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Secretion properties, clearance, and therapy in
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Abstract

Chronic airway diseases like cystic fibrosis, chronic bronchitis, asthma, diffuse panbronchiolitis, and bronchiectasis
are all associated with chronic inflammation. The airway mucosa responds to infection and inflammation in part by
surface mucous (goblet) cell and submucosal gland hyperplasia and hypertrophy with mucus hypersecretion.
Products of inflammation including neutrophil derived DNA and filamentous actin, effete cells, bacteria, and cell
debris all contribute to mucus purulence and, when this is expectorated it is called sputum. Mucus is usually
cleared by ciliary movement, and sputum is cleared by cough.
These airway diseases each are associated with the production of mucus and sputum with characteristic composition,
polymer structure, and biophysical properties. These properties change with the progress of the disease making it
possible to use sputum analysis to identify the potential cause and severity of airway diseases. This information has also
been important for the development of effective mucoactive therapy to promote airway hygiene.

Review
Introduction
Mucus clearance is a primary defense mechanism of the
lung. Mucus is a barrier to airway water loss and microbial
invasion and it is essential for the clearance of inhaled foreign
matter [1]. Mucus is a viscoelastic gel consisting of water and
high molecular weight glycoproteins, called mucins, mixed
with serum and cellular proteins and lipids. The principal
gel-forming mucins in the human airway are MUC5AC and
MUC5B [2,3]. There are variable amounts of cell debris and
particulate matter in normal mucus. Sputum is expectorated
mucus mixed with inflammatory cells, cellular debris, DNA
and F-actin, as well as bacteria [4] (Figure 1). In cystic fibrosis
(CF), there is almost no intact mucin in the airway secretions
[5] due to mucin degradation by serine proteases [6]. These
secretions are biochemically identical to pus.
Respiratory mucus is a mixture of submucous gland,

goblet cell, and epithelial cell secretions [7]. Submucous
glands are innervated by cholinergic, adrenergic, and non-
adrenergic, non-cholinergic nerves [8]. Glandular secretions
are thought to be the major constituent of respiratory
mucus in health. Goblet cells expel their contents when
exposed to irritants and appear to be inflammatory effector

cells as well. Epithelial cells produce much of the periciliary
fluid layer by active ion transport [9].
Mucus is usually cleared by airflow and ciliary inter-

actions while sputum is primarily cleared by cough. Se-
cretion clearance depends upon mucus properties such
as viscoelasticity and adhesiveness, serous fluid properties,
and ciliary function. In order to understand how impaired
mucus clearance is related to respiratory disease and to de-
velop new therapies, we study each of these properties as a
function of disease type, disease severity, and therapy [10].

Properties of mucus
Rheology
Viscosity is the loss of energy (loss modulus) from an object
moving through a substance and thus the resistance to
flow. This is a property of fluids and a Newtonian or
ideal fluid can be rheologically defined by viscosity
alone. Elasticity is the storage modulus and a property of
solids. Pseudoplastic gels, like mucus gels are viscoelastic.
Both viscosity and elasticity are essential for clearance
[11]. While ciliary clearance can be impeded by high
viscosity, cough clearance in increased when the gel is
viscous and abhesive (not sticky) [12,13].

Surface properties
Cohesivity is the ability of a substance to bind to itself or
form threads under conditions of attachment deformation.
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Wettability is the surface energy at a solid-sputum-air
interface and is measured using the sessile drop technique.
Interfacial tension is the interfacial or surface energy
between a gel and liquid or gas surface. This is also
called surface tension when the interface is between an
ideal liquid and gas [13].
Adhesivity is the ability to bond to a solid surface mea-

sured as the force of separation between one or more solid
surfaces and the adhesive material. The work of adhesion
is calculated from the contact angle and interfacial tension
and tenacity or work of distraction is the product of cohe-
siveness and adhesiveness. Tenacity is the major physical
determinant of cough transportability [14].

The transport properties of secretions
Cough transportability A simulated cough machine is
used to measure the airflow-dependent clearability of
sputum. Using this device, we have shown that cough
clearability of secretions increases with greater mucus
depth and the presence of periciliary fluid [15].

Ciliary function
Ciliary action is dependent on temperature, mucus gel
and periciliary fluid hydration, mucus loading, and ciliary
beat frequency, coordination, and power. Ciliary dysfunc-
tion can be due to congenital ciliary abnormalities such
as primary ciliary dyskinesia [16], or caused by irritants,
allergens, smoke, or infection. Mucociliary clearance is
impaired both by mucus viscoelasticity and by mucus
adhesiveness [17].

Conditions associated with mucus clearance defects
Primary ciliary dyskinesia (PCD)
PCD leads to ineffective mucociliary clearance and bronchi-
ectasis. These patients expectorate sputum with biophysical
and clearance properties similar to sputum from persons
with CF [18]. Similar to CF, there are high concentrations

of inflammatory mediators in PCD sputum but a greater
amount of intact mucin is present. It is thought that the
much slower progression of disease in persons with PCD
when compared with CF is probably due to conditions
in the CF airway, which promote the growth of bacterial
biofilms and chronic inflammation [19].

Cystic fibrosis (CF)
Sputum from persons with CF has not been shown to be
abnormally thick, dehydrated, or viscous but has viscosity
comparable to sputum from patients with bronchiectasis
and less than that of persons with chronic bronchitis or
severe asthma [20]. There are compelling data suggesting
that surfactant abnormalities in CF sputum lead to secre-
tions that are exceedingly adhesive [21]. Because of the CF
abnormality in transepithelial chloride transport, it is likely
that dysregulation of the depth and composition of the
periciliary fluid layer may play a role in impeding mucus
transport in the CF airway [22].
Data demonstrate that there is little intact mucin in

the CF airway; even in young children with mild disease
[5]. However the ability to secrete mucin appears to be
intact and transiently expressed during periods of increased
inflammation such as during an exacerbation of pulmonary
infection [23].

Fucosidosis (congenital absence of alpha-L-fucosidase)
Fewer than 100 patients have been reported with this
autosomal recessive defect due to absence of the gene for
alpha-L-fucosidase on chromosome 1. Fucose and sialic
acid are the predominant terminal sugars on mucin glyco-
protein chains. We have described extremely watery
mucus from the airway of a child with fucosidosis, and
this mucus could not be easily cleared by cough or ciliary
mechanisms [24]. The abnormal viscoelasticity is probably
explained by defective mucus cross-linking.

Figure 1 Confocal micrograph showing mucin polymers (Texas red-UEA) and DNA polymers (Green - YoYo1) in bronchitis (left) and
cystic fibrosis (right) sputum.
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Allergy and asthma
Inhalation of Ascaris antigen in low dose releases a large
volume of watery mucus in sensitized dogs. When suffi-
cient antigen is inhaled to cause bronchoconstriction,
rigid, poorly cleared mucus is released [25]. This biphasic
response is similar to that seen with the administration of
cholinergic drugs and can be blocked with anticholinergics
medications. A similar response can be seen in adults with
acute asthma [26].
Mucus from patients with acute severe asthma has

extremely high viscosity and patients who die during
an asthmatic attack have extensive mucus plugging of
their airways [27]. This is probably due to an abnormal
secondary structure of the highly mucin enriched secre-
tion [28,29].
Patients with asthma who have chronic cough and

sputum production have worse clinical control as mea-
sured by the asthma control questionnaire (ACQ) and
more frequent exacerbations [26]. Helper T-cell type 2
(Th2) cytokines, including interleukin (IL)-13, are impli-
cated in mucus production and goblet cell hyperplasia in
asthma and IL-13 induces goblet cell hyperplasia with
mucus hypersecretion in human airway epithelial cells.
Airway goblet cell hyperplasia induced by IL-13 is steroid
insensitive [30] but can be attenuated by 14- and 15-
member macrolide antibiotics [31]. These data are con-
sistent with clinical reports in steroid-resistant asthmatics
[32]. Increased IL-13 mRNA expression is not reduced by
steroid inhalation and under some circumstances; steroids
further increase IL-13 induced mucin production [33].
Persons with severe asthma also have high levels of

secretory phospholipases A2 (sPLA2) in their airway and
bronchial lavage fluid. sPLA2 induce dramatic mucus
hypersecretion, termed secretory hyperresponsiveness [34],
cysteinyl leukotriene production, and hydrolyze airway
surfactant [35].

Irritant exposure, smoking, bronchitis, and lung cancer
Acute exposure to irritants causes hypersecretion of
watery, easily cleared mucus. Similarly, asymptomatic
smokers produce watery mucus that is transported faster
by cilia than normal mucus [36]. However in vivo mucocili-
ary clearance is not increased in the light smoker probably
because of epithelial damage.
Epidemiological studies show a correlation between

COPD progression and chronic cough with sputum
production. In The Copenhagen City Heart Study data
analysis suggests that chronic mucus hypersecretion was
significantly associated with both greater FEV1 decline
and an increased risk of hospitalization [37]. It has been
postulated that impaired mucus clearance in chronic
smokers can lead to prolonged contact of irritants with
the airway epithelium and so promote cellular metaplasia
and cancer [38,39].

Non CF bronchiectasis
The biophysical properties of sputum from children with
bronchiectasis are different from those of subjects with
CF or chronic bronchitis [40]. This leads to relatively
greater cough transportability compared to CF sputum.
These sputum properties may explain, in part, the differ-
ent clinical course of children with idiopathic bronchiec-
tasis compared to children with CF.

Plastic bronchitis
Plastic bronchitis is a rare disease in which there is the
formation of large gelatinous or rigid branching airway
casts. Plastic bronchitis has been associated with conditions
as diverse as congenital heart disease almost always after
palliative surgery, abnormalities of pulmonary lymphatic
flow, sickle cell disease acute chest syndrome, and perhaps
with hypersecretory severe asthma. The bronchial casts
contain little or no DNA and consist almost entirely of
fibrin and abnormally cross-linked mucin; similar to
fatal asthma [41]. Because of the rarity of this disease,
there are no reported randomized clinical trials of therapy
although anecdotal case reports have suggested some
benefit with the use of tPA acutely as a fibrinolytic agent,
heparin aerosol chronically, presumably to inhibit Tissue
Factor, and low dose macrolides to decrease excessive
mucus production [42].

Therapy of mucus clearance disorders
The classification of mucoactive medications by presumed
mechanisms of action is given in Table 1 [43]. An overview
of these medications and evidence of their effectiveness
(or lack of effectiveness) is presented below.
Expectorants are thought to increase the hydration

of sputum either by the direct addition of water or by
stimulation of water secretion into the airway [44]. Expec-
torants do not directly improve mucociliary clearance. The
expectorants include water, guaifenesin, and the iodide
containing medications. Despite widespread use of these
agents, there are no well-controlled clinical trials that
support their use, while randomized controlled trials
have generally shown these medications to be ineffect-
ive [45-47].
Studies suggest that the inhalation of 7% saline can

increase expectoration and improve pulmonary function
in patients with CF [48]. This is probably due, in part, to
stimulation of both water and mucus secretion into the
hyperosmolar environment [49]. Mannitol, a sugar, has also
been administered as a dry powder aerosol for the therapy
of CF and non-CF bronchiectasis [50,51]. Use of hypertonic
saline is limited, in part, because of inflammation, cough,
and airflow limitation (bronchospasm) in some patients
[48]. Data suggest that hypertonic saline is less effective
than dornase alfa (Pulmozyme) in improving pulmonary
function in persons with CF [52].
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Mucociliary clearance depends in part, on the visco-
elasticity of the secretions. Mucolytics reduce sputum
viscosity by disrupting polymer networks in the secretions.
Classic mucolytic agents work by severing disulfide bonds,
binding calcium, and depolymerizing mucopolysaccha-
rides. Agents containing free sulfhydryl groups reduce the
disulfide bridges interconnecting the mucin molecules.
These agents include N-acetyl-L-cysteine (NAC) and simi-
lar drugs. There are no data that support the clinical
use of aerosol NAC for the therapy of lung disease
[53]. A large, prospective, randomized trial in subjects
with chronic bronchitis showed no benefit of high dose
oral NAC over placebo [54]. Orally administered NAC
does not penetrate into the airway or bronchial lavage
fluid [55] and inhaled NAC (pH 2.2) can cause broncho-
spasm and airway inflammation [56].
Sputum contains products of inflammation including

DNA and filamentous actin (F-actin) polymers formed [4].
DNA and F-actin copolymerize to form a rigid network
entangled with the mucin gel. Peptide mucolytics de-
grade these abnormal polymers. Dornase alfa (Pulmozyme,

Genentech, South San Francisco, CA) is widely used for the
treatment of CF airway disease and this peptide mucolytic
has been shown to improve pulmonary function and
decrease the frequency of pulmonary exacerbations when
used daily as an aerosol [57,58]. However dornase has
not been shown to be effective in treating any pulmon-
ary disease other than CF [59]. The G-actin sequestering
and F-actin depolymerizing peptide, thymosin β4 has
also shown promise in vitro as a peptide mucolytic and
potentially an anti-inflammatory agent for the treatment
of CF [60].
For cough to be effective there must be sufficient airflow

to detach sputum from the epithelium and to mobilize se-
cretions so that they can be expectorated. Mucokinetic
agents improve the cough clearance of secretions, either
by increasing airflow or by altering the sputum-epithelium
interaction. By this definition, bronchodilators can be
considered mucokinetic agents but only in patients who
have a significant improvement in airflow with broncho-
dilator therapy.
Mucus adheres to the cilia and epithelium. It is thought

that a bronchial surfactant layer promotes spreading of
the mucous layer and efficient transfer of energy from
beating cilia to the mucus preventing entanglement of the
cilia in the mucus. Decreasing sputum tenacity increases
sputum cough transportability in CF or chronic bronchitis.
Some of the expectorant activity of classic mucolytics may
be attributed un-sticking mucus from the airway surface.
Surfactant facilitates the spreading of the mucus across

the tips of the cilia and it augments the efficient transfer
of energy from the cilia to the mucous layer [13]. Surfactant
therapy improves secretion transport in newborns with
respiratory distress syndrome [61] and clinical trials
with an aerosol surfactant in chronic bronchitis showed
an improvement in pulmonary function and a decrease in
trapped thoracic gas. This was associated with increased
sputum mucociliary transportability [62].
Mucoregulatory agents inhibit mucus production or

mucus secretion. Anticholinergic medications are the most
well studied agents in this class. Anticholinergics can
reduce the volume of stimulated secretions without
increasing viscosity [63]. The topical anticholinergic bron-
chodilator, oxitropium bromide, has been shown to decrease
the volume of secretions in patients with chronic bronchitis
without changing mucus viscoelasticity [64]. The long-
acting anticholinergic agent, tiotropium bromide, has
kinetic selectivity for both the M1 and M3 receptor types
over the M2 (auto-inhibitory) receptor [63]. In one study
with COPD patients without exacerbations, tiotropium
bromide treatment did not improve tracheobronchial
clearance when compared with placebo [65].
Inflammation leads to mucous gland hyperplasia and

many inflammatory mediators are potent secretagogues.
Indomethacin has been administered by aerosol for the

Table 1 Mucoactive medications and their presumed
actions

Mucoactive agent Potential mechanisms of action

Expectorants

Mannitol powder

Hypertonic saline Increases secretion volume and
perhaps hydration

Classical mucolytics

N-acetylcysteine Severs disulfide bond linking mucin
oligomers

Ambroxil Increases chloride secretion and
severs disulfide bonds

Peptide mucolytics

Dornase alfa Hydrolyzes DNA polymer with
reduction in DNA length

Gelsolin or Thymosin β4 Depolymerizes F-actin

Non-destructive mucolytics

Dextran Breaks hydrogen bonds

Mucoregulatory agents

Anticholinergic agents Decreases volume of stimulated
secretions

Glucocorticoids Decreases airway inflammation
and mucin secretion

Indomethacin Decrease airway inflammation

Macrolide antibiotics Decreases airway inflammation
and mucin secretion

Cough clearance promoters

Bronchodilators Can improve cough by increasing
expiratory flow

Surfactants Decreases sputum adhesiveness
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treatment of mucus hypersecretion in persons with diffuse
panbronchiolitis, chronic bronchitis, or bronchiectasis [66].
Fourteen and 15-member macrolide antibiotics can reduce
airway mucin secretion by virtue of their immunomodula-
tory activity [67-69]. This action is unrelated to the antibac-
terial activity and appears to be mediated by modulation of
the ERK 1/2 pathway [70,71]. Erythromycin and clarithro-
mycin have been successfully used to treat mucus hyperse-
cretion in patients with bronchorrhea, asthma, and sinusitis
[72]. Low dose and long term azithromycin therapy is now
routinely used for the therapy of CF [73].

The clinical use of mucoactive therapy
The principal indication for mucoactive therapy is to reduce
airway obstruction by abnormal secretions. By decreasing
the volume of secretions, gas trapping is reduced and there
is improved performance of the muscles of respiration.
Therapy should first be directed at decreasing infection
and inflammation and minimizing exposure to irritants.
The use of mucoactive medications and therapy to decrease
mucus production and improve sputum expectoration can
then be considered. Chest physical therapy, with or without
accessory devices is usually prescribed along with the use of
mucoactive medications [74].
Patients most likely to benefit from mucoactive therapy

usually have a history of increased sputum expectoration
and preserved airflow. Patients with acute mucus retention
such as acute bronchitis or exacerbations of CF appear to
be less responsive to mucoactive medications than stable
patients. This may be due to decreased airflow caused both
by the increase in infection and to muscular weakness
in association with the pulmonary exacerbation, further
reducing airflow dependent clearance mechanisms.
The effectiveness of therapy in an individual patient

can be difficult to assess. When the patient feels better
and there is an improvement in airflow or a reduction in
trapped thoracic gas benefit is clear. However, changes
in FEV1 poorly reflect clinical improvement with mucoac-
tive therapy. Intuitively, one might expect that expectorated
sputum volume would be a good way to assess the ef-
fectiveness of therapy but the expectorated sputum vol-
ume relates poorly, at best, to improvement in pulmonary
function or the clinical status of the patient [75].
The scientific evaluation of secretion properties and

response to therapy should enable the development of
effective mucoactive therapy and allow us to better de-
termine which patients are most likely to benefit from
specific therapy.

Conclusion
Many airway diseases are associated with the production
of mucus and sputum with characteristic composition,
polymer structure, and biophysical properties. These prop-
erties change with the progress of the disease making it

possible to use sputum analysis to identify the potential
cause and severity of airway diseases. This information
has also been important for the development of effective
mucoactive therapy to promote airway hygiene.
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