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Abstract

We examined the associations between mitochondrial DNA haplogroups (MT-hgs; mitochondrial 

haplotype groups defined by a specific combination of single nucleotide polymorphisms labeled as 

letters running from A to Z) and their interactions with a polygenic risk score composed of 

nuclear-encoded mitochondrial genes (nMT-PRS) with risk of dementia and age of onset (AOO) of 

dementia. MT-hg K (Odds ratio [OR]: 2.03 [95% CI: 1.04, 3.97]) and a 1 SD larger nMT-PRS 

(OR: 2.2 [95% CI: 1.68, 2.86]) were associated with elevated odds of dementia. Significant 

antagonistic interactions between the nMT-PRS and MT-hg K (OR: 0.45 [95% CI: 0.22, 0.9]) and 

MT-hg T (OR: 0.22 [95% CI: 0.1, 0.49]) were observed. Individual MT-hgs were not associated 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author at: 2025 Zonal Ave, Los Angeles, CA 90033, USA. Tel: 323-442-7246; fax: 323-442-0137, jpa@ini.usc.edu (J. 
Pa).
1Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Disclosure
AMG served on the scientific advisory board for Denali Therapeutics from 2015–to 2018. She has also served as a consultant for 
Biogen, AbbVie, Pfizer, GSK, Eisai, and Illumina.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.neurobiolaging.2019.09.007.

HHS Public Access
Author manuscript
Neurobiol Aging. Author manuscript; available in PMC 2021 March 01.

Published in final edited form as:
Neurobiol Aging. 2020 March ; 87: 138.e7–138.e14. doi:10.1016/j.neurobiolaging.2019.09.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.neurobiolaging.2019.09.007


with AOO; however, a significant antagonistic interactions was observed between the nMT-PRS 

and MT-hg T (Hazard ratio: 0.62 [95% CI: 0.42, 0.91]) and a synergistic interaction between the 

nMT-PRS and MT-hg V (Hazard ratio: 2.28 [95% CI: 1.19, 4.35]). These results suggest that MT-

hgs influence dementia risk and that variants in the nuclear and mitochondrial genome interact to 

influence the AOO of dementia.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by 

cognitive and functional deterioration resulting in a loss of independent living and ultimately 

death (Masters et al., 2015). The neuropathological hallmarks of AD are the abnormal 

aggregation and accumulation of amyloid-β peptides into extracellular amyloid plaques and 

hyperphosphorylated tau intracellular neurofibrillary tangles, accompanied by 

neuroinflammation, gliosis, and neurodegeneration (Masters et al., 2015; Mhatre et al., 

2015). As such, studies on AD pathogenesis and therapeutics have largely focused on the 

role of Aβ and tau. However, with several negative trials of drugs targeting Aβ pathways, 

there has been increasing interest in evaluating the role of other pathological features in AD, 

such as mitochondrial dysfunction (Panza et al., 2019; Perez Ortiz and Swerdlow, 2019).

Mitochondria are vital to cellular function, first as the major source of cellular energy 

through the generation of adenosine triphosphate via oxidative phosphorylation and also 

through regulation of calcium uptake, apoptosis, and production and sequestration of 

reactive oxygen species (Gorman et al., 2016). Each mitochondrion possesses its own 

16,569 base pair circular genome (mtDNA) that encodes 37 genes: 13 protein-coding genes, 

22 tRNAs, and 2 ribosomal RNAs (Taanman, 1999). Genetic variation in the mitochondria is 

often described by established haplotype groups defined by a specific combination of single 

nucleotide polymorphisms (SNPs) that represent major branch points in the mitochondrial 

phylogenetic tree (van Oven and Kayser, 2009). Mitochondrial haplogroups are named using 

capital letters running from A to Z, with further subclades defined using lower case letters 

and numbers. Mitochondrial haplogroups (MT-hgs) H, I, J, K, T, V, W, X, and U are 

predominantly found in Europe. The nuclear genome also plays a key role in mitochondrial 

function as it contains 1145 genes that encode proteins that influence mitochondrial function 

(mitonuclear genes) (Calvo et al., 2016). These mitonuclear genes encode most of the 

proteins involved in the oxidative phosphorylation system and are also essential for 

maintaining mtDNA replication and organelle network proliferation and destruction 

(Chinnery and Hudson, 2013). A recent systematic review of 43 studies examining the 

effects of mitonuclear incompatibility across vertebrates and invertebrates found significant 

effects on health, including gene expression, metabolic traits, anatomical or morphological 

traits, life span, and fecundity (Dobler et al., 2018), indicating that incompatibility between 

nuclear and mitochondrial genes can influence biological function. Furthermore, in 6 

admixed human populations, increasing discordance between nuclear and mtDNA ancestry 

Andrews et al. Page 2

Neurobiol Aging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was associated with reduced mtDNA copy number—a proxy measure for mitochondrial 

function (Zaidi and Makova, 2019). Thus, mitochondrial function relies on fine-tuned 

mitonuclear interactions that require the nuclear and mitochondrial genomes to be 

compatible with each other.

The central nervous system is particularly vulnerable to impaired mitochondrial metabolism 

because of its high-energy demands. Increasing evidence links mitochondrial dysfunction to 

neurodegenerative diseases such as AD. Support for the role of mitochondria in AD comes 

from studies observing changes in the rate of metabolism, disruption of fusion and fission, 

altered concentration of mitochondria in cerebrospinal fluid, morphological changes, and 

aggregation of Aβ in the mitochondria (Perez Ortiz and Swerdlow, 2019; Swerdlow, 2018). 

In addition, maternal history of AD confers an increased risk of AD, cognitive aging, and 

elevated biomarkers for AD, which is consistent with the maternal inheritance of mtDNA 

(Honea et al., 2012; Swerdlow, 2018). Despite this evidence, the role of the mitochondrial 

genome in AD remains inconclusive, as a recent systematic literature review of 17 studies 

reported few definitive findings on the association of mitochondrial genetic variation with 

AD (Ridge and Kauwe, 2018). In addition, although candidate gene studies have implicated 

several mitonuclear genes in AD risk, genome-wide association studies (GWAS) have not 

supported the association of specific mitonuclear genes with AD, with the exception of 

TOMM40, which is in high linkage disequilibrium with apolipoprotein E (APOE) (Chiba-

Falek et al., 2018; Kunkle et al., 2019). To date, no study has investigated whether the 

genetic variation in mitonuclear genes interacts with the mitochondrial genome to influence 

AD risk.

In this study, we investigate the association of mitonuclear interactions in AD by evaluating 

the interactions between an AD polygenic risk score that included only variants from 

mitonuclear genes (nMT-PRS) and MT-hgs on AD risk and survival.

2. Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of the ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD.

Descriptive characteristics of ADNI participants at baseline and last assessment are 

presented in Table 1.

2.2. Nuclear DNA

GWAS data for ADNI participants were obtained and processed as previously described 

(Saykin et al., 2015). Briefly, genomic DNA samples extracted from blood were genotyped 

on Illumina GWAS arrays (ADNI1: 610-Quad; ADNI GO/2 OmniExpress). Genotype data 
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then underwent stringent quality control checks, with variants excluded if the call rate was 

<0.95, minor allele frequency was <1%, or were not in Hardy-Weinberg equilibrium (p < 1 × 

10−6) and samples excluded if call rate was <0.95, discordant sex was reported, cryptic 

relatedness, non-European ancestry, or outlying heterozygosity. To empirically determine 

ancestry, the samples were projected onto principal components from known ancestral 

populations in the 1000 Genomes Project, with samples determined to be European 

population outliers if they were ±6 SD away from the EUR population mean on the first 10 

principal components (1000 Genomes Project Consortium et al., 2015). Within-ancestry 

principal components were created using the –PCA function in PLINK (Purcell et al., 2007) 

to correct for residual population stratification within the European population subset. SNPs 

that were not directly assayed were imputed using the Haplotype Reference Consortium 

(McCarthy et al., 2016), with imputed variants excluded due to poor imputation quality 

(INFO <0.3) or low minor allele frequency (<1%).

2.3. Mitochondrial DNA

138 mtDNA variants were available for 757 samples from ADNI1 who were genotyped on 

the Illumina 610-Quad array. Additional mitochondrial genetic variants were made available 

via imputation of the mitochondrial genome, as previously described (McInerney et al., 

2019), using a custom reference panel of mitochondrial genome sequences and the 

chromosome X imputation protocol in IMPUTE2 (Howie et al., 2009). An additional 809 

samples with mitochondrial variants were made available via whole genome sequencing 

(Ridge et al., 2018). MT-hgs were assigned to the genotyped/imputed data set (SNPs with an 

info score >0.4) using HaploGrep2 (Weissensteiner et al., 2016), whereas in the whole 

genome sequenced data set, MT-hgs were assigned using Phy-Mer (Navarro-Gomez et al., 

2015). We previously validated the imputation of mitochondrial variants in ADNI using 258 

participants for whom whole genome sequencing and genotyping data were available 

(McInerney et al., 2019).

2.4. Polygenic risk scores

The software package PRSice was used to construct an AD PRS for nuclear-encoded 

mitochondrial polygenic risk scores (nMT-PRSs) (Euesden et al., 2015). To generate a 

mitonuclear AD PRS, SNPs from stage 1 of the International Genomics of Alzheimer’s 

Project (IGAP) (Lambert et al., 2013) were annotated to known protein-coding genes 

(±50kb) using MAGMA (de Leeuw et al., 2015) and those SNPs that were assigned to any 

of 1158 mitonuclear genes were extracted (Calvo et al., 2016). A p-value threshold of 0.5 

was used for inclusion of SNPs into the nMT-PRS as this threshold has been previously 

shown to have the most significant association with case/control diagnosis (Escott-Price et 

al., 2015). To obtain independent loci, linkage disequilibrium clumping was performed by 

excluding SNPs that had an r2 > 0.1 with another variant with smaller p-value association 

within a 250kb window. SNPs were weighted by their effect sizes in IGAP. A total of 19,630 

SNPs were included in the nMT-PRS (Supplementary Table 1).
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2.5. Statistical analysis

Cross-sectional analysis: The effect of the MT-hgs on baseline risk of dementia was 

assessed using binomial multivariate logistic regression models with MT-hg H used as the 

reference group and adjusting for age, APOE status, sex, and the first 2 principal 

components (model 1). To evaluate interactions between the MT-hgs and nMT-PRS, an 

interaction term was included in the model (model 2). As logistic regression tests for 

interactions on a multiplicative scale (that the combined effect is larger or smaller than the 

product of the individual effects), we used the relative excess risk due to interaction (RERI) 

to test for departures from additivity (that the combined effect is greater or smaller than the 

sum of the individual effects).The RERI can be interpreted as the risk that is additional to the 

risk that is expected on the basis of the addition of the odds ratio (OR) of the variables. In 

the absence of an interaction effect, the RERI is equal to 0. As MCI is an unstable diagnosis 

with individuals either converting to dementia, remaining stable or reverting back to normal 

cognition (Canevelli et al., 2016), participants with MCI (n = 634) were excluded from the 

analysis.

Survival analysis: In the survival analysis, age was used as the time to event scale. For 

subjects who were cognitively normal or suffering from MCI at baseline, AD age at onset 

was used. For participants with AD at baseline, the reported best estimate of onset of AD-

dementia symptoms by the subject (or informant) was used (Osorio et al., 2015). A Cox 

proportional hazards model with adjustment for APOE status, sex, and the first 2 principal 

components was used to assess the effects of the nMT-PRS and MT-hgs on Alzheimer’s age 

of onset (AOO) (model 1). To evaluate potential interactions between the MT-hgs and the 

nMT-PRS, an interaction term was included in the model (model 2).

Sensitivity analysis: For a sensitivity analysis, an additional polygenic score was 

constructed (PRS w/o nMT and APOE), composed of all SNPs associated with late-onset 

AD (LOAD) at p < 0.5 in IGAP, except for those annotated to known mitonuclear genes and 

the APOE region (±250 kb of APOE). A total of 191,990 SNPs were included in the PRS. 

The cross-sectional and survival analyses were repeated introducing this additional PRS as a 

covariate.

All analyses were performed in the R 3.5.2 statistical computing environment. As this is an 

exploratory study, we have not corrected for multiple testing as this can result in a high risk 

of type 2 errors (Bender and Lange, 2001). As associations for 8 haplogroups and the nMT-

PRS were tested, a significant p-value after Bonferroni correction would be p < 0.0056 

(0.05/9) for main effects models (model 1) and p < 0.0029 (0.05/17) for the interaction 

models (model 2).

3. Results

3.1. Association of mitonuclear interactions with Alzheimer’s risk

Binomial logistic regression was used to evaluate the main effects of the MT-hgs and nMT-

PRS and their interaction on the likelihood of participants having AD (Table 2). In the main 

effects model (Table 2, model 1), MT-hg K was associated with an increased risk of 
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developing AD (OR: 2.00 [95% CI: 1.04, 3.97]), whereas MT-hg U was nominally 

associated with increased risk (OR: 1.99 [95% CI: 0.99, 3.97]). A 1-SD increase in the nMT-

PRS was associated with an increased likelihood of developing AD (OR: 2.2 [95% CI: 1.68, 

2.86]).

In the interaction model (Table 2, model 2), a significant interaction was observed between 

the nMT-PRS and MT-hg T (OR: 0.22 [95% CI: 0.1, 0.49]) and MT-hg K (OR: 0.45 [95% 

CI: 0.22,0.9]). Under an additive model, the RERI for MT-hgs T and K were RERI −2.8 

(95% CI: −4.33, −1.26) and −3.56 (95% CI: −5.54, −1.57), respectively, indicating that the 

nMT-PRS and MT-hgs K and T acted antagonistically in relation to AD risk, such that the 

relative risk of AD was 2.8 and 3.56 times lower than expected from the addition of the 

separate effects of the nMT-PRS and MT-hg.

3.2. Association of mitonuclear interactions with Alzheimer’s AOO

A Cox proportional hazard model was used to evaluate the main effects of the MT-hgs and 

nMT-PRS and their interaction on Alzheimer’s AOO (Table 3). In the main effects model, a 

1-SD increase in the nMT-PRS was associated with an earlier AOO (Hazard ratio [HR]: 1.44 

[95% CI: 1.28, 1.61]). However, none of the MT-hgs were significantly associated with 

AOO.

In the interactive model, a significant interaction was observed between the nMT-PRS and 

MT-hg T (HR: 0.62 [95% CI: 0.42, 0.91]) and MT-hg V (HR: 2.28 [95% CI: 1.19, 4.35]). 

Under an additive model, RERI for MT-hgs T and V were −0.7 (95% CI: −1.24, −0.16) and 

1.06 (95% CI: −0.9, 3.02), respectively, indicating that the relative risk of AD was 0.7 times 

lower for MT-hg T and 1.06 times higher for MT-hg V than expected from the addition of 

the separate effects of the nMT-PRS and MT-hg.

3.3. Sensitivity analysis

The effect of adjusting the baseline logistic model and the survival model with a PRS 

composed of non-nuclear mitochondrial SNPs and non-APOE region SNPs are presented in 

Tables 4 and 5. The effect of the nMT-PRS on AD risk and AOO was attenuated but 

remained statistically significant. The significant interactions observed between the nMT-

PRS and MT-hg T in the baseline model and MT-hg V remained statistically significant after 

covarying for the PRS without nMT and APOE. However, the interaction with MT-hg K in 

the baseline model was nominally significant, whereas the interaction with MT-hg T was no 

longer significant in the survival model.

4. Discussion

In this study, we investigated whether mitonuclear interactions influence Alzheimer’s risk 

and survival by evaluating the interactive effects of MT-hgs and a polygenic risk score 

composed of mitonuclear genes (nMT-PRS) on baseline risk of AD and AOO of dementia. 

We observed that nMT-PRS was associated with an increased risk of AD and an earlier 

AOO, even after adjusting for a PRS composed of SNPs from the rest of the genome. In 

addition, we observed that MT-hg K was associated with an increased baseline risk of AD, 

and in the interactive model, modified the risk associated with the nMT-PRS in an 
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antagonistic manner, such that the combined effect of the nMT-PGS and MT-hg K was 

smaller than expected given their additive effects. In effect, they are less harmful together 

than they are on their own, although the potential underlying mechanisms of this 

compensatory effect are complex (Lehner, 2011). MT-hg T was also observed to modify the 

risk associated with the nMT-PRS in an antagonistic manner for both baseline risk of AD 

and AOO. Finally, we observed that MT-hg V was associated with an increased risk of AD 

beyond that expected in the additive model with the nMT-PRS.

These results suggest that epistasis between nuclear and mitochondrial genomes, in which 

one gene’s effect is dependent on the presence of another gene or set of genes, influences the 

risk of AD. Although, to date, no previous study to our knowledge has investigated the 

interaction between mitonuclear genes and the mitochondrial genome in the context of AD, 

several studies have investigated associations between mitochondrial genetic variation and 

APOE. In APOE ε4 carriers, MT-hgs K and U were observed to have neutralizing effect 

(Carrieri et al., 2001; Maruszak et al., 2011) on AD risk. Conversely, SNP mt7028C, a 

defining SNP for MT-hg H, and MT-hg H5a acted synergistically with APOE ε4 to 

increased risk of AD (Coto et al., 2011; Maruszak et al., 2011). Finally, SNP mt4336C, 

which defines MT-hg H5a, was associated with an increased risk of AD only in APOE ε4 

carriers (Edland et al., 2002). Outside of AD, mitonuclear interactions have also been 

implicated in altering the penetrance of primary pathological mutations underlying 

mitochondrial disease or modifying the pathogenic phenotype of other diseases, such as 

nonsyndromic sensorineural deafness (Kokotas et al., 2007; Morrow and Camus, 2017). The 

results of this study, in addition to the prevalence of mitonuclear epistasis in other diseases, 

suggests that the inconclusive results of mitochondrial genetic variation in AD may not only 

be due to small sample sizes, limited genetic data collection, and inadequate approaches to 

association analysis (Ridge and Kauwe, 2018) but could also be attributed to the modifying 

effects of nuclear-encoded mitochondrial genes. As such, future studies investigating the 

association of mtDNA with AD should consider evaluating the modifying effect of nDNA.

The MT-hg association analysis is in agreement with two previous studies conducted in 

ADNI. Lakatos et al. (Lakatos et al., 2010) investigated the association of 4 MT-hg clusters 

(HV, JT, UK, and IWX) with AD in 358 participants and found that the UK MT-hg cluster 

was associated with an increased risk of AD. Ridge et al. (Ridge et al., 2013) utilized a 

TreeScanning approach to assess the relationship of mitochondrial genetic variation with 

structural MRI and cognitive biomarkers and found that SNPs defining either MT-hg 

K1A1B or K1A1B2A1 and MT-hg U5B1 or U5B1B2 were associated with reduced 

temporal pole thickness, which is considered evidence of increased risk for AD. However, 

within the context of the wider literature, MT-hgs U, K, and T have been associated with 

conflicting reports, with different studies reporting either protective, risk, or nonsignificant 

effects (Ridge and Kauwe, 2018). In cybrid cell lines, MT-hg T in comparison with MT-hg 

H has a higher capability to cope with oxidative stress (Mueller et al., 2012), whereas 

cybrids containing MT-hg K express higher levels of APOE (Thaker et al., 2016).

AD polygenic risk scores have been widely used to evaluate whether genetic liability for AD 

is associated with AD endophenotypes and in the prediction of disease status (Chasioti et al., 

2019; Ibanez et al., 2019). These PRSs, however, have generally been applied to variants 

Andrews et al. Page 7

Neurobiol Aging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across the entire genome. Using biological knowledge to incorporate variants located in 

genes that are part of specific pathways in the calculation of PRS, instead of considering the 

entire genome, allows for the construction of pathway specific PRS (Darst et al., 2017; 

Ibanez et al., 2019). In contrast to univariate analysis which is often underpowered due to the 

small effect sizes of individual SNPs, the joint analysis of the combined effect of all SNPs 

within a pathway may have a larger combined effect size and greater statistical power to 

detect an association. Pathway-based analysis may also be more powerful predictor for 

understanding how specific biomarkers may contribute to disease pathogenesis. 

Furthermore, as a large proportion of the heritability of AD is explained by variants that lie 

below the genome-wide significant threshold, the inclusion of subthreshold variants allows 

the PRS to encompass more of the causal variants (Escott-Price et al., 2015). To date, there 

has been a limited application of pathway-specific PRS in AD, with only one study 

evaluating the association of PRSs for the immune, Aβ clearance, and cholesterol pathways 

with AD-related biomarkers (Darst et al., 2017; Ibanez et al., 2019). However, these PRSs 

were poor predictors of cognition, amyloid PET deposition, and cerebrospinal fluid Ab, tau, 

and P-tau levels, potentially due to only including genome-wide significant loci (Darst et al., 

2017). In the present study, we show that a pathway-specific PRS composed of SNPs located 

within nuclear-encoded mitochondrial genes is associated with both risk of AD and an 

earlier AAO, suggesting that mitochondrial function moderates AD pathogenesis. Our 

findings are supported by another recent study that built a molecular network using modules 

of coexpressed genes and identified 3 modules enriched for gene ontology categories related 

to mitochondria. These modules were associated with histopathological β-amyloid burden, 

cognitive decline, and clinical diagnosis of AD (Mostafavi et al., 2018). Interestingly, a 

pathway analysis conducted by IGAP tested for overrepresentation of genes containing 

significantly associated SNPs within a series of functional gene sets found no evidence of 

enrichment in mitochondrial pathways (Jones et al., 2015). This analysis, however, only 

examined mitochondrial pathways that contained a subset of the mitochondria-related genes 

relevant to that gene set, whereas our study examined the aggregate effect of all nuclear 

encoded genes related to mitochondrial function.

The results of this study should be interpreted in conjunction with some study limitations. 

First, ADNI has a relatively small sample size, which can contribute to unreliable findings as 

a result of (a) a low probability of finding true effects, (b) a lower probability that an 

observed effect that is statistically significant reflects a true effect, or (c) an extracted 

estimate of the magnitude of an effect when a true effect is discovered (Button et al., 2013). 

In addition, as this is an exploratory study, the findings of this study need to be replicated in 

a larger cohort. Second, when constructing PRS, sample overlap between the base data set 

(i.e., IGAP) and the target data sets (i.e., ADNI) can result in inflation of the association 

between the PRS and trait tested in the target data set (Choi et al., 2018). However, it should 

be noted that IGAP consists of 54,162 participants, with ADNI only contributing 441 

samples to IGAP, or 0.81% of IGAPs total sample size. In addition, the samples included in 

the IGAP analysis are a subset of those included in this analysis. As such, the sample 

overlap between the base and target data sets is unlikely to substantially bias the results of 

this study. Third, the subjects in this study were of European ancestry and European MT-hg, 

and thus the results presented may not be generalizable to other racial/ethnic populations. In 
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particular, in admixed populations that have a greater discordance between nuclear and 

mitochondrial ancestry, it could be expected that mitonuclear interactions may contribute to 

even more phenotypic variation in disease (Zaidi and Makova, 2019). The primary strength 

of this paper was evaluating the effect of MT-hgs in the context of a participant’s nuclear 

polygenic risk for LOAD. Second, by imputing mtDNA variants, we were able to more 

accurately assign MT-hgs to individuals who were included in a previous ADNI study 

(Lakatos et al., 2010). Finally, we utilized both cross-sectional and longitudinal data to 

evaluate the baseline risk of LOAD and AOO.

In conclusion, this is the first study to investigate the interactive effects of a LOAD PRS 

composed of mitonuclear genes and MT-hgs on Alzheimer’s risk and survival. We found 

that the nMT-PRS was associated with increased risk of AD and an earlier AOO. MT-hg T 

was observed to attenuate the effect of the nMT-PRS on the risk of AD and AOO, whereas 

MT-hgs K and V were observed to attenuate the effect of the nMT-PRS on baseline risk and 

strengthen the effect of the nMT-PRS on AOO, respectively. The results from this study need 

to be replicated in independent cohorts to validate our findings. These findings suggest that 

interactions between the nuclear and mitochondrial genomes may influence AD 

pathogenesis.
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Table 2

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) 

with baseline risk of Alzheimer’s disease

Variable Model 1 Model 2

βa SE p β SE p

Age   0.02 0.02 0.213   0.03 0.02 0.122

Male −0.01 0.22 0.975   −0.09 0.23 0.682

APOE status

 ε4+   1.2 0.24 6.47E-07   1.25 0.25 5.08E-07

 ε2+ −0.7 0.58 0.227 −0.88 0.6 0.142

PC1 −0.14 0.13 0.274 −0.1 0.13 0.423

PC2   0.53 0.55 0.332   0.42 0.55 0.442

nMT-PRS   0.79 0.14 5.58E-09   1.09 0.2 5.68E-08

Haplogroup

 I   0.27 0.62 0.661   0.33 0.63 0.6

 J   0.09 0.4 0.827   0.06 0.44 0.886

 K   0.694 0.35 0.049   0.71 0.34 0.038

 T −0.23 0.4 0.564   0.04 0.38 0.909

 U   0.687 0.35 0.052   0.81 0.38 0.033

 V   0.01 0.63 0.988   0.07 0.76 0.926

 W   0.66 0.9 0.464   0.74 0.86 0.391

 X −1.23 1.13 0.278 −2.04 1.77 0.247

Haplogroup × nMT-PRS

 I - - - −0.38 0.84 0.647

 J - - -   0.28 0.68 0.685

 K - - - −0.8 0.36 0.026

 T - - - −1.51 0.41 2.18E-04

 U - - -   0.07 0.52 0.886

 V - - -   1.01 1.44 0.482

 W - - - −0.68 0.85 0.425

 X - - - −2.31 1.97 0.24

Key: APOE, apolipoprotein E; nMT-PRS, nuclear-encoded mitochondrial polygenic risk score; PC1, principal component 1; PC2, principal 
component 2.

a
Results in the main text are presented as the exponentiation of the beta. p-values are unadjusted.
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Table 3

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) 

with Alzheimer’s disease age of onset

Variable Model 1 Model 2

βa SE p βa SE p

Male −0.21 0.1 0.0034 −0.22 0.1 0.028

APOE status

 ε4+   0.8 0.12 6.50E-12   0.78 0.12 2.70E-11

 ε2+ −0.85 0.39 0.029 −0.86 0.39 0.027

PC1 −0.11 0.06 0.073 −0.1 0.06 0.104

PC2   0.03 0.04 0.525   0.03 0.04 0.509

nMT-PRS   0.36 0.06 3.54E-10   0.37 0.08 2.55E-06

Haplogroup

 I −0.01 0.26 0.958   0.04 0.28 0.879

 J −0.06 0.17 0.707 −0.09 0.19 0.635

 K −0.06 0.18 0.742 −0.05 0.18 0.78

 T −0.31 0.17 0.073 −0.14 0.18 0.422

 U −0.1 0.15 0.528 −0.16 0.17 0.35

 V   0.17 0.28 0.549 −0.26 0.38 0.496

 W   0.38 0.33 0.247   0.38 0.33 0.241

 X   0.08 0.32 0.794   0.16 0.36 0.664

Haplogroup × nMT-PRS

 I - - - −0.14 0.29 0.617

 J - - -   0.08 0.22 0.72

 K - - - −0.06 0.17 0.74

 T - - - −0.48 0.2 0.015

 U - - -   0.14 0.15 0.371

 V - - -   0.82 0.33 0.013

 W - - -   0.13 0.34 0.697

 X - - - −0.13 0.32 0.68

Key: APOE, apolipoprotein E; nMT-PRS, nuclear-encoded mitochondrial polygenic risk score; PC1, principal component 1; PC2, principal 
component 2.

a
Results in the main text are presented as the exponentiation of the beta.
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Table 4

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) 

with baseline risk of Alzheimer’s disease adjusting for PRS excluding nMT genes and APOE

Variable Model 1 Model 2

βa SE p βa SE p

Age   0.001 0.02 0.953   0.01 0.02 0.686

Male   0.16 0.28 0.58   0.03 0.29 0.92

APOE status

 ε4+   1.66 0.32 1.78E-07   1.72 0.33 2.20E-07

 ε2+ −0.6 0.72 0.407 −0.74 0.74 0.312

PC1 −0.59 0.17 3.42E-04 −0.55 0.17 9.86E-04

PC2   0.84 0.69 0.224   0.69 0.7 0.327

PRS w/o nMT & APOE   3.26 0.33 1.05E-22   3.26 0.34 3.65E-22

nMT-PRS   0.42 0.17 0.012   0.68 0.24 0.004

Haplogroup

 I   0.55 0.74 0.459   0.63 0.74 0.395

 J   0.53 0.55 0.331   0.55 0.57 0.333

 K   0.48 0.45 0.289   0.44 0.44 0.311

 T   0.43 0.47 0.357   0.56 0.48 0.248

 U   1.01 0.46 0.027   1.11 0.48 0.021

 V   0.5 0.8 0.532   0.81 1.02 0.423

 W   0.19 1.14 0.87   0.55 1.14 0.631

 X −0.29 1.23 0.813 −1.51 2.48 0.543

Haplogroup × nMT-PRS

 I - - - −0.36 1.15 0.752

 J - - -   0.11 0.8 0.893

 K - - - −0.9 0.46 0.052

 T - - - −1.25 0.58 0.032

 U - - -   0.24 0.61 0.702

 V - - -   1.16 1.93 0.546

 W - - - −1.02 0.99 0.305

 X - - - −3.29 2.78 0.237

Key: APOE, apolipoprotein E; nMT-PRS, nuclear-encoded mitochondrial polygenic risk score; PC1, principal component 1; PC2, principal 
component 2.

a
Results in the main text are presented as the exponentiation of the beta.
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Table 5

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) 

with Alzheimer’s disease age of onset adjusting for PRS excluding nMT genes and APOE

Variable Model 1 Model 2

βa SE p βa SE p

Male −0.34 0.1 8.06E-04 −0.35 0.1 6.78E-04

APOE status

 ε4+   0.78 0.11 6.42E-12   0.77 0.12 3.32E-11

 ε2+ −0.71 0.39 0.069 −0.73 0.39 0.064

PC1 −0.3 0.07 7.63E-06 −0.28 0.07 3.26E-05

PC2   0.05 0.04 0.207   0.05 0.04 0.194

PRS w/o nMT & APOE   1.03 0.09 3.56E-29   1.03 0.09 2.63E-28

nMT-PRS   0.15 0.06 0.018   0.17 0.08 0.041

Haplogroup

 I −0.26 0.26 0.302 −0.15 0.28 0.597

 J   0.08 0.18 0.632   0.06 0.19 0.748

 K −0.11 0.18 0.521 −0.09 0.19 0.623

 T −0.14 0.17 0.417 −0.08 0.18 0.631

 U −0.13 0.16 0.396 −0.14 0.17 0.413

 V   0.22 0.28 0.426 −0.29 0.41 0.489

 W   0.47 0.33 0.149   0.5 0.33 0.124

 X −0.02 0.33 0.949   0.21 0.37 0.57

Haplogroup × nMT-PRS

 I - - - −0.26 0.28 0.366

 J - - -   0.09 0.22 0.668

 K - - - −0.11 0.17 0.505

 T - - - −0.22 0.21 0.282

 U - - -   0.01 0.16 0.927

 V - - -   0.88 0.39 0.025

 W - - -   0.26 0.35 0.455

 X - - - −0.37 0.34 0.278

Key: APOE, apolipoprotein E; nMT-PRS, nuclear-encoded mitochondrial polygenic risk score; PC1, principal component 1; PC2, principal 
component 2.

a
Results in the main text are presented as the exponentiation of the beta.
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