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Abstract

Background: High-dimensional molecular measurements, e.g. gene expression data, can be linked to clinical
time-to-event endpoints by Cox regression models and regularized estimation approaches, such as componentwise
boosting, and can incorporate a large number of covariates as well as provide variable selection. If there is
heterogeneity due to known patient subgroups, a stratified Cox model allows for separate baseline hazards in each
subgroup. Variable selection will still depend on the relative stratum sizes in the data, which might be a convenience
sample and not representative for future applications. Such effects need to be systematically investigated and could
even help to more reliably identify components of risk prediction signatures.

Results: Correspondingly, we propose a weighted regression approach based on componentwise likelihood-based
boosting which is implemented in the R package CoxBoost (https://github.com/binderh/CoxBoost). This approach
focuses on building a risk prediction signature for a specific stratum by down-weighting the observations from the
other strata using a range of weights. Stability of selection for specific covariates as a function of the weights is
investigated by resampling inclusion frequencies, and two types of corresponding visualizations are suggested. This is
illustrated for two applications with methylation and gene expression measurements from cancer patients.

Conclusion: The proposed approach is meant to point out components of risk prediction signatures that are specific
to the stratum of interest and components that are also important to other strata. Performance is mostly improved by
incorporating down-weighted information from the other strata. This suggests more general usefulness for risk
prediction signature development in data with heterogeneity due to known subgroups.
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Background
In high-dimensional data with time-to-event endpoints,
regression models can provide risk prediction. For exam-
ple, a Cox proportional hazards regression model could
be used to investigate if there is an association between
covariates, such as DNA methylation or gene expres-
sion data, and clinical endpoints, such as death in cancer
patients. An automatic variable selection procedure, such
as the Lasso ([1]) or componentwise likelihood-based
boosting [2, 3] for regularized regression with variable
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selection, can be used to identify a small number of
potentially important covariates, thus developing a risk
prediction signature. With a Cox model, heterogeneity in
the sample of patients due to known subgroups can be
taken into account by allowing for different strata, each
with its own baseline hazard. For example, in cancer stud-
ies, patients with different cytogenetic profiles may be
assigned to different strata. However, when the effect of
the different covariates varies between the strata, esti-
mating regression coefficients will result in a weighted
average. This is sensitive to the relative size of the strata
in the data, which might be a convenience sample and
not representative for future applications. In turn, this will
also affect variable selection.
We propose an approach that actively controls the
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extent to which each stratum contributes to the variable
selection and estimation of regression coefficients. Specif-
ically, we introduce a weighted estimation approach for a
stratified Cox model based on componentwise likelihood-
based boosting that focuses on a specific stratum and
down-weights the observations in the other strata. Obser-
vations in the stratum of interest each receive a weight of
one, and observations in the other strata receive a fixed
weight between zero and one in the partial log-likelihood.
One aim of this approach is to potentially increase vari-

able selection stability compared to subgroup analysis for
the stratum of interest. This will be particularly important
when considering a large number of measurements (e.g.
20,000 gene expression values or more than 400,000 DNA
methylation CpG measurements) for a limited number of
patients. Especially for methylation data, wheremore than
400,000 CpG covariates are examined, signals in the data
could be small. In particular for studies with less than 200
or 300 patients, the loss of power due to subgroup anal-
ysis for one stratum, for example one tumor stage, will
be very problematic due to the limited amount of infor-
mation. For relatively rare cancers, such as acute myeloid
leukemia (AML), the size of even the largest available
cohorts will be limited (e.g. to a few hundred cases for
AML), making joint analysis of subgroups with known dif-
ferences, e.g. different cytogenetic groups, a pragmatically
attractive option. It is then important to gauge potential
downsides and beneficial effects of a global joint analysis.
In this situation, a weighted approach can provide fine-
grained intermediate steps between the subgroup analysis
and the global joint analysis. Specifically, we will investi-
gate the effects on variable selection stability, as indicated
by resampling inclusion frequencies [4], as a function of
the weights and proposed tools for visualization. These
aim to identify clusters of variables that either are impor-
tant only in the stratum of interest or are also important
to some extent in the other strata.
There are several statistical techniques that are based

on re-weighting of observations or strata at a technical
level. In epidemiological settings, re-weighting of strata is
used to standardize results from one data set to a specific
reference population (see for example [5]). This is typi-
cally done for crude rates or similar measures, but not
for regression models. Weighted estimation for regres-
sion models is, for example, motivated by the approach
by Simon [6] for obtaining treatment effect estimates
in a clinical setting. Specifically, Simon [6] proposed a
Bayesian approach for performing a subgroup analysis
on the effect of a single covariate in a time-to-event
setting that results in a closed-form solution for the
estimates taking the form of weighted regression. Thus,
our approach could be seen as an extension of Simon’s
weighted regression approach, specifically introducing
variable selection for a large number of measurements.

Tutz and Binder [7], Binder, et al. [8] propose a weighted
approach for variable selection, but without pre-defined
strata and for settings with binary endpoints. While sep-
arate regression parameters might be estimated for each
stratum in a sample, [9], the approaches of [6, 8, 10] bor-
row information from similar individuals for when the
analysis focuses on a specific stratum. A similar reasoning
is also used within the context of ROC curve estimation
in the approach by [11], where a weighted estimate is used
for the population-specific positive predictive value (PPV)
and negative predictive value (NPV). The ROC curves are
derived from a weighted average of the ROC curves of a
“target population” and an “auxiliary population”. The esti-
mate of the PPV and the NPV is then based on a weighted
average of the ROC curves from both populations. Our
proposal is built on the same general idea of borrowing
information from other strata, but specifically focuses on
variable selection stability for risk prediction signatures.
In the first Section, we introduce two application exam-

ples: One with kidney renal clear cell carcinoma (KIRC)
and one with acute myeloid leukemia (AML) data. In the
methods Section, the details of our weighted approach
based on componentwise likelihood-based boosting for
variable selection are given as well as two tools for visu-
alizing resampling inclusion frequencies as a function
of the weights: The stability trajectories and the weight-
frequency map. The next Section presents the results
for the two real data examples. We provide concluding
remarks in the discussion Section.

Gene expression andmethylation applications
In a first application, we consider gene expression
data from patients with acute myeloid leukemia (AML).
There is a total of n = 134 patients with two cyto-
genetic risk groups with different types of prognoses,
normal/intermediate risk (n = 98) and poor prognosis
(n = 36). The aim is to predict survival beyond the cyto-
genetic information, where 66 deaths were observed in
the normal group and 26 deaths in the poor prognosis
group. The focus is on developing a subgroup signature
for patients from the normal/intermediate group based on
p = 18, 714 (log-transformed) RNA-Seq gene expression
measurements. In addition to the cytogenetic risk cate-
gory, the information on different clinical covariates, age
at diagnosis, gender, and mutation status of the FLT3 gene
are available.
In a second application, we consider DNA methylation

data from n = 261 patients suffering from kidney renal
clear cell carcinoma (KIRC) to predict survival. There are
two strata, one with 206 stage I - III patients and a sec-
ond with 55 stage IV patients; 48 deaths were observed
in the former and 42 deaths in the latter. For prediction,
Illumina 450 K methylation array data are available, com-
prising p = 485, 577 CpG covariates. In the analysis,
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M-values were used, which are calculated as the log2 ratio
of the intensities of methylated probe versus unmethy-
lated probe intensities (see [12]). For each of the 261
patients, there are two important clinical covariates avail-
able: age and the cancer side (right kidney (n = 140) or
left kidney (n = 121)). To develop a CpG signature, we
focus on the stage I - III patients. The tumors at stage IV
tend to have already metastasized, unlike their lower stage
counterparts.
Both data sets are freely availabe at “The Genome Can-

cer Atlas (TCGA)” (https://tcga-data.nci.nih.gov/tcga/).

Methods
In the following, we consider a time-to-event setting with
observations (ti, δi, xi, si), i = 1, . . . , n, where ti is the
observed time for individual i, which is given by ti =
min(Ti,Ci), where Ti is the event time and Ci is the cen-
soring time. The status indicator δi takes the value 1 if an
event occurred at that time and 0 if the observation has
been censored. xi = (xi1, . . . , xip)T is the vector of covari-
ates observed at time zero (baseline), and si ∈ {1, . . . , S}
indicates the stratum the individual belongs to.
Similar to many approaches for high-dimensional sur-

vival data, in the following we will consider a Cox pro-
portional hazards model, specifically a stratified version

λ(s)(t|xi) = λ
(s)
0 (t) exp(ηi) = λ

(s)
0 (t) exp

(
xTi β

)
, (1)

where λ
(s)
0 (t), s = 1, . . . , S are the baseline hazard

functions for the S different strata of individuals. The
parameter vector β = (β1, ..,βp)T can be estimated with-
out having to estimate the baseline hazards bymaximizing
a partial likelihood.
The aim is to estimate the parameter vector β in a set-

ting with p >> n with a focus on individuals from one
specific stratum si = 1, while still retaining some informa-
tion from the other strata. In the following, we introduce a
weighted partial likelihood before considering estimation
and variable selection in a high-dimensional setting based
on this.
The data used in this study was from the TCGA data

portal, this data is freely accessible therefore did not
require ethical approval.

Weighted partial likelihood
The estimate of the parameter vector β of a Cox propor-
tional hazards model, where strata are taken into account,
can be obtained by maximizing the stratified partial log-
likelihood function. We modify the latter by introducing
weights wi ∈[ 0; 1] , i = 1, . . . , n as follows:

l(β) =
S∑

s=1

[ n∑
i=1

I(si = s)wiδi
(
xTi β (2)

− log
{ n∑
k=1

I(sk = s)wkI(ti ≤ tk) exp
(
xTk β

)})]
, (3)

where I(·) is an indicator function taking a value of 1 if its
argument is true and 0 otherwise.
While this general form of the weighted likelihood

would allow for different weights for each individual, we
use a simpler scheme

wi =
{
1 if si = 1
w otherwise ,

where w ∈[ 0; 1] is the main tuning parameter of our
weighted regression approach. The weighted partial log-
likelihood takes the form of a weighted sum of standard
per-stratum Cox regression partial log-likelihoods. For
w = 1, the standard stratified partial log-likelihood is
recovered, corresponding to a global analysis. In all other
cases, i.e. w ∈[ 0; 1[, the observations from the other strata
are retained but down-weighted, where a subgroup anal-
ysis is obtained for w = 0. Note that this will only be
beneficial if several of the true non-zero effects in the
strata have the same sign.

Weighted componentwise likelihood based boosting
For parameter estimation and variable selection in a high-
dimensional setting, i.e. p >> n, a componentwise
likelihood-based boosting approach, introduced by [2], is
adapted for weighted regression. This approach regular-
izes estimates such that many elements of the estimated
parameter vector will be equal to zero, thus performing
variable selection. Estimation is performed in a potentially
large number of steps as follows:

1. Start with estimate β̂(0) = (0, . . . , 0)T and offset
η̂

(0)
i = 0.

2. For each boosting stepm = 1, . . . ,M:

(a) Consider univariate candidate models for
each covariate j = 1, . . . , p using the linear
predictor

ηi = η̂
(m−1)
i + γ

(m)
j xij

and a weighted penalized partial log-likelihood

l
(
γ

(m)
j

)
− ργ

(m)
j ,

where ρ ≥ 0 is a penalty parameter that needs
to be set.

(b) Determine the best update candidate j∗
according to the penalized score statistic

(U(0))2

I(0)
(4)

where

https://tcga-data.nci.nih.gov/tcga/
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U(γ ) = ∂l
∂γ

(γ )

=
S∑

s=1

⎧⎨⎩
n∑

i=1
I(si = s)wiδi ∗

⎡⎣xTi

−
∑n

k=1 I(sk = s)wkI(ti ≤ tk)η̂(m−1)
i xk exp

(
η̂

(m−1)
k + γ (m)xk

)
∑n

k=1 I(sk = s)wkI(ti ≤ tk) exp
(
η̂

(m−1)
k + γ (m)xk

)
⎤⎦⎫⎬⎭

is the weighted and stratified score function and

I(γ ) = ∂2l
∂γ ∂γ t (γ )

= ∑S
s=1

⎧⎨⎩ − ∑n
i=1 I(si = s)wiδi

∗
[∑n

k=1 I(sk=s)wkI(ti≤tk)η̂
(m−1)
i x2k exp

(
η̂

(m−1)
k +γ (m)xk

)
∑n

k=1 I(sk=s)wkI(ti≤tk) exp
(
η̂

(m−1)
k +γ (m)xk

)

−
(∑n

k=1 I(sk=s)wkI(ti≤tk)η̂
(m−1)
i xk exp

(
η̂

(m−1)
k +γ (m)xk

)
∑n

k=1 I(sk=s)wkI(ti≤tk) exp
(
η̂

(m−1)
k +γ (m)xk

)
)2

⎤⎦⎫⎬⎭
is the weighted and stratified penalized Fisher
information. An estimate from one
Newton-Raphson step is obtained as

γ̂
(m)
j∗ = U(γ̂ )

I(γ̂ ) + ρ
.

(c) Update

β̂j
(m) =

{
β̂j

(m−1) + γ̂
(m)
j if j = j∗

β̂j
(m−1) if j �= j∗

,

and

η̂
(m)
i = xTi β̂(m) i = 1, . . . , n.

The componentwise boosting approach gives a spe-
cial role to covariates that should always be included,
e.g. clinical covariates for adjustment, when performing
variable selection for high-dimensional molecular mea-
surements. Before each boosting step, the estimates for
such mandatory covariates are updated with standard
maximum partial likelihood methods. For the proposed
stratified approach, we also allow for different regression
coefficients for each stratum for all mandatory, unpenal-
ized variables. The number of boosting steps M must be
carefully chosen because it is a critical parameter that con-
trols the complexity of the model. In the following, the
number of boosting steps is empirically chosen by 10-fold
cross validation. The penalty parameter ρ is less impor-
tant as long as it is chosen so that it is large enough.
In the following, we use

∑
i δi(1/0.02 − 1), which will

result in updates approximately the size of 0.02 times the
maximum partial likelihood estimates.

Visualizing stability for different weights
While the weight in the approach above could be con-
sidered as a tuning parameter, requiring selection of one
fixed value by an approach such as cross-validation, we
propose to investigate the effects of different weights to
potentially identify covariates that are primarily impor-
tant for the stratum of interest only as well as groups of
covariates that also have some effect in the other strata; a
joint analysis might therefore be beneficial.
Specifically, the benefit of weighted inclusion of obser-

vations from other strata is quantified by variable
selection stability. We evaluate selection stability by
using resampling techniques, and determine per-covariate
resampling inclusion frequencies (RIFs) [13, 14], i.e. the
proportion of resampling data sets where a covariate
receives a non-zero parameter estimate by the weighted
boosting approach. Therefore, we repeatedly randomly
split the data into training data sets and test data sets,
drawing 0.632 n observations without replacement for
each resampling data set, as is considered for high-
dimensional molecular data in [4].
For the visualization of selection stability for different

weights when using our weighted approach, we introduce
two graphical tools:

(i) Stability trajectories: The stability trajectory plot is a
graphical tool for a small set of stable covariates, i.e



Weyer and Binder BMC Bioinformatics  (2015) 16:294 Page 5 of 12

frequently selected covariates, that tracks stability as
a function of weights. Specifically, we suggest plotting
the results for covariates which have RIFs above 0.1
to 0.2 for some of the weights. The variable selection
stability is presented in the form of RIFs on the y-axis.
The different weights are denoted with different
shades of gray and the visually “best” weight on
average for the different covariates shown is marked
with a triangle (only for real data sets). All RIFs for
different weights from one covariate are connected
with each other in this graphic with a dotted line.
For illustration, we considered artificial
time-to-event data with a total of n = 250 individuals
and p = 1000 uncorrelated covariates. We used
exponentially distributed survival and censoring
times (see [15]), each with a scale parameter of 1

20 ,
and simulated two groups of equal size from a
binomial distribution (with a probability of 0.5).
Instead of resampling, data were generated 20 times.
We assumed that 10 covariates have an effect in the
first, the second or in both subgroups, and that all
other covariates have no effect. For the first three
covariates, we assumed an effect of one in subgroup 1
(βi1 = 1 for i=1,2,3) and zero in subgroup 2 (βi2 = 0
for i=1,2,3), for the next four covariates an effect of
0.5 in both subgroups (βi1 = βi2 = 0.5 for i=4,5,6,7)
and for covariates eight to ten an effect of zero in
subgroup 1 (βi1 = 0 for i=8,9,10) and one in
subgroup 2 (βi2 = 1 for i=8,9,10). In this simulation
scenario, the mean effect over both subgroups is 0.5
for the first 10 covariates of 1000. All other covariates
are simulated as having no effect on the survival time.
In Fig. 1 the stability trajectories are presented. On
the x-axis, the first 10 covariates which have an effect
in subgroup 1 (Cov1 to Cov3), in subgroup 2 (Cov4
to Cov7) or in both subgroups (Cov8 to Cov10) are
shown. On the y-axis, the mean IFs over 20
simulation runs are plotted. The different shades of

gray indicate the different weights, from a weight of
0.001 to 0.99. Lighter gray indicates that only a small
amount information of the second subgroup is used
in the analysis. The darker the color, the more
information from the second subgroup is used in the
analysis. Different weights result in widely different
IFs, i.e. there is a distinct effect of weighting. Overall,
the three covariates one to three which have an effect
of one in the first and analyzed subgroup receive the
largest inclusion frequencies with weights around
0.001 to 0.1. For covariates four to ten, the global
analysis, as expected, results in the best IFs. Almost
excluded from the subgroup analysis are the
covariates that only have an effect in subgroup 2,
which is the subgroup that was not analyzed. As a
consequence of simulating an overall mean effect of
0.5 for the global analysis, covariates one to ten have
similar inclusion frequencies here. It is not easy to
select the best average weight, but a weight equal to
zero would mean that covariates four to seven are not
stably selected, although there is an effect in subgroup
1 and they should be selected from the model.
Therefore a weight of zero should not be chosen.

(ii) Weight-frequency map: This is a graphical tool for a
larger number of covariates in the form of a heat
map. Specifically, the RIFs are presented here for
different weights and different covariates in a heat
map, where covariates are clustered based on the
Pearson correlation of RIFs across weights. Lighter
shades of gray indicate a more stable variable
selection. The aim of this plot is to detect kinds of
clusters of covariates. This aims to reveal different
groups of covariates that are associated with either
only one or with more strata.
In Fig. 2 the weight-frequency map for the artificial
data is presented for covariates with an inclusion
frequency above 0.03 for some of the weights. The
weight-frequency map indicates different clusters

Fig. 1 Stability trajectories for the simulation study. Here, the inclusion frequencies for the simulation scenario for different weights are shown
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Fig. 2Weight-frequency map for the simulation study. This figure shows a heat map for the simulation scenario for different weights based on the
correlation distance

that are in accordance with the underlying true
structure. One cluster of covariates contains Cov4 to
Cov7; these covariates are simulated as having an
effect of 0.5 in both groups and show, as expected,
the best results for high weights. Another cluster
contains Cov8 to Cov10, which have an effect in the
second subgroup and the non-analyzed subgroup.
These covariates only receive large inclusion
frequencies when the complete information of the
second subgroup is used. A third cluster includes
Cov1 to Cov3, which are simulated as having an effect
in the first subgroup and the analyzed subgroup. The
IFs are relatively large for all weights, but are larger
for the subgroup analysis, as expected. All other
covariates have no effect and correspondingly are not
stably selected with any of the weights using the
componentwise boosting approach.

Implementation of the visualization tools
To provide the proposed visualization tools in a readily
accessible way, we extended the R package CoxBoost.
To our knowledge the latter is the only implementa-
tion allowing for stratified, weighted regularized regres-
sion for time-to-event data, i.e. this is the natural
candidate for extension. Specifically, we added a new
function resample.CoxBoost, which builds on the
CoxBoost function for calculating resampling inclusion

frequencies for different weights. The two proposed types
of visualizations for presenting the resampling inclusion
frequencies for different weights can be obtained apply-
ing the functions stabtrajec or weightfreqmap to
the result of resample.CoxBoost. The implementa-
tion, containing the functions resample.CoxBoost,
stabtrajec, and weightfreqmap, will bemade avail-
able on CRAN, but is already provided in the devel-
opment version of the package CoxBoost on GitHub
(https://github.com/binderh/CoxBoost). The documenta-
tion there also provides examples for obtaining the pro-
posed visualizations.
For illustrating compute time, we used simulated data

with n = 400 individuals and 1000 covariates. Using 10
resampling data sets, computation took 6.5 h on a Intel
Xeon E5-2680 2.8 GHz processor. The 10-fold cross-
validation performed in each of the resampling data sets
and for each of 10 weights as a default can be trivially
parallelized, and this is also implemented in the package.
Using 10 cores, computation finishes after 45 min.

Results and discussion
Application example results
Results for the AML data
For the AML data, we focused on the cytogenetic low risk
category and developed a corresponding risk prediction

https://github.com/binderh/CoxBoost
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signature. We included the whole gene expression data
of p = 18,714 genes as candidate covariates in the anal-
ysis and used the cytogenetic risk classification (high
risk and low risk) as a weighting and stratification fac-
tor. The clinical variables age, gender and FLT3 status
were incorporated as mandatory variables. Because it
is well known that RNA-Seq gene expression data are
skewed, the log transformed data were used for the
analysis.
All results are based on 100 resampling data sets.

Here, both graphical tools, the stability track plot and
the weight-frequency map, are presented to display the
results of weighted regression with respect to the selection
stability.
In Fig. 3 the effect of variable selection for three weights

is presented for the coefficient paths in the original data,
i.e. the establishment of estimated parameters in the
course of the boosting steps. The figure shows coeffi-
cient paths for three different weights, one with a very
small weight of 0.001, one with a weight near one and
one with a weight of 0.5; this represents here a weighted
model where half of the information of the second sub-
group is used in the analysis. The number of boosting
steps are normally chosen by 10-fold cross validation.
However, for purposes of illustration, 100 steps are pre-
sented on the x-axis, and the parameter estimates are
plotted on the y-axis. At the end of each boosting step, the
covariate that improves the model the most is updated.
For the AML data, for example, the genes DRC1 for
weight = 0.001, VAX1 for weight = 0.5 and OTP for
weight 0.99 are updated in the first boosting step because
they have the best score statistic. Many covariates which
are not shown in this picture have regression coefficients
of zero in all boosting steps and are not included in

the final model. As boosting shrinks the regression coef-
ficients of variables that do not improve the model to
zero, only a small number of variables have a non-zero
effect.
In the three different coefficient paths in Fig. 3, the

gene DRC1 is selected from the subgroup model but not
from the global analysis. Potentially this gene might only
be associated with survival for the cytogenetically low
risk patients. In addition, the gene HOXB13 is selected
by all three models. The HOXB13 gene is a known pre-
dictor gene for different cancer types, such as breast
cancer.We see that HOXB13 is selected from the weighted
model (weight = 0.5) earlier in the procedure (around
steps 15–18) than for the subgroup analysis (around
step 25) or for the global model (around step 30), indi-
cating that with weighted regression it might be eas-
ier to detect this gene. RFX4 is also selected in the
subgroup analysis (weight = 0.001), although very late
(around step 70). Additionally, RFX4 is also selected in
the weighted model (weight = 0.5) and the global analy-
sis (weight = 0.99). This suggests that with the additional
information of the high risk patients, RFX4 can be better
identified.
Figure 4 shows the stability trajectories for the AML

data, where the RIFs for eight genes which are selected
with an RIF larger than 0.1 for some of the weights
are presented. Overall we see that different weights
result in widely different RIFs, similar to the artifi-
cial data above. There are genes with the highest RIF
at low weights, but there are also genes where the
highest RIF is at a weight different from zero and
one. The weight that leads to the overall best vari-
able selection stability is 0.25 and is marked with a
triangle.

Fig. 3 Coefficient paths for the AML data. Here, different coefficient paths for the AML data for three weights 0.001 (subgroup analysis), 0.5
(weighted model) and 0.99 (global analysis) are shown
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Fig. 4 Stability trajectories for the AML data. This figure shows the resampling inclusion frequencies for stably selected genes with a RIF at least of
0.1 at any weight

In addition to model stability, prediction perfor-
mance was examined. Herewith, we want to ensure
that we do not loose any prediction performance when
using weighted regression. We consider prediction error
curves, i.e. the Brier score ([16]), adapted for time-
to-event endpoints ([17]). Specifically, we used the
0.632 + prediction error curve estimates ([18]) based
on the 100 resampling data sets. We computed pre-
diction error curves for the null model (Kaplan-Meier),
for a model with only clinical covariates (age, gen-
der and FLT3 status), and for the different weighted
models with the gene features for the AML data with
the clinical variables as mandatory variables. Further-
more, we calculated the integrated prediction error,
which is the area under the different prediction error
curves.
In the top panel of Fig. 5, the prediction error curves

based on the 0.632 + estimator for the low risk subgroup
are shown. The weighted models and the model only with
clinical covariates are seen to outperform the Kaplan-
Meier estimate. The prediction error curves for large
weights (0.7 and 0.99) are above those for the weighted
models with lower weights, indicating somewhat better
performance for the latter. The prediction error curve
for the subgroup analysis and for a weight of 0.25 are
located very close together and have the best prediction
performance. So we can conclude that we do not loose
any prediction performance with weighted regression for
smaller weights. In the second figure of Fig. 5, boxplots
for the integrated prediction error are shown for the dif-
ferent weighted models and the null model. The lowest
integrated prediction error is at a weight of 0.1. This indi-
cates that weighted regression for this AML data set is not
only equivalent to the prediction error of the subgroup

analysis, but might also perform better, at least by a small
amount.

Results for the KIRC data
For the KIRC data, there were 485,577 CpG covariates
overall that could be analyzed for an association with sur-
vival in tumor stages I to III. 89,512 CpG sites had to
be excluded from the analysis because of missing values
in all patients. The analyses were performed for only
396,065 CpG covariates. The model is adjusted for age
and laterality (cancer side), which are included as manda-
tory variables. A heuristic approach was used for com-
ponentwise boosting to decrease computational demand
[3]. Figure 6 shows the stability trajectories for the 12
CpG covariates that had a RIF between 0.1 and 1 for
some of the weights. Qualitatively, the results are sim-
ilar to the results of the AML data. Different weights
result in widely different RIFs. Subgroup analysis is not
well suited for developing a subgroup signature because
the RIFs for low weights are very small. This indicates
that weighted models with weights unequal to zero can
improve the variable selection stability. Some CpG covari-
ates received the best RIF for the global analysis (e.g.,
CpG cg12845520, cg16348668, cg24655777, and in partic-
ular cg25995289 and cg27299526). These CpG covariates
might be associated with the survival time either in both
subgroups or only in the subgroup that is not at the
focus. Most of the CpG covariates have the highest RIF
at a weight between the subgroup and the global analysis,
which indicates the potential benefit of weighted regres-
sion. Visually, the best weight on average is 0.5, marked
in Fig. 6 with a triangle. All CpG covariates shown in
this stability trajectories have a large RIF at this weight
or the largest RIF (cg26445541). This weight seems to be
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Fig. 5 Prediction error curves for the AML data. Different prediction error curves based on the .632+ estimate (first figure) for the null model, for a
model only with clinical covariates and for four different weighted models and integrated prediction error (second figure) are shown

a good weight with respect to the best mean inclusion
frequency over these stably selected covariates. With this
weight, the important CpG covariates for the first stratum
can be detected much better than the subgroup analysis
would do.
To gain better insight in the RIF distribution, Fig. 7

shows the 48 covariates with a RIF of at least 0.05 for
15 different weights in the weight-frequency map. For
some CpG covariates, there are lighter shades of gray for
intermediate weights, indicating the best model stabil-
ity for weighted regression. Different clusters are clearly
discernible from this plot. In the top right there are the
lighter shades of gray, whilst the bottom right contains
the darker gray shades. In top right there are the covari-
ates which are associated with both subgroups or possibly
with the non-analyzed subgroup. In the bottom right there
are the covariates which are only associated with the

first and analyzed subgroup, because RIFs are not large
for high weights, but rather are high for low weights.
Overall, most of the covariates cannot be detected reli-
ably with a subgroup analysis. This can be seen from
the dark gray colors in the left of the heat map at low
weights (except the last five CpG covariates). In the
stability trajectories, a weight of 0.5 seems to be the
largest on average. The weight-frequency map confirms
this by showing the overall best RIFs (brightest gray at a
weight of 0.5).

Discussion and outlook
When analyzing gene expression or high throughput
methylation data, for example from the 450 k Illumina
methylation assay, a very large number of covariates are to
be examined. To test the association of high-dimensional
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Fig. 6 Stability trajectories for the KIRC data. Resampling inclusion frequencies for stably selected CpG covariates with a RIF at least of 0.1 at any
weight

data with the survival time of patients, a variable selec-
tion can be performed to obtain a risk prediction signature
for the patients. Often the entire study sample is not at
the focus, but rather only patients in a specific subgroup.
For example, different tumor stages or different cytoge-
netic risk profiles can divide the total study population
into two or more different and, above all, heterogeneous
sub-populations.
To account for this heterogeneity due to subgroups, we

proposed a weighted approach for estimating a stratified
Cox regression model based on componentwise boosting
for automatic variable selection. With this weighted anal-
ysis, we want to account for heterogeneity in the study
sample to increase the variable selection stability, as quan-
tified by resampling inclusion frequencies, without a loss
of prediction performance. To investigate the effects of
different covariates in different strata, we proposed two
visualization tools based on resampling inclusion frequen-
cies: the stability trajectory plot and the weight-frequency
map. The results of two application examples indicate that
different weights do indeed affect the variable selection
stability, as seen from resampling inclusion frequencies.
Some genes can be identified better with the weighted
model than with the subgroup analysis. There evenmay be
groups of covariates that share the same weight-stability
pattern, as indicated by the clustering in the weight-
frequency map, which could potentially be useful to better
understanding molecular processes relevant to certain
sub-populations.

When choosing a weight of 0.25 or 0.5, we cannot
say that this weighted model results in the largest RIFs
for each CpG or gene covariate, but on average one can
say that these weights seem to be the best in the real
data examples. The prediction error for the AML data
is neither better nor worse for a weighted model with a
weight factor of 0.25, which is also a stable weight for
model stability in comparison to the subgroup analysis.
So with weighted regression, the prediction performance
is not decreased, which makes weighted regression a very
attractive approach.
We did not consider all available clinical parameters

for defining potential strata, but focused on covari-
ates related to the design of a study. For example,
when AML data are analyzed, the cytogenetic risk cat-
egory is a variable that would be used as a crite-
rion for selecting patients for a study. With weighted
regression, what happens when the composition of the
study sample is somewhat different could potentially be
anticipated.

Conclusions
Overall our results show that different weights result in
different model stabilities. The subgroup analysis, which
is often used when analyzing subgroup effects, is not
the best option, but middle weights of around 0.25 and
0.5 result in the best findings in the examples. We con-
clude that there is a positive effect gained by weighted
regression.
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Fig. 7Weight-frequency map for the KIRC data. This figure shows a heat map for 15 different weights via boosting for stably selected CpG
covariates between 0.05 and 1. Light gray color indicates good variable selection stability

Stratified weighted regression seems to be a useful
technique for analyzing high-dimensional data with
heterogeneity due to subgroups when focusing on
developing a risk prediction signature for one spe-
cific stratum. While the current proposal was built
on componentwise likelihood-based boosting, we
expect that such an approach could also be adapted
for other regularized regression approaches, such
as the Lasso, but this requires implementations that
allow for stratified weighted estimation for time-to-
event endpoints, which are not available so far, to
our knowledge. For componentwise boosting such an
implementation is already provided by our package
CoxBoost.
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