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Abstract Today, diagnosis of attention deficit hyperac-
tivity disorder (ADHD) still primarily relies on a series of
subjective evaluations that highly rely on a doctor’s
experiences and intuitions from diagnostic interviews and
observed behavior measures. An accurate and objective
diagnosis of ADHD is still a challenge and leaves much to
be desired. Many children and adults are inappropriately
labeled with ADHD conditions, whereas many are left
undiagnosed and untreated. Recent advances in neu-
roimaging studies have enabled us to search for both
structural (e.g., cortical thickness, brain volume) and
functional (functional connectivity) abnormalities that can
potentially be used as new biomarkers of ADHD. However,
structural and functional characteristics of neuroimaging
data, especially magnetic resonance imaging (MRI), usu-
ally generate a large number of features. With a limited
sample size, traditional machine learning techniques can be
problematic to discover the true characteristic features of
ADHD due to the significant issues of overfitting, com-
putational burden, and interpretability of the model. There
is an urgent need of efficient approaches to identify
meaningful discriminative variables from a higher dimen-
sional feature space when sample size is small compared
with the number of features. To tackle this problem, this
paper proposes a novel integrated feature ranking and
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selection framework that utilizes normalized brain cortical
thickness features extracted from MRI data to discriminate
ADHD subjects against healthy controls. The proposed
framework combines information theoretic criteria and the
least absolute shrinkage and selection operator (Lasso)
method into a two-step feature selection process which is
capable of selecting a sparse model while preserving the
most informative features. The experimental results
showed that the proposed framework generated the high-
est/comparable ADHD prediction accuracy compared with
the state-of-the-art feature selection approaches with min-
imum number of features in the final model. The selected
regions of interest in our model were consistent with recent
brain—behavior studies of ADHD development, and thus
confirmed the validity of the selected features by the pro-
posed approach.

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is among
the most common child and adult neurodevelopmental
disorder. ADHD symptoms include inattention, hyperac-
tivity, and impulsivity. It affects approximately 5-10 % of
all school-age children and nearly 5 % of adults on their
motor, cognitive, and emotional development [1]. Diag-
nosis of ADHD still remains a challenge, requiring long-
term and extended involvement from clinicians, parents,
and teachers. Clinicians rely heavily on experiences and
intuitions when conducting diagnostic interview and
observational measures. A delay or incorrect diagnosis of
ADHD could have a significant negative impact on a
patient’s social and emotional development, while an early
and accurate detection of ADHD can strongly influence the
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course of the condition development by delivery of
appropriate treatments to the patient. In addition to the
traditional clinical diagnosis, there is a pressing need to
find a set of more discriminative and objective features to
characterize ADHD that can be used to facilitate ADHD
diagnosis.

Previous studies on the etiology of ADHD are mostly
based on structural or functional neuroimaging research of
group level (ADHD vs. control) differences. Some infor-
mative features extracted are blood oxygenation level-de-
pendent (BOLD) signals from functional magnetic
resonance imaging (fMRI) data [2], wavelet synchronization
likelihoods extracted from electroencephalography (EEG)
data [3], rolandic spikes from EEG data [4], brain volume
measure extracted from magnetic resonance imaging (MRI)
data [5]. The pursuit of neuroanatomical biomarkers has a
great potential to facilitate new discriminative methods that
are etiologically informed and validated by neuropsycho-
logical theories. However, due to high cost of neuroimaging
data acquisition, most current ADHD studies are based on
relatively small sample sizes, which reduce the statistical
power needed to validate meaningful discriminative variable
from a very large number of features extracted from struc-
tural MRI [6]. A limited sample size with equivalent number
of features raises new challenges to traditional machine
learning algorithms, such as logistic regression or support
vector machines (SVM), as they tend to overfit and lack a
generalization power when training on a dataset containing
the number of features far larger than the sample size (p > n
problem). In previous work, some models either use hun-
dreds of features as an input or exhaustively search on a
preselected smaller subset of features. SVM is mostly
favored [7] and some variant of feedforward neural networks
[8] is also used. We believe that those methods are either
susceptible to overfitting or too restrictive in the search
space. The interpretation of the final models is very difficult
to validate by existing neuropsychological theories.

In this study, we propose an integrated feature ranking
and selection framework that uses brain cortical thickness,
extracted from structural MRI data, as features and con-
structs a prediction model to identify ADHD subjects
versus normal controls. The framework performs a two-
step feature selection process based on both information
theoretic criteria and regularization concept. To mitigate
the inconsistent feature selection issue of regularization,
especially the lasso method [9], the framework preanalyzes
all features to rank informative features based on mutual
information scores [10]. In feature selection, it extends the
lasso method [11] to construct a prediction model by fixing
those preselected highly informative features when per-
forming regression. Tested on both simulated and real
datasets, our framework is shown to effectively preserve
highly informative features identified in the feature ranking
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step and improve the model accuracy while searching in a
full-feature space and maintaining the sparsity in the fea-
ture selection step. With a prediction accuracy of 80.9 %,
our framework selects two sparse models, each with only 4
or 5 cortical thickness features. Previous neurodevelop-
mental studies of ADHD also consistently suggest that the
features selected in our models have a deeper connection to
the neurodevelopmental basis of ADHD, and thus making
the models highly interpretable to clinicians. The proposed
feature selection and prediction framework is a necessary
first step to help clinicians find more features of charac-
terizing ADHD using an objective measure with high dis-
criminative accuracy.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the background of ADHD, including the brain
cortical thickness and its connection to ADHD. We also
review the current feature ranking and selection algorithms.
Section 3 presents the proposed two-step feature ranking
and selection framework, including the model formulations
and model validation using simulated datasets. Section 4
shows the experimental results of the proposed framework
on ADHD characterization using a real MRI neuroimaging
dataset. Finally, we conclude the study in Sect. 5.

2 Background
2.1 Feature extraction of ADHD

ADHD is considered a neurodevelopmental disorder given
the age-related differences in cortical maturation that
characterize ADHD. Researchers suggest that the origins of
attention can be observed in infants as young as three
months when the young infant is able to selectively attend
(i.e., recognize and orient toward) to their caregiver’s face
[12]. According to these researchers, attention is composed
of differential structures and circuits, called an organ sys-
tem. Furthermore, as a child matures during preschool and
early elementary school years, attention response grows
into the ability to self-regulate (i.e., adjust one’s emotional
state/behavior depending on the demands of the environ-
ment) in a changing and dynamic environment. Those
higher level attention abilities are often described with the
term “executive functions.” Such development not only
relies on social demand, but also is due to the brain mat-
uration of the prefrontal cortex. In Posner and Fan’s (2008)
model, self-regulation leads to the second stage in attention
development, the executive network. During the ages of
5-9, children with deficits in self-regulation and attention
are noticed by teachers and parents, as their behaviors
deviate from what would be developmentally appropriate.

Choosing brain cortical thickness as the features in ADHD
characterization is not only supported by theory, but also
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benefits from advances of neuroimaging techniques.
Numerous theories have hypothesized the cause of ADHD
[13-18]. Those hypothesis are further supported by neu-
roimaging research, which provides an accurate way to
measure the relationship between behaviors or symptoms and
underlying brain morphology and brain functioning. As
structural and functional neuroimaging techniques have
improved vastly over the last thirty years, MRI provides
excellent spatial resolution, uses no ionizing radiation (unlike
computed tomography, CT), and thus can be used in pediatric
samples of clinical and non-clinical typically developing
controls. Cortical and surfaced-based neuroimaging tech-
niques improve on conventional volumetric analysis by
allowing for a direct measure of cortical thickness in mil-
limeters, thus may present a more sensitive tool for under-
standing and measuring brain abnormalities in children with
ADHD. So far, a large number of neuroimaging studies have
observed that ADHD manifests via a general deficit in the
dopaminergic system of the brain including prefrontal cortex
[13, 5] or abnormalities in brain structures rich in dopamine
receptors in children and adults with ADHD [19-23, 5].

2.2 Feature selection

Although recent advances in neuroimaging studies have
enabled us to search for structural brain abnormalities
caused by the disease that can potentially be used as new
biomarkers of ADHD, characterization using traditional
machine learning techniques can be difficult because
structural characteristics of neuroimaging data, especially
MRI data, usually result in large number of features. Even
grouping raw features into region of interests (ROI), find-
ing discriminative features for ADHD is still not easy due
to relative small sample size with a limited number of
patients and healthy participants. Learning from limited
sample size with equivalent feature size raises significant
issues of overfitting and interpretability of the final model.
This study is motivated by the challenge and is aimed to
develop efficient feature selection approaches that can
construct a sparse model with the most clinical meaningful
features preserved. In particular, this paper proposes a
novel integrated feature ranking and selection framework
which combines information theoretic criteria and the least
absolute shrinkage and selection operator (Lasso) method
into a two-step feature selection process. The current
information theory-based and the Lasso-based feature
selection approaches will be discussed in the following.

2.2.1 Feature selection using mutual information

Mutual information [24, 10] is a measure of the inherent
dependence expressed in the joint distribution of X and Y

relative to the joint distribution of X and Y under the
assumption of independence. MI measures how much
information a feature contains about the class without
making any assumptions about the nature of their under-
lying relationships. It is formulated as

I(X,Y) =Zzp(x,y)log<%)

yeY xeX

If the feature is a perfect indicator for the class membership,
its MI reaches its maximum value. A basic intuition is that a
stronger mutual information implies a greater predictive
ability when using the feature. As an information theoretic
criteria, MI have been applied in many feature selection
problems [25]. To know whether a given candidate feature
should be included, one must be able to evaluate the joint
mutual information /(X, Y). However, as feature matrix X is
generally multi-dimensional with a continuous distribution,
the joint mutual information /(X, Y) is thus extremely dif-
ficult to reliably estimate. To solve the problem, one can
assume each feature is independent of all other features, and
rank the features in descending order according to their
individual mutual information score I(X;, Y). The feature
selection is simply picking the top K features, where K can
be determined by a predefined certain number of features or
some stopping criterion. The feature selection criterion
based on mutual information score is commonly adopted in
literature. It is often referred as Mutual Information Maxi-
mization (MIM) approaches [26]. However, the perfor-
mance of this approach is known to be suboptimal if
features are interdependent, which is a general case in most
studies. In addition, it is widely accepted that a useful set of
features should not only be individually relevant to class
label, but also should not be redundant with respect to each
other, that is features should not be highly correlated in the
selected subset. To consider both relevancy and redun-
dancy, a number of approaches have been proposed. For
example, Battiti [27] proposed the Mutual Information
Feature Selection (MIFS) criterion, which introduces an
inter-feature correlation term into the MIM criterion. A
penalty parameter f§ is employed to control the tradeoff
between relevancy and redundancy. If the penalty param-
eter f5 is set to 0, it is equivalent to the MIM criterion. Peng
et. al. [28] presented the Maximum-Relevance-Minimum-
Redundancy (MRMR) criterion, which is in principle
equivalent to MIFS with the f = 1/(n — 1), where n is the
number of selected features in the current subset. Yang and
Moody [29] used Joint Mutual Information (JMI) to focus
on increasing complementary information between fea-
tures. In particular, the mutual information between the
class label and a joint random variable X;X; is calculated.
By pairing a candidate X; with each previously selected
feature. The principle idea is that if the candidate feature is
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‘complementary’ with the existing features, it should be
included in the feature subset. Fleuret proposed the Con-
ditional Mutual Information Maximization (CMIM) crite-
rion [30], which examines the information between a
feature and the class label, conditioned on each current
feature. Instead of taking the mean of the redundancy term,
CMIM takes the maximum value in the redundancy term
and thus penalize more on feature redundancy.

Although mutual information-based feature selection
approaches gained wide popularity in the literature, there are
still some significant issues unsolved. First, all these criteria
rely on highly restrictive assumptions on the underlying data
distributions. In particular, due to the computational diffi-
culties in high-dimensional mutual information estimation,
most approaches only consider pairwise and conditional
pairwise interactions, and omit the higher-order interactions.
Second, most current MI-based approaches perform feature
selection sequentially starting from high-ranked features. As
a result, by excluding low MI ranking features, such
approaches deny the possibility that a set of low-ranked
features combined together may generate strong predictive
power (e.g., in the famous XOR problem [31]). We have the
risk of missing that strong signal by only working on the
preselected candidate set [32, 33, 28].

2.2.2 Feature selection with regularization

In medical research, due to high cost of data acquisition,
researchers often run into the issue of insufficient samples
to train and validate developed models. Instead of heuristic
selection schemes (such as many MIl-based approaches),
objective optimization methods have received more atten-
tion since they can be conveniently formulated as convex
optimization problems with global optimal solutions. A
typical objective function consists of an error term and a
regularization term. One of the most widely used such
feature selection algorithms is the least absolute shrinkage
and selection operator (Lasso) [34]), which allows com-
putationally efficient feature selection based on linear
dependencies between input features and output values.
The Lasso method as a shrinkage and selection method for
linear regression gradually receives high recognition and a
fast coordinate descent algorithm has been devised to solve
the optimization problem. The optimization framework of
lasso to minimize the sum of squared errors with a /;-norm
penalty (bound on the sum of the absolute values of the
coefficients) is formulated as follows:

n

> i = ) +2l1Bll;-

i=1

By penalizing and forcing some variables to be zero, lasso
can effectively select a sparse model. However, it sacrifices
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unbiasedness to reduce the variance of the predicted value
[35].

There are still some challenges for application of Lasso
method in feature selection. The Lasso result is often
subject to the scaling of features. Inappropriate scaling may
cause imbalanced penalty on linear coefficients. The true
underlining features with high coefficients may be sup-
pressed to have smaller coefficients. As a result, the total
explained variance is limited. Instead of rescaling all fea-
tures, more generally one can employ adaptive Lasso [36]
with penalty term 1) w;||f;||,. Even so, effects of strong
signal will be diminished due to shrinkage.

3 New integrated feature ranking and selection model
3.1 Model formulation and solution

The proposed integrated feature ranking and selection
framework is performed in two stages: mutual information-
based feature ranking and Lasso-based feature selection. In
the feature ranking step, all features are ranked by their MI
scores, and a subset of high-ranked features are selected and
considered to have the best informative power. Among
those features, a redundancy removal step is performed by
checking pairwise correlation between the features. For a
highly correlated feature pair (higher than a threshold), the
feature with lower MI score is considered redundant and
removed from the feature subset to prevent multicollinear-
ity. In the feature selection step, we set the best informative
features penalty-free in the generalized lasso method. We
use Lasso to select additional features from the full-feature
space, not restricted to the subset of high MI features. The
additional features selected, although have lower MI scores
individually, can improve model classification performance
when combined together. Within the subset of high MI
features, we start with setting the single top-ranked feature
penalty-free, then all combinations of two top features, then
all combinations of three top features, iteratively. The fea-
ture selection and classification model was validated by
leave-one-out cross-validation (LOOCYV). The search pro-
cess stops when validation accuracy cannot be further
improved. The resulting model will be the best model for
class prediction. Comparing with other MI-ranking-based
methods, the proposed framework can select from the full-
feature space while still creating a sparse model. Comparing
with standard regression approaches with regularization, the
proposed framework integrates the information theoretic
criteria in the generalized Lasso model, and sets the most
informative features penalty-free to improve prediction
accuracy and enhance model interpretability. The
flowchart of the proposed integrated feature ranking and
selection framework is shown in Fig. 1.
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Mathematically, our framework can be formulated as an
optimization problem. Let M be the set of indexes of top
MI features selected from the MI ranking step. We set
indexes in S penalty-free, where S is a subset of M. For
each S, we want to solve the following problem.

n )4 2 P
min> (3= fo= Db ) 4431 0
i=1 j=1 J=1

s.t. Bies = 0. (2)

The optimization model in our Integrated Feature Ranking
and Selection Framework can be solved under generalized
lasso framework [37], which is more flexible than lasso and
is better in representing the intention to set coefficients of
certain informative features penalty-free. Basically, it
introduces an arbitrary matrix D € R™*? m <p to define
the weights and relations of each element in f.

min ||y = XB|[; + Al Dp]] .

BeR?

We can construct a proper D in the generalized lasso frame-
work to adjust penalty levels for each feature. To find such a D,
we propose and prove the following two propositions.

Proposition 1

v = XB|[3 + || (1aBr. 22Bs. - 2By |-

min
peR?

Input: feature vector and label (x;,y;)

}

identify top features by MI

}

reduce redundancy and get top
MI feature subset M, | M| = m

}

let penalty-free set be S C M,
|S| = k, initialize k = 1, ACCy = 0

}

run lasso with fixing all S, return

highest accuracy AC'Cy, for kth run
Y
yes
k=k+1
Yno

Output: model with ACC}_4 ’

Fig. 1 Flowchart of Integrated Feature Ranking and Selection Model

The above problem of assigning weights 4; for each feature
is equivalent to the generalized lasso with diagonal matrix
D and J; = di /. (The above formula has also been previ-
ously presented as adaptive lasso [36].)

Proof Let D be diagonal matrix diag(d;,d,, ..
have

. dy), we

2|DBI, = 4| (di By, daBss - o dpB,) |

= H(ilﬁlg'-'vipﬁp)Hl'

If D is p x p and invertible,  can be transformed into
0 = Df. The generalized form can be reduced to the
standard lasso:

min ly—x0"'0|2+ 4]l

O

Proposition 2 Without loss of generality, to keeping
features X, _¢+1,Xp—x42, - . ., X, penalty-free is equivalent to
setting d,, _x11 = 0,dp,_442 =0,...,d, = 0.

Proof In this case, D is a rank-deficient matrix
dlag(dl y dz, ..
ADBI], = [[(21B1s 22Bas - dpiByi) |-

Following the construction procedures in [37], we can
transform and reduce the problem to a standard lasso
problem. First, we create a full rank matrix D by removing
the last k rows from D and adding k x p matrix A to the
bottom, where m = p — k<p.

dyi,0,...,0).

rd, 0 0 01
D= 0 d,,

0 1 0

L 0 0 1.,

In the above matrix D, A’s rows are clearly orthogonal to

those in D. Let 0 = Df = (0,, )", where 0, is related to
the coefficient vector 3, of the first m features that are not
in the desired set. Now the objective function is

min [y~ X0, X552+ 210
where X, is the rescaled first m columns of X, X, is the
original last k columns.

We optimize f3,,, 0, in a sequential way. First, fixing 6,
the problem regarding f3, is a standard linear regression.
The new objective function is to
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min, [|(1 = P)y = (1 = P)Xula][; + 41[ 0]

where P = X,(X/X,) 'XI. We get a standard lasso prob-
lem regarding 0,. After solving 0,, we can in turn deter-
mine 8, by f§, = (XIX,) "' XD (y — X,0,) from the result of
linear regression. The solution of the original generalized
lasso solution is [3 =D '0=D" [0;7 ﬂ;}]T ]

Despite the formulation similarity between our model
and adaptive lasso [36], adaptive lasso was previously
proposed to include a data-dependent weight vector w. The

weight vector is estimated as w = 1/|f|” and no element is
intended to be zero. From the formulation perspective,
adaptive lasso is a special case of generalized lasso with a
full-rank diagonal matrix. In our case, we construct D as a
(0,1)-matrix that has exact one non-zero element in each
row (i.e., Zj dij = 1) and at most one non-zero element in
each column (i.e., >, d;; <1). The column indices of non-
zero elements are the features subject to /; penalty. The
complement set of p — m features are those, we believe,
that are information rich and thus set penalty-free.

3.2 Performance evaluation using simulated dataset

To evaluate the performance of the proposed feature
selection framework, we used a simulated dataset with
binary response and contain p = 45 predictors and n = 50
samples. The dataset was generated in such a way that only
two predictors were related to the response. Using LOOCV,
the proposed framework achieved a validation accuracy of
0.92 with five features selected. As a comparison, we also
tested the logistic regression (LR) with lasso, which gen-
erated a validation accuracy of 0.86 with 8 features selected.
The detailed comparison results are summarized in Table 1
as well as Figs. 1 and 2. From those results, one can see
clearly that the proposed framework is capable of selecting
a model with higher validation accuracy while with less
selected features compared to lasso (Fig. 3).

4 Application in the diagnosis of ADHD
4.1 Dataset

This study used a dataset that was collected as part of a
larger study from the University of Texas at Austin and the

Table 1 Performance comparison on simulated dataset

Number of Selected Features
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Fig. 2 Best prediction error using LR + lasso (green curve as
training error, red curve as testing error, dashed line cuts at min
testing error)

University of Texas Health Science Center in San Antonio
by Dr. Margaret Semrud-Clikeman.

A total of 47 subjects matched on gender, SES, and
ethnicity participated in the study. All subjects were right
handed. There were two groups: 32 ADHD-Combined
participants and 15 healthy subjects in a control group. All
ADHD participants had less than 15 standard score point
differences between general conceptual ability (DAS-
GCA) and all achievement measures. The ADHD subjects
were matched on severity of symptoms as measured by
Conners’ Ratings Scale (Conners, 1998a). All ADHD
subjects met DSM IV-TR criterion for ADHD Combined-
type and no other psychiatric or psychological disorder
including Learning Disorders, Anxiety Disorders, Mood
Disorder, or Oppositional Defiant Disorder. Control par-
ticipants did not meet any criteria for a psychiatric or
learning diagnosis nor have a history of medication treat-
ment. All participants were recruited from a diversity of
socioeconomic and ethnic backgrounds in order to control
for potential group differences.

MRI images are acquired at the University of Texas
Health Science Center at San Antonio using three-dimen-
sional gradient recalled acquisitions in the study state (3D-
GRASS) with a repetition time (TR) = 33 msec, echo time
(TE) = 12 msec, and a flip angle of 60 degrees to obtain a
256 x 192 x 192 volume of data with a spatial resolution

Method Validation accuracy Training accuracy Features selected
Our Model 0.92 0.94
LR + lasso 0.86 0.97

@ Springer



An integrated feature ranking and selection framework for ADHD characterization 151

Number of Selected Features
06 a4 "M 10 11 N " 11 11 N 6

05}

04}

03r min error = 0.08, # features = §

02}

Misclassification Error
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1 1 1 L 1

-8 -7 -6 -5 -4 -3 -2 -1
log (Lambda)

Fig. 3 Best prediction error using our framework (green curve as
training error, red curve as testing error, dashed line cuts at min
testing error)

of Imm X Imm X Imm. Then all MRI images were
processed and normalized using the FreeSurfer image
analysis suite [38, 39] by Dr. Jesse Bledsoe on a Linux
platform at MSU. All regions of interest (ROI) in the
FreeSurfer suite (45 cortical ROIs) were developed using
an automated labeling system based on gyral regions of the
Desikan-Killiany Atlas [40]. We employed the brain cor-
tical thickness of those ROIs as possible features for
ADHD feature characterization and selection in this study.

4.2 Results of feature ranking and decorrelation step

The first step in our framework is to perform feature
ranking using mutual information. The top ten features of
cortical thickness with highest MI were picked first for
further analysis. They are right rostral anterior cingulate
(MI = 0.124), total rostral anterior cingulate (0.122), left
rostral anterior cingulate (0.078), left caudal middle
frontal (0.071), right frontal pole (0.068), right lateral
orbito frontal (0.063), left caudal anterior cingulate
(0.062), total caudal middle frontal (0.051), left inferior
parietal (0.051), and left pars orbitalis (0.05). In the next
step, we calculated the correlation between each pair of
the high-ranked 10 features. If the correlation of a pair of
features is 0.6 or higher, we consider one feature in the
pair to be redundant, and remove the feature with a lower
mutual information value. In this way, the following two
features were removed: total rostral anterior cingulate and
total caudal middle frontal. The remaining eight features
were used as feature candidates in the Lasso-based feature
selection step.

4.3 Results of feature selection step
4.3.1 Comparison of testing accuracy

In feature selection step, within top eight highest MI and
uncorrelated feature set, we started with fixing the single
top feature penalty-free, then all combinations of two
features penalty-free, then all combinations of three fea-
tures, iteratively. We evaluated the selection and prediction
model using the validation accuracies in a LOOCV pro-
cedure. The model search process stops at fixing four
features penalty-free, as when fixing more features, the
validation accuracy started to decrease. The resulting
model is the best prediction model with the highest
LOOCYV validation accuracy. As shown in Table 2, the
proposed framework achieved a testing accuracy of 0.81
with a sensitivity of 0.81 and a specificity of 0.80.

In addition, we also tested and compared the perfor-
mance of the state-of-the-art feature selection algorithms,
including the aforementioned information theoretic meth-
ods MRMR [28], MIFS [27], JMI [29], CMIM [30], MIM
[26], as well as the popular Pudil’s floating search method
[41], and the principle component analysis (PCA)-based
approach, for which we took the components that account
for 95 % of data variance as the selected features in pre-
diction. The prediction results of these approaches are also
summarized in Table 2. One can observe that the proposed
method achieved higher validation accuracy (0.81) than all
other compared feature selection approaches, while using
the lowest number of features in the final prediction model.
These experimental results confirmed that our model is
efficient to select the most predictive features of ADHD
given a small sample size.

4.3.2 Analysis of features in best models

To investigate the model interpretability, we also checked
the locations of the selected cortical thickness. All the
features (regions of interest) selected by the best models
were located in prefrontal cortex (PFC), anterior cingulate
cortex, and parietal cortex. Structural and functional
impairments are in accordance with current understanding
of brain—behavior relationships in ADHD.

The prefrontal cortex (PFC) is connected with nearly
every cortical structure of the central nervous system [42]
and is involved in nearly all aspects of human personality
and cognition. The PFC has received much attention in the
ADHD literature given a large body of research on
impairments in tests thought to tap PFC functioning [43,
44]. For example, the PFC has been implicated in complex
behavior relevant to central impairments in ADHD such as
inhibitory control [45, 46], attention, working memory, and
planning [42, 47]. Furthermore, specific differences within
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Table 2 Comparison of testing results (leave-one-out cross-validation)

Selected features Testing accuracy Training accuracy Sensitivity Specificity Selection method

4 0.81 0.87 0.81 0.80 Proposed method

5 0.76 0.78 0.75 0.80 MRMR [28]

7 0.66 0.76 0.66 0.67 Pudil’s floating search [41]
14 0.70 0.74 0.72 0.67 PCA

5 0.74 0.75 0.81 0.60 MIM [33]

5 0.70 0.76 0.69 0.73 MIFS [27]

5 0.72 0.78 0.72 0.73 IMI [29]

5 0.74 0.76 0.75 0.73 CMIM [30]

the frontal pole and orbital frontal cortex observed here
may provide further evidence for impairments in frontal
limbic structures and emotional disorders which often co-
occur in children with ADHD [48].

The anterior cingulate cortex is a key structure implicated
in attentional control [47]. Itis implicated in a wide variety of
cognitive operations including response inhibition, reward
processing, behavioral motivation, target detection, and
decision making [49]. Functional neuroimaging studies
suggest hypoactivation of areas of the anterior cingulate in
children and adults with ADHD [50-52]. Studies observed
decreased activation of the anterior cingulate in tasks thought
to require behavioral inhibition (e.g., counting Stroop task)
in children with ADHD compared to controls [50, 52] also
reported reduced activation of the anterior cingulate during
tasks of behavioral inhibition (e.g., stop signal task) in
children with ADHD-C. Further, cortical thinning of the
anterior cingulate cortex has been demonstrated in adults
with ADHD [53]. Moreover, the right rostral anterior cin-
gulate cortex (ACC) contributed the most predictive vari-
ance in classifying those with ADHD from typically
developing controls. This finding supports the hypothesis
that abnormal development of the the right ACC, in partic-
ular, may be considered a biomarker for ADHD and inhibi-
tory control [54]. The ACC s likely implicated in ADHD due
to its involvement in complex behavior. However, the ACC,
itself, is unlikely to contribute to impaired attention. Rather,
future work will need to address the complex networks and
systems that involve the ACC in order to provide valid causal
pathways for ADHD.

The left inferior parietal cortex also contributed to the
classification of ADHD versus healthy children. This was a
particularly interesting finding given recent work that has
implicated abnormalities in parietal cortex during resting-
state functional MRI [55]. Prior to this work, the posterior
cortex was proposed to underlie the basis for arousal and
vigilance which were considered precursors for targeted
attention [47, 56]. And, more recent work has found the
posterior parietal lobe to be important for shifting attention

@ Springer

during dynamic attention tasks [57]. Structurally, reduced
cortical thinning of the right-parietal cortex has also been
observed in adults with ADHD [53]. Taken together, the
parietal cortex, likely due to its frontal projections, is
another important area in the attention network that may
undergo abnormal development in those with ADHD.

The prefrontal cortex, anterior cingulate cortex, and
parietal cortex have all been implicated in attentional
control and ADHD. Given these regions provided the best
classification of ADHD from controls, the proposed model
would appear to be theoretically valid. A significant
advantage of the proposed approach is that we novelly
integrate the information theoretic feature selection
framework with the generalized lasso framework. Through
adaptively manipulating penalty weights of each feature in
regularization term, we are able to preserve the most
informative features in the final model and eliminate less
informative and redundant features.

5 Conclusion

ADHD feature characterization and selection has never
been an easy task. In this paper, the proposed integrated
feature ranking and selection framework provides a sparse,
accurate, and highly interpretable model to assist ADHD
feature characterization. With the proposed two-step for-
mulation, one can integrate information theory conve-
niently to supervise the feature selection process while the
optimal solutions can be guaranteed due to the convex
optimization formulations in a generalized lasso frame-
work. The information-guided selection structure enforces
the most useful discriminative predictors to be included in
the final prediction model while eliminating less-informa-
tive and redundant variables to create an accurate sparse
prediction model. In addition to mutual information, due to
the flexible structure of the proposed framework, one can
also conveniently integrate clinical prior knowledge into
the feature selection model. For example, one can set
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clinician-identified potentially important features penalty-
free and encourage them to be included in the final pre-
diction model. The information theory-guided and clinical
prior knowledge-guided feature selection framework will
be greatly useful to construct prediction models that are
more transparent and interpretable by medical and health-
care professionals. Such a supervised feature selection
framework is highly demanded in making clinical deci-
sions compared to the ‘black box’ predictive models gen-
erated by traditional machine learning algorithms. As this
is a general feature selection approach, the proposed
technique can also be applied to other decision-making
problems that require interpretable prediction models. The
research in this study also suggest that machine learning
techniques can be useful tools for understanding and
measuring brain abnormalities associated with ADHD.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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