Muribaculaceae (Oinam et al., 2022). Using Glycan-seq, we
were able to perform a glycan analysis of the gut microbiota
along with the bacterial composition using the same sequencing
instrument. Therefore, Glycan-seq analysis comprehensively
revealed differences in the glycan profile of the gut microbiota
of pups and adult mice and identified more sialylated bacteria in
the mouse pups.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVE

scGR-seq provides lectin-based glycan and gene expression
profiles for individual cells, making it possible to obtain
detailed glycan information and discriminate structural
isomers of glycans on single cells constituting a tissue. These
data will provide insight into complex multicellular
communication networks, including tumor microenvironments
and neural networks based on lectin-receptor interactions. scGR-
seq can also be applied to the development of drug targets for rare
cells, such as cancer stem cells and circulating tumor cells.
However, there are limitations to the current Glycan-seq and
scGR-seq techniques. Similar to flow cytometry and lectin

microarray, absolute amounts of glycans cannot be
determined. Another limitation of this current system is the
throughput. Since scGR-seq is a plate-based platform, the
processing is currently limited to hundreds of cells, whereas it
can perform full-length total RNA sequencing. In contrast,
droplet-based methods such as 10x Genomics (CITE-seq) can
sequence thousands of cells at once but only target the 3′ ends of
poly(A) transcripts (Baran-Gale et al., 2018). Because of this
difference, scGR-seq will complement the study of single cells in
complex biological systems. To resolve this limitation, we plan to
improve scGR-seq and adapt it to a droplet-based high-
throughput single-cell technology (B Rosenberg et al., 2018).
Accordingly, SUrface-protein Glycan and RNA-seq (SUGAR-
seq) based on the 10x Genomics platform was also recently
reported for the detection of a lectin-binding signal together
with the analysis of extracellular epitopes and the transcriptome
at the single-cell level (Kearney et al., 2022), although SUGAR-seq
detects only one lectin binding to a single cell.

We have also adopted Glycan-seq to approach the untapped
glycomics of the gut microbiota, which mediates the direct
crosstalk with the host. Bacteria containing a particular glycan
surface marker may represent a novel diagnostic and therapeutic
target of the disease. For glycomic profiling of the gut microbiota,
only bulk analysis by Glycan-seq is currently available. The
development of a technique for the simultaneous analysis of
the glycome and genome in single cells is needed to fully realize
bacterial glycomic profiling in single cells.

In conclusion, we have developed a lectin-based glycan
profiling technique by sequencing and applied this technique
to the joint analysis of glycan and RNA in single cells and the
glycomic profiling of the gut microbiota. Glycan-seq and scGR-
seq have the potential to advance our understanding of cellular
heterogeneity and the biological role of glycans across diverse
multicellular systems across species and lead to the launch of
glycobiology in single cells and microbiomes.
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