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Abstract

Motivation: In most metagenomic sequencing studies, the initial analysis step consists in assess-

ing the evolutionary provenance of the sequences. Phylogenetic (or Evolutionary) Placement meth-

ods can be employed to determine the evolutionary position of sequences with respect to a given

reference phylogeny. These placement methods do however face certain limitations: The manual

selection of reference sequences is labor-intensive; the computational effort to infer reference phy-

logenies is substantially larger than for methods that rely on sequence similarity; the number of

taxa in the reference phylogeny should be small enough to allow for visually inspecting the results.

Results: We present algorithms to overcome the above limitations. First, we introduce a method to

automatically construct representative sequences from databases to infer reference phylogenies.

Second, we present an approach for conducting large-scale phylogenetic placements on nested

phylogenies. Third, we describe a preprocessing pipeline that allows for handling huge sequence

datasets. Our experiments on empirical data show that our methods substantially accelerate the

workflow and yield highly accurate placement results.

Availability and implementation: Freely available under GPLv3 at http://github.com/lczech/gappa.

Contact: lucas.czech@h-its.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput DNA sequencing technologies have revolutionized

biology by transforming it into a data-driven computational discip-

line (Escobar-Zepeda et al., 2015). Next Generation Sequencing

(NGS) methods now allow for studying microbial samples directly

extracted from their environment (Edwards and Holt, 2013). For

each sample, these methods yield a set of short, anonymous DNA

sequences, so-called reads. A typical task in such studies is to iden-

tify and classify the reads by relating them to known reference

sequences, either taxonomically or phylogenetically.

Conventional methods based on sequence similarity are fast and

work reasonably well if the reads are similar enough to the reference

sequences, that is, if they represent species that are closely related to

known species. However, they might not yield the most closely

related species (Koski and Golding, 2001). This is particularly true

for environments where available reference databases do not exhibit

sufficient taxon coverage (Mahé et al., 2017). As insufficient taxon

coverage cannot be detected by methods that are based on sequence

similarity, they can potentially bias downstream analyses.

So-called phylogenetic (or evolutionary) placement methods

(Barbera et al., 2018; Berger et al., 2011; Matsen et al., 2010) pro-

vide a more accurate means for identifying reads. Instead of relying

on sequence similarity, they identify reads based on a phylogenetic

tree of reference sequences. Thereby, they can incorporate informa-

tion about the evolutionary history of the species under study.

In short, phylogenetic placement calculates the most probable in-

sertion branches for a query sequence (QS) on a given reference tree

(RT). For metagenomic studies, the QSs are the reads from the en-

vironmental samples and barcoding regions or marker genes are

used predominantly, see below. First, the QSs are aligned against the
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reference alignment of the RT. For a given QS and a given branch in

the RT, the QS is inserted as a new tip into the branch; the affected

branch lengths are then re-optimized; the likelihood score of the tree

is evaluated; and the QS is removed again from the branch. This

process yields a so-called placement of the QS for every branch of

the RT, that is, an optimized position on the branch, along with a

likelihood score for the entire RT. These likelihood scores are then

transformed into probabilities to quantify the uncertainty of the QS

placement into the respective branch. This placement process is

repeated independently for each QS on the original RT.

Phylogenetic placement thus yields a mapping of each QS to all

branches of the RT, along with a probability for each placement of a

QS on a specific branch.

This mapping can be seen as an identification and classification

of the QSs in terms of the RT, similar to a taxonomic assignment.

However, phylogenetic placement also allows for more elaborate

downstream analyses. Firstly, the reference tree usually offers a

higher resolution than simple per-taxon abundance counts and the

amount of mapped QSs per branch can be directly visualized on the

RT (Mahé et al., 2017). Secondly, established methods such as Edge

PCA and Squash Clustering (Matsen and Evans, 2011) allow for

identifying subtle differences between distinct samples, thus ena-

bling comparative studies directly based on phylogenetic placement.

Lastly, we recently proposed novel methods for visualizing and clus-

tering phylogenetic placement data (Czech and Stamatakis, 2018),

which, for example, can reveal correlations of per-sample meta-data

features with sequence abundances.

A phylogenetic placement can be carried out if the QSs can be

aligned to the reference alignment. Often, barcoding regions such as

16S or 18S are used, but there also exist studies that use different, or

even a set of, maker genes (Sunagawa et al., 2013). Furthermore,

other types of sequences such as mitags (Logares et al., 2014) can be

used. Phylogenetic placement is particularly helpful for studying

new, unexplored environments, for which no closely related sequen-

ces exist in reference databases (e.g. Mahé et al., 2017). However,

the selection of suitable reference sequences for inferring the RT

constitutes a challenge for studying such environments, as this typic-

ally is a manual process. Furthermore, conducting phylogenetic

placement requires a higher computational effort with respect to the

placement algorithms per se, but also the pre- and post-processing,

than, for instance, similarity based methods. Nonetheless, existing

placement algorithms are being increasingly used and cited. Due to

the continuous advances in molecular sequencing, existing place-

ment methods as well as respective pre- and post-processing tools

have already reached their scalability limits.

2 Materials and methods

Here, we introduce methods to overcome the aforementioned limita-

tions, that is, to (i) automatically obtain a high quality reference tree

for phylogenetic placement, (ii) split up the placement process into

two steps using smaller phylogenies and (iii) accelerate the computa-

tion of placements via appropriate data pre-processing approaches.

All methods are implemented as part of our GAPPA tool, which is free-

ly available under GPLv3 at http://github.com/lczech/gappa.

2.1 Phylogenetic automatic (reference) trees
2.1.1 Motivation

Molecular environmental sequencing studies, particularly those that

aim to conduct phylogenetic placement, often rely on a set of manu-

ally selected and aligned reference sequences to infer an RT

(de Vargas et al., 2015; Mahé et al., 2017; Tedersoo et al., 2014;

Thompson et al., 2017). Creating and maintaining databases of such

reference sequences constitutes a labor-intensive and potentially

error-prone process. Moreover, this approach is impractical for

highly diverse samples that comprise sequences from a plethora

taxonomic clades, or samples obtained from unexplored environ-

ments. Lastly, even if a large RT is available, the visualization of

placements on such an RT might be confusing and thus hard to

interpret.

The reference tree (RT) used for phylogenetic placement should

ideally (i) cover all major taxonomic groups that occur in the QSs,

(ii) use high-quality error-free reference sequences and (iii) not be

too large to allow for unambiguous visualization and interpretation.

These criteria can be met for small datasets by manually selecting

curated sequences from databases. For large and taxonomically di-

verse samples one key challenge is that sequence databases such as

GREENGENES (DeSantis et al., 2006), UNITE (Abarenkov et al., 2010),

PR2 (Guillou et al., 2012), EZTAXON (Kim et al., 2012), SILVA

(Quast et al., 2013) and RDP (Cole et al., 2014) maintain reference

collections of thousands to millions of taxonomically annotated

sequences. Therefore, one needs to appropriately sub-sample

sequences such that the RT can be inferred in reasonable time and

sufficiently covers the diversity of the sample.

To this end, we present a computationally efficient approach for

obtaining sequences from large databases to infer an RT. This RT is

then used for conducting phylogenetic placement analyses. The in-

put of our method is a database of aligned sequences of known spe-

cies including their taxonomic labels. Our approach then identifies

sets of sequences that are similar to each other based on their en-

tropy. It subsequently reduces the sequences in these sets to a prede-

fined number of consensus sequences. This set of sequences is the

output of our method. It represents the taxonomic clades and is then

used to infer the RT.

2.1.2 Sequence entropy

First, we define a measure to quantify the ensemble similarity of a

set s of sequences, based on their entropy (Shannon and Weaver,

1951). Variants of sequence entropy have been used before in nu-

merous biological and phylogenetic contexts, for example, to assess

the information content of sequences (Schmitt and Herzel, 1997;

Vinga, 2014) or to measure substitution saturation (Xia et al.,

2003). Here, we use entropy for alignment sites, that is, we define

the entropy (uncertainty) H at alignment site i as

Hi ¼ �
X

c

fc;i � log 2 fc;i

where c 2 fA;C;G;T;�g is the set of nucleotide states including

gaps and fc;i is the frequency of character c at site i of the alignment.

Including gaps (–) in the summation reduces the contribution of sites

that contain a large fraction of gaps. Their contribution is weighed

down as all standard phylogenetic inference tools model gaps as un-

determined states, that is, they do not contribute anything to the

likelihood score. The entropy is 0 for sites that only contain a single

character. It increases the more different characters an alignment

site contains and the more similar their frequencies are. Its max-

imum occurs if all characters appear with the same frequency (each

of them 20%). Note that we also treat ambiguous characters as

gaps. As only 0.008% of the non-gap characters in our test database

(SILVA) are ambiguous, their influence is negligible. Ambiguous char-

acters could however be incorporated by using fractional character

counts.
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Finally, the total entropy of a set s of aligned sequences is simply

the sum over all per-site entropies: HðsÞ ¼
P

i Hi. We use this en-

tropy to quantify the ensemble similarity of a set of sequences. This

can be regarded as an information content estimate of the

sequences.

2.1.3 Sequence grouping

The goal of this step is to group the sequences of a database into a

given target number of groups/sets, such that the groups reflect the

diversity of the sequences in the database. We use the taxonomy to

identify potential candidate groups of sequences that could be repre-

sented by a consensus sequence. We interpret a taxonomy as a se-

quence labeling, where similar sequences have related labels. Thus, a

taxonomy represents a pre-classification of similar sequences that

can be exploited to group them.

For a clade t of the taxonomic tree, we denote by H(t) the en-

tropy of all sequences that belong to that clade, including all sequen-

ces in its sub-clades, that is, its lower taxonomic ranks. Clades with

low entropy imply that they contain highly similar sequences that

can in turn be represented by a consensus sequence without sacrific-

ing too much diversity. Inversely, clades with high entropy contain

diverse sequences, implying that a consensus sequence is not likely

to sufficiently capture the inherent sequence diversity. It is thus bet-

ter to expand these clades and construct separate consensus sequen-

ces for their respective sub-clades. An example is shown in Figure 1.

As the clade structure of a taxonomy forms a tree, this criterion can

then be applied recursively, as shown in Algorithm 1.

The algorithm works as follows: We initialize a list of candidate

clades with the highest-ranking clades that we want to consider. In

the most general case, these can be “Archaea”, “Bacteria” and

“Eukaryota”. We then select the most diverse candidate clade, that

is, the clade t whose sequences exhibit the highest entropy H(t). This

clade is then expanded and we do not consider it as a potential can-

didate for building a consensus sequence. The high entropy clade is

then removed from our list and its immediate sub-clades are added

as new candidates to the list. Finally, the current count of how many

candidates we have already selected is updated accordingly. By

expanding clades with high entropy, we descend into the lower

ranks of the taxonomy. On average, this decreases the entropy, be-

cause low ranking clades generally tend to contain more similar

sequences. This process is repeated until our list contains approxi-

mately as many candidate clades as the desired target count of

reference sequences, which is provided as input. As the sizes of

expanded clades can vary substantially, the target count cannot al-

ways be met exactly. In our tests, the average deviation was 0.2%,

as shown in Supplementary Table S1.

Given this list of clades from different taxonomic ranks, we can

now compute the consensus sequences. For each clade, all sequences

in that clade and its sub-clades are used to construct a consensus se-

quence, which represents the clade diversity and serves as the refer-

ence sequence for that clade. A simple per-site majority rule

consensus (May, 1952) works well, but we also assessed alternative

methods; see Supplementary Figures S2 and S3 for details. The

above process yields a set of consensus reference sequences, which

capture the diversity of distinct taxonomic clades.

2.1.4 Inferring a reference tree

Once we have identified the consensus sequences, which are already

aligned to each other, we can use them to infer a maximum likeli-

hood tree, which we call a Phylogenetic Automatic (Reference) Tree

(PhAT). As each consensus sequence is associated with a taxonomic

clade, the corresponding taxonomic path can be used to label the

tips of the tree. Note that since clades with low entropy might not

be expanded, the tip labels do not necessarily correspond to species

or genera. Furthermore, the PhAT will not necessarily be congruent

to the taxonomy.

A PhAT satisfies all criteria we listed: (i) all taxonomic groups

occurring in the QSs can be covered by using a suitable taxonomy as

input, (ii) by using consensus sequences, potential sequencing errors

can be alleviated and (iii) the size of the tree can be specified by the

user. However, the resolution of the trees is limited by the underly-

ing taxonomy, see Supplementary Figures S5 and S7 for details.

Thus, one needs to verify that the resulting tree is appropriate for

the dataset to be placed on it. This also holds for manually selected

reference sequences. Furthermore, using consensus sequences may

obscure the degree of sequence diversity in sub-clades, which in turn

can affect the accuracy of subsequent phylogenetic placements on

that tree. Our algorithm as described here cannot fully compensate

for this. We present a method to address both issues (tree resolution

and obscured diversity) in the next Section.

2.2 Multilevel placement
When conducting phylogenetic placement, the computationally lim-

iting factors are (i) the number of QSs to be placed (addressed in the

next section) and (ii) the size of the RT (number of taxa) and corre-

sponding alignment length (addressed below). Using RTs with more

taxa increases the phylogenetic resolution of the placements, at the

cost of increased computational effort for inferring the RT, aligning

Fig. 1. Entropy and consensus sequence of a taxonomic clade. The left hand

side shows the exemplary clade Eimeriorina in its taxonomic context, listing

its super- and sub-clades with the normalized entropy of their respective

sequences. The right hand side is an excerpt from the alignment of six

sequences that belong to the Calyptosporidae sub-clade. At its top, the

per-site entropies for the alignment columns are shown. At the bottom, the

majority rule consensus sequence is shown, which is used to represent

the sub-clade (Color version of this figure is available at Bioinformatics

online.)

Algorithm 1 Taxonomy Expansion

1: Candidates list of highest ranking clades

2: TaxaCount size of Candidates

3: while TaxaCount < TargetCount do

4: MostDiverse arg max t2Candidates HðtÞ
5: remove MostDiverse from Candidates

6: add sub-clades of MostDiverse to Candidates

7: TaxaCount TaxaCount � 1þ size of MostDiverse

8: return Candidates
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the QSs and placing the QSs. Furthermore, longer reference

alignments (if appropriate data is available) are required to accurate-

ly infer large trees under the maximum likelihood criterion

(Yang, 1994), thus further increasing the computational costs.

Lastly, placement on large trees that comprise reference sequences

with high evolutionary distances can reduce placement accuracy

(Mirarab et al., 2012). Thus, using a large number of reference

sequences is not always desirable in practice.

To address this issue, we present an approach called Multilevel

or Russian Doll Placement, which is summarized in Figure 2.

Instead of working with one large RT comprising all taxa of interest,

we use a smaller, but taxonomically broad backbone tree (BT) for

pre-classifying the QSs (first level) and a set of refined clade trees

(CTs) for the final, more accurate placements (second level). These

CTs comprise the reference sequences that are of interest for a par-

ticular study. For example, if a study is concerned with

Apicomplexa and Cercozoa, a broad Eukaryotes BT can be used for

the first level and two respective CTs for the second level, in analogy

to (Mahé et al., 2017). Each CT is associated with the set of

branches of a specific BT clade.

The method then works in three steps:

1. Align and place the QSs using the BT (first level).

2. For each CT, collect the QSs that are placed on the BT branches

associated with the CT.

3. Align and place these QSs again, using their specific CTs (second

level).

While this approach requires some additional bookkeeping, the

total computational cost is reduced, because the QSs do not have to

be placed on all branches of all CTs. The speed gain depends on the

relative sizes of the BT and the CTs with respect to the size of the

substantially larger (often one order of magnitude or more) compre-

hensive tree. For example, by splitting a tree with 10 000 taxa into a

BT and 10 CTs with 1000 taxa each, the computational cost

decreases by a factor of 5. Furthermore, at each level, the amount of

required main memory is reduced by a factor of 10 compared to the

large tree. Lastly, this method allows for fine-grained control over

the clades of interest at both placement levels:

Firstly, the BT provides a means for phylogenetically informed

sequence filtering – that is, to identify and remove “spurious” QSs.

Sequences with low similarity to known references are often

removed in environmental sequencing studies. However, using

sequence similarity as a filter criterion can remove too many QSs,

particularly when studying new, unexplored environments

(Mahé et al., 2017). By using phylogenetic placement as a filter in-

stead, substantially more sequences can be retained for downstream

analyses. Only the QSs that are placed onto the inner branches of

the BT, that is, branches with no associated CT, are omitted at the

second placement level.

Secondly, using specific clade trees for lower level taxonomic

clades offers the phylogenetic resolution that is necessary for down-

stream analyses and for biological reasoning. It is, for example, pos-

sible to use manually curated “expert” trees for each clade of

interest.

In this setup, the BT is only used for pre-classification and can,

for example, use our PhAT method. The aforementioned issue of

obscured diversity in sub-clades can be circumvented by

“overlapping” the CTs with the BT. That is, a CT can be associated

with several branches of the BT, so that placements on each of these

BT branches are collected and placed onto the same CT. See

Figure 2 and Supplementary Figure S4 for examples. We recommend

to ensure that the branches of the BT that are associated with one

CT are monophyletic, meaning that there is one split that separates

these branches from the rest of the BT. This can be achieved by

inferring the BT with a high-level constraint that maintains the

monophyly of the CTs. It ensures phylogenetic consistency between

the BT and the CTs, and improves the accuracy of the first place-

ment level, as shown in Section 3.4. Lastly, it is also possible to use

more than two levels, which might become necessary when working

with RTs and datasets even larger than what is currently available.

2.3 Data preprocessing for phylogenetic placement
Apart from the RT size, handling the sheer number of QSs also indu-

ces computational limitations for conducting phylogenetic place-

ments. Most metagenomic studies publish their data in unprocessed

formats, which are sometimes filtered to only contain reads from

certain barcoding or marker regions. Those data often contain

duplicates of exactly identical sequences, both within and across

samples. Identical sequences are however treated the same in phylo-

genetic placement algorithms and therefore induce unnecessary com-

putational overhead. Furthermore, sample sizes, that is, the number

of sequences per sample, can vary by several orders of magnitude. If

the placement algorithm is parallelized over samples, this leads to an

uneven load balance across compute nodes.

In order to solve these issues, that is, reduce computational cost

and achieve good load balancing, one can pre-process the sequences

with our GAPPA tool. First, sequences are de-duplicated across all

samples and fused into chunks of equal size. The chunk size should

be chosen to allow aligning and placing a chunk within wall time on

the intended hardware; we recommend chunk sizes of 50 000 or

larger. Our tool assigns an identifier to each unique sequence and

computes a list of abundance counts for each sequence in a sample.

Given an RT and its underlying alignment, the QS chunks are then

aligned to the reference multiple sequence alignment, using pro-

grams such as PAPARA (Berger and Stamatakis, 2012) or HMMALIGN

(Eddy, 1998) and subsequently placed on the RT, for example by

PPLACER, RAXML-EPA or EPA-NG (Barbera et al., 2018; Berger et al.,

2011; Matsen et al., 2010). The resulting per-chunk placement re-

sult files in combination with the per-sample abundance counts can

then be parsed and analyzed by GAPPA to generate final per-sample

placement files, containing a placement for each sequence in the ori-

ginal sample.

Backbone Tree (first level) Clade Trees (second level)

A

B

C

A

C

Fig. 2. Multilevel Placement. The left shows a backbone tree (BT); the right

shows two clade trees (CTs). Branches in the BT that are associated with a CT

are marked in the same visual style. The trees “overlap” each other, meaning

that each CT is represented by multiple branches in the BT. Three sequences

A, B and C are placed on the BT, which is the first level. A and C are placed on

branches associated with a CT. Hence, their second level placement is con-

ducted on the respective CT. B is placed on a branch that is not associated

with any CT, and thus not used in the second level (Color version of this fig-

ure is available at Bioinformatics online.)
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The speedup induced by this preprocessing is proportional to the

ratio of total versus unique sequences; the gain in parallel efficiency

depends on the ratio of the smallest to the largest sample (in terms

of number of sequences). This approach allows to analyze datasets

that are orders of magnitude larger than in previous published stud-

ies. For example, in 2012, an analysis of Bacterial Vaginosis (BV)

data placed a total of 426 612 sequences, thereof 15 060 unique, on

an RT with 796 tips (Srinivasan et al., 2012). Using a prototype of

GAPPA, we were able to analyze a neotropical soils dataset with a

total of 50 118 536 sequences, thereof 10 567 804 unique, with an

RT comprising 512 taxa (Mahé et al., 2017). To demonstrate the

scalability of our methods for this paper, we analyzed datasets with

up to 116 520 289 total sequences, thereof 63 221 538 unique, from

the Human Microbiome Project (HMP) (Huttenhower et al., 2012;

Methé et al., 2012), using RTs with up to 2059 tips. This corre-

sponds to a computational effort that is four orders of magnitude

greater than for the BV study.

3 Results

To test the Phylogenetic Automatic (Reference) Tree (PhAT)

method, we used the “SSU Ref NR 99” sequences of the SILVA

database (Quast et al., 2013) version 123.1 and the corresponding

taxonomic framework (Yilmaz et al., 2014). The database contains

598 470 aligned sequences from all three domains of life, classified

into 11 860 distinct taxonomic labels.

We constructed four sets of consensus sequences from the SILVA

database: a General set (“all of life”), as well as separate sets for the

domains Archaea, Bacteria and Eukaryota. For each set except the

Archaea, the recursive expansion of taxonomic clades was applied

to obtain approximately 2000 (General) and 1800 (Bacteria,

Eukaryota) consensus reference sequences. This is large enough to

cover the diversity well, while still being computationally feasible

for the subsequent steps. The Archaea taxonomy in SILVA is smaller,

containing 248 taxa at Genus level, which is the lowest level in their

taxonomy. Hence, the Archaea tree also comprises 248 taxa.

Furthermore, in the three domain-specific trees, we included sequen-

ces at the Phylum level of the respective two other domains, to en-

sure that our methods also work with outgroups. The assembly of

these four datasets required in total about 30 min and 10 GB of

main memory on a standard laptop computer. An overview of the

tree sizes is shown in Supplementary Table S1. We then inferred

constrained and unconstrained maximum likelihood trees for the

consensus sequences. The constrained trees comply with the SILVA

taxonomy and are used to assess how taxonomic constraints affect

the phylogenetic placement and the subsequent analyses. Details are

provided in Supplementary Section S1, which also discusses differen-

ces between the constrained and unconstrained trees. Details of the

trees are shown in Supplementary Table S3; Supplementary Figure

S4 shows the unconstrained Bacteria tree as an example.

In total, our setup yields eight distinct RTs for evaluation: the

General tree, the three domain trees and the respective taxonomical-

ly constrained variants.

3.1 Accuracy
Here, we assess how using a PhAT affects phylogenetic placement

accuracy. Each terminal branch of our RTs represents a consensus

sequence, which is computed from Species level sequences that share

the same taxonomic label. We evaluate an RT by placing these spe-

cies sequences onto the RT: Each species sequence is expected to be

placed onto the branch leading to the consensus sequence that repre-

sents this particular species sequence. For example, sequences S1-6

in Figure 1 are represented by the consensus sequence for the

Calyptosporidae clade, which is shown below the six sequences in

the Figure. They are thus expected to be placed onto the

Calyptosporidae branch in the RT.

We placed the respective subset of the SILVA database species

sequences onto each of the eight RTs. We quantify placement accur-

acy for a sequence by the distance to its expected placement branch.

More precisely, we measured (a) the (discrete) number of branches

between the actual placement and the expected branch and (b) the

(continuous) distance in branch lengths units. As a sequence can

have multiple placement locations, the distances, are, in fact,

weighted averages incorporating the placement probabilities (likeli-

hood weights). The results for the four unconstrained trees are

shown in Figure 3; Supplementary Figure S1 depicts the results for

the constrained trees. Further details are provided in Supplementary

Table S3.

(a) (b)

Fig. 3. Weighted distances to expected edges for unconstrained trees. We evaluated the accuracy of our PhATs by placing sequences and measuring the

weighted distances to their respective expected placement branches. The Figure shows the cumulative frequencies of number of sequences versus distances,

measured (a) in number of branches and (b) in branch length units. In other words, it shows how many sequences are placed within a certain radius from their

expected branches. For example, in (a), more than 85% of the sequences of the Bacteria are placed within a radius of at most one branch from their expected

branch, and in (b), more than 95% of the Eukaryota are within a radius of 0.1 branch length units from their expected branches (Color version of this figure is avail-

able at Bioinformatics online.)
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Considering the size of the trees, most sequences are placed in

close vicinity to their expected branches. This is corroborated by the

short average distances reported in Supplementary Table S3.

Furthermore, the average expected distance between placement

locations (EDPL, Matsen et al., 2010) is low, indicating that the

placements of a specific sequence mostly cluster in a small neighbor-

hood of the tree. We observed that errors occur mostly in parts of

the tree with short branches, which might be explained by the inabil-

ity of 16S SSU sequences to properly resolve certain clades (Janda

and Abbott, 2007). In addition, the placement likelihood differences

are small between neighboring, short branches, such that the place-

ment signal is fuzzy.

With 77% of the sequences placed exactly on their expected

branch, the accuracy is generally lowest for the Bacteria tree. This

might be because the Bacteria have the most sequences in SILVA and

exhibit a high diversity. In the other three trees, more than 90% of

the sequences are placed at most one branch away from their

respective expected branch. The constrained trees (Supplementary

Figure S1) exhibit similar placement accuracy. Particularly when

using Multilevel Placement with overlapping RTs, placement differ-

ences of a few branches on the first level tree are acceptable, as they

do not change the second level tree on which the sequence is placed.

See Section 3.4 for details.

As outlined in the method description, we represent clade diver-

sity via majority rule consensus sequences. To assess the impact of

the consensus method, we repeated the above evaluation, using two

alternative consensus methods, but found little difference between

the methods, see Supplementary Figure S2. Finally, we also tested an

automated approach that uses actual sequences (instead of consen-

sus sequences) from the database to represent the taxonomic clades,

see Supplementary Figure S3. We found that this approach yields

trees that are less accurate for phylogenetic placement.

3.2 Empirical datasets
PhATs are intended for conducting phylogenetic placement of envir-

onmental sequences. As the true evolutionary history of such

sequences is unknown, we cannot repeat the previous accuracy tests

on empirical environmental datasets. Instead, we assess if the PhATs

yield meaningful quantitative results for typical post-analysis meth-

ods. To this end, we placed two empirical metagenomic amplicon

barcoding datasets on our unconstrained Bacteria tree. To assess the

placement results obtained from the PhATs, we performed Squash

Clustering and Edge PCA (Matsen and Evans, 2011) post-analyses

on the placement results, see Supplementary Section S2 for details.

The results are shown in Figure 4 and Supplementary Figure S5, and

reveal that the PhAT reproduces results of previous studies based on

custom RTs with manually selected reference sequences.

Furthermore, the PhAT is able to classify samples (e.g., body regions

or healthy versus sick patients), at least to the extent that is expected

from its phylogenetic resolution. That is, samples that only differ in

placements at the Species level cannot be classified using a broad,

high-level tree such as our Bacteria tree. In order to obtain finer

taxonomic resolution, it is thus necessary either to use a PhAT that

contains more taxa, or to use our multilevel approach instead (see

next Section).

3.3 Taxonomic assignment and profiling
Here, we assess how PhATs perform when used for obtaining a

taxonomic profile of a set of samples in conjunction with placement.

We emphasize though that taxonomic assignment and profiling are

neither the focus of PhATs, nor the intended standard applications

of phylogenetic placement. To perform the evaluation, we used the

mouse gut dataset of the 2nd CAMI Challenge (Bremges and

McHardy, 2018; Sczyrba et al., 2017) and phylogenetically placed

(a) (b)

Fig. 4. Assessment of a PhAT for large dataset analyses. Here, we test the unconstrained Bacteria tree for placing and analyzing a large sequence dataset.

For this, we used the Human Microbiome Project (HMP) (Huttenhower et al., 2012; Methé et al., 2012) data, and selected 9 192 samples from different body

sites with a total of 117 million sequences. For details on the processing, see Supplementary Section S2. We categorized the 18 original body site labels into 8

regions for readability, see Supplementary Table S4. The sequences were placed on the tree, and subsequently analyzed with two different methods. Both subfig-

ures show that the tree, despite only representing higher taxonomic levels, suffices to separate different body site regions from each other. (a) Visualization of

the pairwise phylogenetic Kantorovich-Rubinstein (KR) distance (Matsen and Evans, 2011) between all samples. The KR distance is a generalization of the

UniFrac distance (Lozupone, 2005) for phylogenetic placement data. The high-dimensional pairwise distance matrix was embedded into the plot by performing

Multidimensional scaling (MDS, Borg, 2005.). (b) Edge PCA (Matsen and Evans, 2011) analysis of the samples. The grouping of body sites is again clearly visible

with this method (Color version of this figure is available at Bioinformatics online.)
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the reads of the 16S locus (� 0.08% of the total data) on our con-

strained and unconstrained Bacteria trees. We then used this place-

ment data to taxonomically assign the reads based on the underlying

SILVA taxonomy of the trees, in analogy to the method used by

SATIVA (Kozlov et al., 2016). Unfortunately, the CAMI Challenge

uses the NCBI taxonomy for the respective evaluation. We thus had

to compute a mapping between the two taxonomies, which introdu-

ces some incongruities (Balvo�ci�ut _e and Huson, 2017). The resulting

per-read assignment was then used to generate a taxonomic profile

of the data.

Despite only using a small fraction of the reads and despite hav-

ing to use incongruent taxonomies, our PhAT-based taxonomic

profiling is in the mid-range of the tools evaluated by CAMI.

Therefore, our method yields reasonable accuracy for taxonomic as-

signment and profiling. Note that the resolution of the assignment is

limited by the taxonomy used when running the PhAT method, that

is, we could not assign reads at Species level. Details of the process

and its results are provided in Supplementary Section S4;

Supplementary Figure S7 and Supplementary Table S5 show the

most important evaluation results.

3.4 Sub-clades and multilevel placement
We selected five bacterial clades to evaluate PhAT accuracy on

smaller clades, as well as to assess some properties of the Multilevel

Placement approach. The same clades were already scrutinized in

SATIVA (Kozlov et al., 2016). Supplementary Figure S4 shows the

Bacteria tree with the five test clades highlighted.

First, using the sequences and taxonomies of these five clades,

we built unconstrained and constrained PhATs. We then conducted

the same accuracy analysis as explained before on these 10 trees.

That is, we placed the SILVA sequences of the five clades onto their

respective PhAT and evaluated distances to expected branches.

Thereby, we evaluated the accuracy of these PhATs when used as se-

cond level clade trees. The results are shown in Supplementary

Figure S6. The placement accuracy is slightly worse for the clade

trees than for the eight comprehensive PhATs evaluated before. This

is again likely due to 16S SSU sequences being unable to properly re-

solve lower taxonomic levels (Janda and Abbott, 2007).

Next, using the five clades, we evaluated the accuracy of the first

placement level when conducting Multilevel Placement. So far, our

evaluation focused on the distance from a sequence placement to its

expected placement branch. For the first placement level on a back-

bone tree (BT), it is however more important that a sequence is

placed into the correct clade. Thus, we used the unconstrained

Bacteria BT again and assessed how many sequences were placed in

the clades shown in Supplementary Figure S4. Of the 450 313

sequences in SILVA in these clades, 98.0% were placed (most likely

placement) into a branch of their corresponding clade. Thus, for

multilevel placement, they will be assigned to the correct second

level clade tree (CT). More specifically, the Firmicutes perform

worst, as only 94.7% of the Firmicute sequences are placed into the

corresponding clade. This can be explained by the high amount of

paraphyletic branches of this clade, cf. Supplementary Figure S6,

which is a known issue (Parks et al., 2018). The sequences of the

other four clades we tested achieve a clade identification accuracy

exceeding 99%.

As mentioned before, a high-level taxonomic constraint can

improve the accuracy of placing a sequence into the correct BT

clade. To show this, we inferred the Bacteria RT again, but used

a Phylum level constraint that separates the five clades from

each other and from the rest of the tree. All branches within the

clades were resolved using maximum likelihood. The tree (not

shown) is similar to the tree in Supplementary Figure S4, but all

five clades are now monophyletic. Using this tree, 99.3% of the

sequences were placed into the correct clade. Particularly the

accuracy for Firmicutes improved, yielding an accuracy of

99.5%.

Overall, our experiments show that the first level placement is

highly accurate, even if an extremely diverse “all bacteria” back-

bone tree is used. The accuracy on the second level is slightly worse

when using PhATs as CTs.

4 Discussion and conclusion

We presented algorithms and software tools to facilitate and acceler-

ate phylogenetic placement of large environmental sequencing

studies.

The Phylogenetic Automatic (Reference) Tree (PhAT) method

provides a means for automatically obtaining suitable reference

trees by using the taxonomy of large sequence databases. Using the

SILVA database as a test case, we showed that it can be applied for

accurately (pre-)placing environmental sequences into taxonomic

clades. The method can also be used for rapid data exploration in

environmental sequencing studies: A PhAT might be useful to ob-

tain an overview of the taxa that are necessary to capture the diver-

sity of a sequence dataset, without the substantial human effort and

potential bias of manually selecting reference sequences. As we

showed, PhATs can also be used to obtain taxonomic assignments

and profiles for a set of samples, in conjunction with phylogenetic

placement. To capture clade diversity with finer resolution, for ex-

ample for a second placement level, clade-specific PhATs can be

inferred. If species-level resolution is required, we recommend that

the sequences are inspected by an expert, in order to confirm that

the tree is appropriate for the dataset to be placed on it.

Furthermore, as our automated approach inevitably suffers from

errors in the database it is based on, we recommend using SATIVA

(Kozlov et al., 2016) to identify potentially mislabeled sequences in

the database. One should also keep in mind that phylogenetic

placement does not necessarily provide resolution at the Species

level (Dunthorn et al., 2014).

As we show, our multilevel placement method as well as the pre-

processing pipeline accelerates the placement process without sacri-

ficing accuracy. By first placing the query sequences on a broad

backbone tree (BT), novel environments with sequences of unknown

evolutionary origin can be classified without having to process a

large tree comprising all taxa of interest. A second placement on a

set of clade trees (CTs) provides sufficient resolution for biological

interpretation. Placement accuracy can be further improved by infer-

ring the BT with a high-level constraint that separates the clades of

the CTs from each other and thus ensures monophyly of these

clades.

The methods presented here are implemented as part of our

GAPPA tool, which is freely available under GPLv3 at http://github.

com/lczech/gappa (see Supplementary Section S3 for an overview of

the corresponding commands). All scripts and data used for this

paper are available at http://github.com/lczech/placement-methods-

paper.
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