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Abstract: Representative volume elements (RVEs) are commonly used to compute the effective
elastic properties of solid media having repeating microstructure, such as fiber reinforced composites.
However, for softening materials, an RVE could be problematic due to localization of deformation.
Here, we address the effects of unit cell size and fiber packing on the transverse tensile response of
fiber reinforced composites in the context of integrated computational materials engineering (ICME).
Finite element computations for unit cells at the microscale are performed for different sizes of unit
cells with random fiber packing that preserve a fixed fiber volume fraction—these unit cells are loaded
in the transverse direction under tension. Salient features of the response are analyzed to understand
the effects of fiber packing and unit cell size on the details of crack path, overall strength and also the
shape of the stress-strain response before failure. Provision for damage accumulation/cracking in the
matrix is made possible via the Bazant-Oh crack band model. The results suggest that the choice of
unit cell size is more sensitive to strength and less sensitive to stiffness, when these properties are
used as homogenized inputs to macro-scale models. Unit cells of smaller size exhibit higher strength
and this strength converges to a plateau as the size of the unit cell increases. In this sense, since
stiffness has also converged to a plateau with an increase in unit cell size, the converged unit cell size
may be thought of as an RVE. Results in support of these insights are presented in this paper.
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1. Introduction

Automation of the manufacturing process of composites may well be the next important cost
efficiency gain in industrial applications (Beukers et al. [1]). Mass produced textile fiber performs
that can be molded into near net shapes will lead to composite structures that have longer fatigue
lives. There is an urgent need for robust and high fidelity computational tools that can replace costly
testing associated with certification of composites for aerospace structural applications. Driven by
the necessity of certification by analysis, integrated computational materials engineering (ICME) has
emerged as a vibrant research activity in the past few years. Robust, mechanics based models that
possess the correct physics at each stage of a production cycle will be needed to ensure maturity
of ICME based computational frameworks. Summary of the major challenges related to ICME of
composites can be found in Arnold et al. [2].

We focus on an important aspect of the ICME of fiber reinforced composites pertaining to
composite unit cell at the micro-scale. Following earlier work (Heinrich et al. [3]), we address
the issue of unit cell size that is needed for assessing the stiffness and strength of such unit cells when
subjected to mechanical loads. The study includes virtual modeling that includes the development
of damage and cracking as the unit cells are loaded. During processing of thermoset fiber reinforced
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polymer composites (FRPCs), the matrix undergoes shrinkage due to network formation and thermal
strains due to thermal mismatch with surrounding fibers, which give rise to internal stresses. The state
of the matrix at the end of curing can be altered by the presence of fibers and also by the form of
the cure cycle. Song et al. [4] showed that the use of bulk matrix properties (i.e., measured “virgin”
matrix properties) in numerical predictions of compression response of 2D triaxially braided composite
representative volume element can lead to erroneous results. They reported that the computed
compressive strength using the virgin matrix properties were higher than experimentally measured
strength. Such a discrepancy in strength prediction using the so called “virgin” matrix properties
arises because matrix that cures in the presence of the fibers is noticeably different from the virgin
matrix. Such a matrix is called in situ matrix, which has the effective properties of the matrix that takes
into account imperfections caused in the matrix during the curing process. The post-cure in situ matrix
properties in terms of the matrix shear stress-shear strain response, can be extracted via an inverse
analysis through uniaxial tensile loading of a ±45◦ laminate, which is often convenient in engineering
analysis of processed composites (Ng et al. [5]). The in situ shear stress-shear strain response can
also be obtained from a torsion test. Thus, good knowledge of the state of matrix in the curing FRPC
structure is important for ICME to be successful for FRPCs. Moreover, for a particular FRPC system,
the optimal cure cycle must be identified such that the cured structure has the desired strength and
stiffness. In the present investigation, we use micromechanics to study the influence of unit cells of
certain size, which contain randomly packed fibers. The unit cells are chosen to be of different size
(preserving the fiber volume fraction but containing different numbers of randomly packed fibers).
The effects of curing of unit cells of different sizes is subject of ongoing work—that is, the presence of
residual stresses in the composite due to processing is neglected in the present analysis.

Figure 1 qualitatively shows the behavior of a composite specimen at the global scale concurrently
with the behavior of fiber-matrix constituents during initiation and propagation of damage up to
subsequent failure. Although global damage is observed macroscopically, which manifests as matrix
cracking resulting in a reduction of tangent stiffness, the matrix may have failed completely locally.
Due to the inability to model the entire fiber-matrix microstructure at the component (global) level,
the material properties at the global scale are usually the homogenized properties obtained from
the constituents, using the properties of stiffness and strength from the unit cell. In a multiscale
analysis setting using finite elements, a simple unit cell representation is often used to represent the
effective behavior of the global structure at the finite element’s integration points. Therefore, it is
important to first understand how the choice of the unit cell size affects its overall stiffness and strength
representation of much larger volumes of fiber-matrix composite. Thus, the goal of this work is to
show whether or not stiffness and strength of unit cells are controlled by its size.

In this study, the matrix tensile strength used is similar to what is representative of macroscopic
coupon level measurements, while the Mode I fracture toughness GIC has been lowered by
approximately two orders of magnitude compared to macroscopically measured values (for example,
from a double cantilever beam test or a compact tension test with specimens in the tens of mm scale).
The use of macroscopically observed values of GIC in the microscale simulations encountered in
this study would lead to physically unrealistic response. Recently, Qiao and Salviato [6] proposed
a two-scale cohesive traction-separation law. Based on measurements, they showed that the fracture
strength of thermoset polymers at the microscale is noticeably higher than the macroscopically
observed fracture strengths, whereas the fracture toughness, GIC, associated with Mode I cracking is up
to two orders of magnitude lower than what is observed in macroscopic specimens. Their observation
has also been supported by coarse-grained molecular dynamics (MD) studies on the tensile behavior
of thermoset polymers (Yang and Qu [7]). This MD study showed that sharp reduction in cohesive
strength occurs due to cavity initiation and coalescence phenomenon at the sub-micron scale associated
with the crack-opening displacements. The subsequent macro-scale reduction in cohesive strength
and toughness is due to re-alignment of the polymer chains in relatively less densely packed volumes.
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This suggests that the fracture toughness and strength measured at the macroscopic scale are not
appropriate for use in microscale fracture simulations.
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Figure 1. Qualitative behavior of the fiber matrix specimen (global) under uniaxial loading in contrast
to behavior of fiber-matrix (local) constituents at the micro-scale.

2. Modeling

In reality, the microstructure of fiber-reinforced composites exhibits randomness in packing
(Figure 2), which in turn influences the mechanical properties (Bulsara et al. [8], Moulinec and
Suquet [9]). In contrast, the baseline or the idealized case is the one where fibers are arranged in
a hexagonally packed manner. One of the questions we can ask is that for a given fiber volume
fraction, how much do the transverse fracture properties (strength and toughness) of the randomly
packed configuration deviate from the perfect arrangement. Another aspect is determining the number
of fibers (or unit cell size) for given (fixed) fiber volume fraction sufficient enough to represent the
bulk transverse fracture properties. The problem of finding the smallest unit cell that will represent
bulk fracture properties is affected more by the geometrical details of the constituents compared to
corresponding problem for stiffness, where the bulk properties are governed by the average properties
of the constituents.

In an earlier work by Heinrich et al. [3] that addressed the influence of packing on the residual
stress buildup during cure, the randomness in packing was characterized by Voronoi tessellation
(Figure 3). The deviation from hexagonal packing was described in terms of the area of the Voronoi
cells, the centers of which corresponded to the centers of fibers placed in the unit cell. The present
investigation will follow a similar approach of characterizing fiber packing. For each unit cell size and
for a given fiber volume fraction, several fiber packing renditions will be created.
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Figure 2. Random packing of fibers seen in a cross-section of a fiber tow with Vf = 0.68.

Figure 3. Voronoi cells and generated finite element model (Heinrich et al. [3]).

Our prior work (D’Mello et al. [10]) on transverse loading of virtually cured randomly packed
unit cells indicates that packing has a strong influence on transverse tensile strength (Figure 4).
However, in this investigation, apart from influence of unit cell size, we also aim to find the influence
of randomness in fiber packing and matrix fracture properties under transverse tension. Under tension,
the crack band model described in the next section, will be used to model damage/failure propagation
in the unit cells. The output from these simulations will provide transverse tension fracture
properties—that is, unit cell strength and fracture toughness. Next step in the analysis is finding
correlation between unit cell size (for a given fiber volume fraction) and the fracture properties
and quantifying randomness associated with fracture properties. As shown in Figure 4, taken from
D’Mello et al. [10], the effect of curing has a marked influenced on the unit cell strengths. This behavior
is due to the presence of inherent self-equilibrating residual stresses in the unit cells on account of
curing. When such unit cells are loaded in the transverse direction, the overall strain required for the
matrix elements to enter failure is much lower. Moreover, the global stress recorded is also lower due
to account of pre-existing tensile residual stress in the matrix.

In the present work, random fiber unit cells with three different sizes are considered: unit cells
having 6, 24, 40 and 180 fibers respectively. Each of these unit cells will be loaded in the
transverse direction (two-direction) under tension. Commercially available finite element software
ABAQUS/Explicit complemented by user subroutines are used for these numerical simulations.
Each of the unit cells are modeled in 3D, using linear hexahedral C3D8 elements. The fiber diameter
is taken to be eight microns and the dimension of the unit cell in the fiber-direction is kept fixed at
0.2 times the fiber diameter. The mesh density is taken such that the circumference of the fiber is
modeled with approximately 38 C3D8 elements. For the unit cells with six fibers, three different fiber
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volume fractions (Vf ) of 0.4, 0.5 and 0.6 are considered, to study the variation of fiber volume fraction
on the stiffness and strength, whereas for the unit cells having 24, 40 and 180 fibers, a fiber volume
fraction of 0.5 is considered in order to study the effect of size on the unit cell stiffness and strength. For
each type of unit cell, 10 different realizations of randomly packed fiber configurations are considered
to quantify the scatter in the mechanical response under transverse tension. Each type of unit cell used
in the present work along with the coordinate frame indicated are shown in Figure 5. Carbon fibers are
modeled as transversely isotropic solids with properties E f
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13 = 0.2. The matrix has Young’s

modulus Em = 4670 MPa and Poisson’s ratio νm = 0.35. During tensile loading in the transverse
direction (two-direction), the unit cells are subjected to flat boundary conditions, wherein the edges
of the unit cell are allowed to expand or contract under loading but are constrained to remain flat
throughout the loading process.
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Figure 4. Variation in unit cell transverse tension strength (D’Mello et al. [10]).

A crack band model based on the one proposed by Bazant and Oh [11] is used to model failure
in the matrix. Methodology of crack band model for unit cells have been addressed in our earlier
paper (D’Mello and Waas [12]) but will be repeated here for convenience. This model assumes that
once the critical fracture stress σcr is reached locally in the matrix, microcracks are formed and this
effect is smeared over an element. The maximum principal stress criterion is used to determine
the failure initiation in the matrix. However, other failure criteria can also be used for transverse
compression, based on experimental observations and data that is relevant for modeling transverse
compressive failure. For example, Pineda et al. [13] have used Mohr–Coulomb failure criterion for
compressive-shear failure in fiber-reinforced composite unit cells using finite element analysis as well
as by using high-fidelity generalized method of cells (Aboudi et al. [14]). In the present study for
unit cells under transverse tension, when the maximum principal tensile stress in the matrix exceeds
the critical value σcr, the traction–separation law controls the behavior of the damaging material as
shown in Figure 6 and the stiffness of the matrix is reduced and consequently tracked using the secant
modulus. When a traction–separation law controls the behavior of the damaging solid, the response is
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that of a non-continuum in the softening regime. Under mode I cracking, the energy dissipated during
failure is the critical mode I energy release rate GIC, given by

GIC =
∫ δ f

0
σp(δ)dδ = h

∫ ε f

0
σp(εp)dε, (1)

where, σp and εp is the maximum principal stress and principal strain, respectively, the maximum
separation δ f = hε f where ε f corresponds to the strain corresponding to complete failure of the
material (accompanied by complete loss of stiffness). Here, h is the characteristic element length that
preserves mesh objectivity (see Jirasek and Bazant [15]), by prescribing a normalized value of GIC for
each element such that gIC = GIC/h. Consequently, the value of gIC equals the area under the σp − εp

law as shown in Figure 6. In the finite element procedure, the finite element sizes were kept more or
less uniform in all the unit cells considered. The characteristic length h is computed for each element
via Abaqus’s internal characteristic element length CELENT variable (Abaqus [16]). The value of GIC
was chosen to be 0.002 N/mm in all the computations, whereas the tensile fracture strength σcr was
chosen to be 55 MPa. From the crack band model formulation, the damage parameter due to softening
is denoted as D where 0 ≤ D ≤ 1. For a material with initial matrix stiffness Em now in the softening
region of the traction-separation law, D is computed as:

D = 1− σcr

E(ε f − εcr)

(
ε f

εp
− 1
)

, (2)

where εp is the current maximum principal strain. Thus, the case D = 0 corresponds to no damage in
the finite element, the case 0 < D < 1 corresponds to damage but no two-piece failure in the element,
while the case D = 1 indicates failure with complete loss of stiffness. Thus, the quantity 1− D is
a measure of stiffness reduction in the damaging matrix with as a fraction of the original stiffness Em.
Note that although we are dealing with a 3D solid, the stress–strain equation for the traction separation
law is provided in the 1D form because the relevant stress and strains are assumed to be arising from
an equivalent definition of stress and strain. In this case, the equivalent stress and strains are taken as
maximum principal values as described in Bazant and Oh [11]. The damage parameter D is calculated
based on this assumption and is used to degrade the 3D solid.

Figure 5. Types of randomly packed fiber unit cells: (a) six-fiber unit cell (Vf = 0.4), (b) six-fiber
unit cell (Vf = 0.5), (c) six-fiber unit cell (Vf = 0.6), (d) 24-fiber unit cell (Vf = 0.5), (e) 40-fiber unit cell
(Vf = 0.5) and (f) 180-fiber unit cell (Vf = 0.5). For each type of unit cell shown above, 10 different
realizations of randomly packed fiber configurations are considered.
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Figure 6. Crack band law in terms of maximum principal stress and maximum principal strain.

The notion of an representative volume elements (RVEs) is most appropriate for finding stiffness
(elastic) properties of the bulk. However, once failure has set in (i.e., in the regime past the peak in the
stress–strain response of the unit cell), the concept of an RVE in the traditional sense is lost. Failure
in realistic bulk materials occurs in a localized manner. Thus, we can no longer assume that failure
process is replicated in all periodic arrays of material in the bulk. The existence and determination of
RVE has been addressed in detail by Gitman et al. [17], who demonstrated that an unit cell cannot be
found for a material in the softening regime. Later, Nguyen et al. [18] have also addressed the issue of
existence of the unit cells for softening quasi-brittle materials with random microstructure.

It is also instructive to point out and differentiate the quantities related to various sizes used in
the finite element simulations relevant to the discussion of the crack band model. First is the typical
length Ld of the elements that must be maintained in order to achieve stress convergence, especially in
zones where stress gradients are high, such as in the vicinity of fibers. In the present study, Ld is
proportional to circumferential length of the fibers, that is Ld ∝ 2πR f , where R f is the fiber diameter.
This length is independent of the actual length scale of the structure but prescribed in proportion to
fiber geometry, so that the computed stresses around fibers have converged. Next, independent of Ld,
there are additional lengths LI and LI I which must ensure that the tangent strain–softening modulus,
for modes I and II cracking respectively, associated with the crack band model is not negative. These

two lengths depend on the length scale of the element. Here, LI <
2EGIC

σ2
cr

for mode I cracking and

LI I <
2GGI IC

τ2
cr

for mode II cracking, where G is the shear modulus and τcr is the critical shear strength

for mode II cracking. For use in finite elements, recommended limits for LI and LI I are half of what is
prescribed by the expressions. Although stresses may have converged with the use of converged Ld,
we must ensure that Ld < LI and Ld < LI I , so that the size of elements are suitable for use in the crack
band model.

3. Results

3.1. Influence of Unit Cell Size on Transverse Stiffness and Strength

All the unit cells were loaded under tension in the two-direction, that is, along a direction
transverse to direction of fibers seen in Figure 5. Figures 7–9 show the stress-strain response of
six-fiber unit cells for fiber volume fractions 0.4, 0.5 and 0.6 respectively. Figures 10 and 11 show
the stress–strain response of 24-fiber and 40-fiber unit cells with fiber volume fraction 0.5. All these
response plots exhibit similar behavior except that there is a scatter in the peak stress values owing
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to effect of fiber packing. Fiber packing affects the stress–strain response in that the development
of tensile stresses in different regions is governed by the manner in which the fibers are distributed
within the unit cell, hence the scatter. During the initial stages of loading, the unit cell exhibits a
linear response followed by a peak and the response is governed only due to the elastic properties
of the constituents. Before the peak is attained, there is some nonlinearity in the response caused
when some of the matrix elements reach their critical tensile strength and enter the softening regime.
When sufficient matrix elements enter the softening regime, a sharp two-piece crack develops. This
crack is oriented approximately perpendicular to the loading direction and the formation of this crack
controls the peak of the stress–strain response of each of the unit cells. In the elements that were in the
softening path of the traction–separation law, the minimum stiffness was not allowed to fall below 2%
of the original stiffness in the simulations to prevent excessive distortion in the elements. Therefore,
the slight stress increase seen after the drop is a modeling artifact and not relevant to the analysis after
the drop has occurred beyond the peak.

Figure 12 shows one of the realizations (unit cell #2 with Vf = 0.5) of the 40-fiber case and the
snapshots of the damage initiation (A) for transverse nominal strain 0.004. Upon further loading,
damage accumulation (B, C) is seen to occur in the matrix regions, predominantly in the region
between fibers. This damage accumulation has an effect of reducing the unit cell’s tangent stiffness.
This softening response in few elements gives rise to the shorter nonlinear behavior in the stress-strain
response just before the peak (D), followed by a sharp drop past the peak. Note that in the
present model, there is no provision for fiber–matrix interface debonding, because it is assumed
that fiber–matrix interface strength is higher than matrix tensile strength. Nonetheless, the two piece
crack path is seen to traverse around the fibers and propagate through the thickness of the unit cell
(i.e., along the three-direction). For other unit cells of similar size, the actual crack path was different,
owing to the difference in fiber packing, however the general features of damage initiation, propagation
and development of final crack are similar to what is seen in Figure 12.

Figure 7. Transverse tensile response of six-fiber unit cells with Vf = 0.4. (D’Mello and Waas [12]).
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Figure 8. Transverse tensile response of six-fiber unit cells with Vf = 0.5. (D’Mello and Waas [12]).

Figure 9. Transverse tensile response of six-fiber unit cells with Vf = 0.6. (D’Mello and Waas [12]).

Figure 10. Transverse tensile response of 24-fiber unit cells with Vf = 0.5. (D’Mello and Waas [12]).



Materials 2019, 12, 2565 10 of 17

Figure 11. Transverse tensile response of 40-fiber unit cells with Vf = 0.5. (D’Mello and Waas [12]).

Figure 12. Matrix elements entering crackband in a realization of 40-fiber unit cell (#2) that cause
nonlinearity starting at (A) through (B) and (C) but just before the peak at (D) (left); Complete failure
in the matrix elements that is reflected as a sharp vertical crack in the unit cell (right) past the peak (D).

Figure 13 shows the variation of tensile strength for the six-fiber unit cell case but for varying fiber
volume fractions. Although there is scatter in tensile strength in these unit cells, the mean unit cell
strength appears to be insensitive to the fiber volume fraction. Figure 14 shows the variation of tensile
strength of the unit cells of different sizes when the fiber volume fraction of the unit cell is held constant
at 0.5. The mean transverse strength decreases with increase in unit cell size and then appears to
stabilize, as can be seen in only a marginal reduction in the mean transverse strength between 40-fiber
and 180-fiber renditions. Thus, increasingly larger unit cell sizes have to be considered to evaluate the
size at which the transverse tensile strength value converges. The total volume of a unit cell of side
length L scales as L3, while the band volume within which dissipation occurs scales as wcbL2 where

wcb is the width of the process zone. Thus, the ratio of dissipation volume to total volume is
wcb
L

.
Since wcb is small and a fixed material property for all cases, the scaling is inversely proportional to
the path of the band, suggesting that larger heights of unit cells (and more stored energy) will require
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more than the available crack path length for complete dissipation. Therefore, larger unit cells will fail
rapidly (unstably) and will release less energy than stored at fracture initiation.

Figure 15 shows the variation of transverse stiffness E22 for the six-fiber unit cell case but for
varying fiber volume fractions. As expected, there is a clear increase in the transverse stiffness for
increasing fiber volume fraction. However, from Figure 16, no variation can be seen in the transverse
stiffness of the unit cell as the unit cell size increases. This behavior is controlled by only the elastic
properties of the constituents and is different from the observations in Figure 14 for the transverse
tensile strength values, which depend on the matrix softening response. Moreover, the scatter in
transverse tensile strength for a given type of unit cell is appreciably higher than scatter in transverse
stiffness. This behavior can be explained due to the fact the stiffness is an average property of the
constituents and is less sensitive to the distribution of fibers inside the unit cell, whereas the strength is
controlled by extreme values of maximum principal stress developed in the matrix regions, which in
turn, is controlled by fiber packing.

Figure 17 shows a long 320-fiber unit cell subjected to transverse tension, starting with damage
initiation to two-piece crack formation. Qualitative comparison is made with numerical results
corresponding to a 90◦ layer inside a [02/908/02] laminate (Herráez et al. [19]). In [19], in addition to
matrix model, there was provision for fiber–matrix interface decohesion. It was reported that failure
always initiated at the fiber–matrix interface and then this crack propagated and branched out through
the thickness. In our simulations, the two-piece crack is seen to propagate similar to what is reported
in [19]. In the present case, damage always occurred in the vicinity of the fiber, where there is stiffness
mismatch between fiber and matrix properties and non-uniformity in maximum tensile stress field.
Subsequent crack propagation through the thickness also showed the presence of crack-branching,
which is also seen in the study by Herráez et al. [19].
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Figure 13. Effect of fiber volume fraction on the transverse tensile strength for six-fiber unit cells.
(D’Mello and Waas [12]).
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Figure 14. Variation of transverse tensile strength with unit cell size with Vf = 0.5. (D’Mello and
Waas [12]).
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Figure 15. Effect of fiber volume fraction on the transverse stiffness for six-fiber unit cells. (D’Mello
and Waas [12]).
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Figure 16. Variation of transverse stiffness with unit cell size with Vf = 0.5. (D’Mello and Waas [12]).
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Figure 17. Qualitative comparison of two-piece matrix cracking from the present study (top row)
with the computational study (bottom row) by Herráez et al. [19] on transverse cracking of an internal
90◦ layer inside a [02/908/02] laminate.

3.2. Effect of Non-Uniformity in Matrix Tensile Strength on Unit Cell Transverse Tensile Strength

Apart from randomness in fiber distribution, non-uniformity in the matrix tensile strength can also
influence the unit cell transverse strength. Another set of simulations were performed with normally
distributed random variation of matrix strength within the unit cell, whereby the fracture toughness
was kept constant. For mean strength µ and standard deviation s, we can generate a Gaussian random
distribution σcr ∼ N (µ, s2). The first step is to generate two standard normal distributions N (0, 1)
with zero mean and two standard deviations s1 = s2 = 1 from two independent uniformly distributed
random variables u1 and u2, in [0, 1] respectively, using the Box–Muller transform [20]

s1 = (−2 ln u1) cos(2πu2) and s2 = (−2 ln u1) sin(2πu2). (3)

Then the Gaussian distribution for quantity y of interest is obtained by the relation

σcr = µ + s1s or σcr = µ + s2s. (4)

The ratio of the standard deviation to the mean
(

s
µ

)
is referred to as the coefficient of variation

(COV). It is a non-dimensional measure of the dispersion of values about the mean. The distribution of
mean matrix strength µ = 55 MPa with COV = 0.05 assigned to integration points within the finite
element model is shown in Figure 18. That is, the mean strength is identical to unit cells with uniform
strength prescribed, which were discussed earlier.

Figure 19 shows the variation of unit cell transverse tensile strength in the presence of normally
distributed matrix strength (with mean strength µ = 55 MPa with COV = 0.05) along with the case when
matrix strength is uniform (55 MPa). Introduction of non-uniformity of matrix tensile strength is seen
to noticeably lower the unit cell transverse tensile strength. Even though some elements have strength
greater than 55 MPa (up to 65 MPa), the values that are lower than the sample mean (those as low as



Materials 2019, 12, 2565 14 of 17

45 MPa) control the overall transverse tensile strength of the unit cell. Therefore, the unit cell strengths
are seen to be sensitive to the lower tail of the prescribed strength distribution. This observation is
consistent with the understanding that unlike stiffness, strength is controlled by extreme properties of
the material. Note that since non-uniformity in strength was prescribed and elastic properties were
kept uniform, the unit cell initial stiffness was not affected.

Figure 18. Unit cells with normally distributed tensile strength.

Figure 19. Comparison of transverse unit cell strength with variability in matrix tensile strength (red)
with the case of uniform matrix tensile strength (blue), both cases as functions of unit cell size.

3.3. Effect of Unit Cell Size on Dissipation in the Matrix

The transverse tensile response of unit cells show a noticeable pre-peak nonlinearity for smaller
sized unit cells, and this nonlinearity is observed to decrease with increase in the unit cell size.
This pre-peak nonlinearity is seen as a reduction in the unit cell’s tangent stiffness E22. This effect
is schematically shown in Figure 20. With reference to Figure 20, the entire area under the global
ε− σ diagram corresponds to the total energy dissipated during the fracture process. Note that, prior
to the peak, since crack band has already been active for elements that are accumulating damage,
the secant stiffness locally is assumed to govern the unloading behavior of such elements, as can be
seen in unloading path of the constitutive law for damaging solid (Figure 6). Thus, it is assumed that
upon unloading the unit cell just before the peak is encountered, the unit cell unloads all the way to
the origin of the ε− σ diagram. However, the shaded area in red indicates the energy dissipated due
to accumulation of damage just before failure (i.e., just before the peak in the ε− σ response) in the
unit cell.
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Figure 20. Schematic of the stress–strain response of unit cells with increase in unit cell size.
The response of smaller unit cell sizes exhibit pronounced non-linearity owing dissipation in the
matrix (shown in red shaded portion) before the peak.

In order to effectively quantify the dominance of the pre-peak nonlinearity to the overall
dissipation, we can take the ratio of the pre-peak dissipation to the total dissipation in the unit
cell. Note that for the case of no-dissipation prior to the peak, this fraction turns out to be zero since the
unit cell transverse stiffness E22 is constant up to the peak. For increasing unit cell sizes, the dissipation
fraction, expressed as total percentage of the area under the ε − σ diagram is shown in Figure 21.
The average value of this dissipation fraction drops rapidly for unit cells with six fibers to those having
40 fibers and this value stabilizes for larger sized unit cells. Thus, for a unit cell of fixed fiber volume
fraction, with material properties of the constituents kept the same, the larger size unit cells exhibit
brittle behavior compared to unit cells of smaller size. This observation also indicates that in larger
size unit cells, dissipation occurs relatively in a localized manner compared to unit cells of smaller size.

Figure 21. Percentage of energy dissipated (prior to peak) to the total energy dissipated in the unit
cell, as a function of unit cell size.

The definition of an RVE, as presented in [18], is as follows; (i) an increase in its size does not
lead to considerable differences in the homogenized properties, (ii) the microscopic sample is large
enough so that the homogenized properties are independent of the microstructural randomness. In the
results presented in this paper, it is seen that the converged unit cell size possesses these attributes,
and therefore the converged unit cell size can be thought of as an RVE.
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4. Summary and Future Work

Results have been presented for unidirectional fiber–matrix unit cells with randomly distributed
fibers when loaded under transverse tension, in order to understand the effect of fiber packing and
unit cell size on the mechanical properties such as transverse stiffness and transverse tensile strength.
For a given unit cell type, the randomness in fiber packing was particularly seen to influence the
scatter in transverse tensile strength values. Moreover, it was seen that for a fixed fiber volume
fraction, the strength of the unit cell was inversely proportional to its size. However, with increase
in unit cell size with fiber volume held fixed, there was no noticeable variation in the transverse
stiffness values. The results from this investigation suggests that, when using homogenized properties
from unit cells to be used at the global scale, care must be taken to ensure that sufficiently large unit
cell must be chosen to ensure convergence of mean unit cell strength—else there is a possibility
of over-predicting the homogenized strength. The practical application is primarily for use of
quantifying stiffness and strength for a given fiber and matrix combination and also in determining
converged unit cell size for such constituent combination, for use in homogenized finite element
calculations. Moreover, analysis that includes randomness can provide bounds, especially for unit cell
strength for use in design calculations. The influence of curing stresses for analysis conducted in this
investigation on randomly packed unit cells is subject of ongoing research.
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