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Abstract

Background: Exposure to stress in early life is correlated with the development

of anxiety disorders in adulthood. The underlying mechanisms are not fully

understood, but an imbalance in corticosteroid receptor (CR) expression in the

limbic system, particularly the hippocampus, has been implicated in the etiology

of anxiety disorders. However, little is known about how prepubertal stress in the

so called “juvenile” period might alter the expression of these receptors. Aims:

Therefore, the aim of this study was to investigate how stress experienced in the

juvenile phase of life altered hippocampal expression of CRs and anxiety behav-

iors in adulthood. Materials and methods: We used a rodent model to assess the

effects of juvenile stress on hippocampal CR expression, and performance in three

behavioral tests of anxiety in adulthood. Results: Juvenile stress (JS) increased

anxiety-like behavior on the elevated plus maze, increased mineralocorticoid

receptor (MR) expression, and decreased the ratio of glucocorticoid receptor

(GR) to MR expression in the hippocampus of adult animals. Females demon-

strated lower levels of anxiety-type behavior and increased activity in three behav-

ioral tests, and had greater expression of GR and GR:MR ratio than males,

regardless of treatment. Discussion and conclusion: These results demonstrate

that JS can alter the expression and balance of CRs, providing a potential mecha-

nism for the corresponding increase in anxiety behavior observed in adulthood.

Further evidence for the role of CR expression in anxiety is provided by sex

differences in anxiety behavior and corresponding alterations in CR expression.

Introduction

In humans, the risk of developing neuropsychiatric disor-

ders such as posttraumatic stress disorder (PTSD), depres-

sion, and anxiety in adulthood is increased when stress is

experienced earlier in life (Anda et al. 2006; Heim et al.

2008; Bale et al. 2010; Meewisse et al. 2011; Pechtel and

Pizzagalli 2011). Major mediators of the effects of early life

stress are thought to be corticosteroid hormones and their

receptors in the brain (glucocorticoid receptors [GR] and

mineralocorticoid receptors [MR]). During a stress

response, glucocorticoids (mainly corticosterone in rodents

and cortisol in humans) are released as a consequence of

activation of the hypothalamic–pituitary–adrenal (HPA)

axis. As these stress hormones can pass through the blood–
brain barrier, the HPA axis is one of the major pathways

through which stress can alter brain development. Indeed,

previous work suggests that prenatal stress can program

the HPA axis, and may be related to adult pathophysiology

(Meaney et al. 2007; Seckl and Holmes 2007).

In the central nervous system, GR and MR receptor

densities are highest in the hippocampus (Herman 1993).

The hippocampus is an important regulator of behavioral

measures of anxiety (Mirescu et al. 2004), and clinical

and basic research has identified alterations in the hippo-

campus in mood disorders (Mayberg 2009; Arnone et al.

2012). Early life stress can structurally and functionally

alter the hippocampus (Fenoglio et al. 2006; Tottenham

and Sheridan 2010), and stress in the prenatal and neona-

tal phases alters MR and GR expression in adult animals

(rats, primates, and birds). However, the direction of

change varies with the exact paradigm used and between
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sexes, and many effects are GR or MR specific (Welberg

et al. 2001; Kapoor et al. 2006; Patel et al. 2008; Lupien

et al. 2009; Belay et al. 2011; Wynne et al. 2011; Banerjee

et al. 2012; van Hasselt et al. 2012).

Although there is a wealth of information on the adult-

hood consequences of perinatal stress, comparatively little

is known about the effects of juvenile (prepubertal or child-

hood) stress. The juvenile brain experiences dramatic

changes in structure and function as it matures (Romeo

and McEwen 2006), and epidemiological studies have

linked juvenile stress (JS) with the development of depres-

sion, anxiety, and PTSD, as well as suicide attempts later in

life (Morgan et al. 2003; Kausch et al. 2006; Weich et al.

2009). In animal models, JS increases anxiety behavior,

alters fear conditioning, learning, and memory (Avital and

Richter-Levin 2005; Toledo-Rodriguez and Sandi 2007;

Tsoory et al. 2007; Jacobson-Pick and Richter-Levin 2010;

Brydges et al. 2012, 2013), remodels corticolimbic architec-

ture (Eiland et al. 2012), and alters neural gene expression

in adulthood (Jacobson-Pick et al. 2008; Tsoory et al.

2010). Effects on behavior are observed when animals expe-

rience stress in adulthood, but they are significantly

enhanced when stress is given in the juvenile phase (Avital

and Richter-Levin 2005; Tsoory and Richter-Levin 2006),

demonstrating phase specific changes.

To date, the effects of JS on the expression of corticoste-

roid receptor (CR) expression in the adult brain have not

been investigated. Therefore, the aims of this study were to

investigate the effects of JS on anxiety behavior, and analyze

corresponding changes in hippocampal CR expression in

adulthood. We hypothesized that JS would increase anxiety

behavior in adulthood, and alter the expression of MR and

GR. To date, most rodent studies have used rat models to

investigate the effects of JS (see Peleg-Raibstein and Feldon

2011, for an exception), but given the large number and

availability of transgenic mouse models for the study of

genetic components of psychiatric disorders, we aimed to

expand this research through use of a mouse model.

Material and Methods

Ethics statement

All procedures were carried out in strict accordance with

and permission of the local ethics committee, and under

the aegis of the UK Home Office Animals (Scientific

Procedures) Act, 1986.

Animals

C57BL/6 mice were bred from eight stressed and seven

control adult pairs (Harlan, Oxfordshire, U.K.) at the Uni-

versity of Edinburgh. After weaning (postnatal day [PND]

21), 22 female and 23 male offspring were housed in stan-

dard, same-sex, same-litter cages lined with wood shavings

(Lillico, Hookwood, Surrey, U.K.), on a 12:12 h light/dark

cycle with food (RM1 diet, Special Diet Services, Witham,

U.K.) and water provided ad libitum. Humidity and tem-

perature were maintained at 60% and between 19°C and

21°C, respectively. Eight litters were randomly assigned to

JS, the other seven served as controls. Age and sex ratios

were evenly distributed between the groups.

JS protocol

The JS protocol follows that used in Brydges et al. (2012,

2013). Eight litters were exposed to variable short-term

stress on PND 25, 26, and 27. On PND 25, animals were

given a forced swim in a swim tank (15 cm high, 11 cm

diameter, 1 L capacity filled with 500 mL water, water

temperature 25 � 1°C) for 10 min. On PND 26, animals

received restraint stress; they were placed into plastic

restraint tubes (26 mm diameter) for three sessions of

30 min, separated by 30 min breaks. On PND 27, they

were given six mild electric footshocks (0.3 mA) over

3 min (1 every 30 sec) in a mouse shock chamber.

Adult behavioral tests

All tests were performed in the same sequence (elevated

plus maze [EPM], open field, emergence test), at the same

age (mean age 99 days) and in the light phase for all mice.

Elevated plus maze

On day one, animals were tested in the EPM. The EPM was

raised 100 cm above the floor, made of black plastic, and

comprised two open and opposite arms (28 9 6 cm) and

two closed and opposite arms (28 9 6 cm with 14 cm high

walls) arranged in a cross shape. The arms were connected

by a central square (6 9 6 cm). During testing, an animal

was placed in the central square of the maze facing an open

arm. Behavior was recorded for 5 min via a video recorder

mounted above the maze, and tracking software (Limelight;

Actimetrics, Wilmette, IL) was used to analyze the amount

of time animals spent in the open versus the closed arms

(minus time spent in the central square), and the number

of times animals crossed from one arm to another. Data

from five male and five female mice which fell off the appa-

ratus before testing was complete were excluded. Numbers

used for each experiment can be found in Table 1.

Open field

Twenty-four hours after testing in the EPM, animals were

tested in the open field. The open field consisted of a
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white plastic box (50 9 50 9 15 cm high) divided into 16

equal sized squares. During testing, animals were placed

into the center of the open field, and filmed for 5 min via a

video camera mounted above the maze. Tracking software

(Limelight; Actimetrics) was used to analyze the number of

crossings animals made between the 16 squares, and the

percentage of time spent in the central four compared to

the outer 12 squares of the maze.

Emergence test

Twenty-four hours after testing in the open field, animals

were tested in the emergence test. The apparatus was

made of Perspex, and consisted of two compartments,

one covered and dark (15 9 17 9 26.5 cm, 0.01 lux), the

other light and open (27 9 26.5 9 26.5 cm, 66 lux).

A sliding door connected the two. Animals were placed

into the dark compartment, given 1 min to settle, the

door was raised and time to emerge into the light com-

partment was recorded. This is another test of anxiety

behavior in rodents (Frye et al. 2000; Walf et al. 2009).

Tissue extraction

One week after behavioral testing, mice were killed by

CO2 and brains removed and snap frozen for hippocam-

pal mRNA extraction.

Real time-polymerase chain reaction

The QIAGEN RNeasy system (QIAGEN Ltd., Crawley,

U.K.) was used to extract total hippocampal RNA, which

was reverse transcribed using Promega reverse transcrip-

tion kit (Promega UK Ltd., Southampton, U.K.). Triplicate

samples of cDNA (the equivalent of 1 ng of total RNA)

were incubated with fluorescent probes (using predesigned

systems from Applied Biosystems [Warrington, U.K.]) and

gene-specific primers (GR [NR3C1]: forward 5′-GTG
GAAGGACAGCACAATTACCT-3′ and reverse 5′-GCGG
CATGCTGGACAGTT-3′, MR [NR3C2]: forward 5′-CCC
TACCATGTCCTAGAAAAGC-3′ and reverse: 5′-AGAAC
GCTCCAAGGTCTGAG-3′) in 1x Roche LightCycler 40

probes mastermix (Roche Diagnostics, West Sussex, U.K.).

A Roche LightCycler 480 was used for polymerase chain

reaction (PCR) cycling and detection of fluorescent signal,

and a serial dilution of cDNA pooled from all samples was

used to create a standard curve for each primer–probe set.
Results were standardized using the housekeeping gene

HPRT1 (forward sequence: 5′-TCCTCCTCAGACCGCT
TTT-3′, reverse sequence: 5′-CCTGGTTCATCATCGCTA
ATC-3′).

Data analysis

Data were analyzed by linear models. All data were

checked for normality of distribution and homogeneity

of variance and were transformed to provide the best

approximation to a normal distribution when in viola-

tion of these assumptions (Box and Cox 1964). The first

two models investigated the effects of group (Con, JS),

sex, and group 9 sex interaction on the percentage of

time spent in the open arms and number of crossing

made in the EPM. A third and fourth model looked at

the effects of group, sex, and group 9 sex interaction on

percentage of time spent in the center and number of

crossing made in the open field maze. Another model

investigated the effect of group, sex, and group 9 sex on

time to emerge from the dark to the light side of the

emergence box. Separate models were set up to investi-

gate the effects of group, sex, and group 9 sex on the

hippocampal mRNA expression levels of HPRT1, GR,

MR, and GR:MR ratio. Between one and five animals

were used per litter, so litter was nested within group,

and fitted as a random factor in all models to account

for litter effects.

Results

As a group, JS animals spent a greater proportion of time

in the closed arms of the EPM than control animals

(F1,8.28 = 9.17, P = 0.02, data square root transformed,

Fig. 1A), and there was no interaction between

group 9 sex on percentage of time in the closed arms

(F1,28.13 = 3.67, P = 0.7). There was no difference between

groups (F1,9.19 = 1.86, P = 0.21), and no group 9 sex

interaction (F1,29.88 = 0.29, P = 0.6) on number of arm

entries made in the EPM task (Fig. 1B). There was no

difference between groups (F1,17.68 = 0.87, P = 0.36) or a

group 9 sex interaction (F1,39.75 = 1.92, P = 0.17) on

percentage of time spent in the center of the open field

(Fig. 2A), and no difference between groups (F1,12.5 = 0.8,

P = 0.39) or a group 9 sex interaction (F1,36.83 = 0.43,

P = 0.52) on number of crossings in the open field

(Fig. 2B). Similarly, there was no difference between

groups (F1,11.5 = 0.55, P = 0.47) or a group 9 sex inter-

action (F1,35.42 = 0.13, P = 0.72) on time to emerge from

the emergence box (Fig. 3A).

Table 1. Number of animals used in each behavioral test.

Analysis Con females JS females Con males JS males

EPM 11 6 7 11

Open field 11 11 11 12

Emergence 11 11 11 12

Con, control; JS, juvenile stress; EPM, elevated plus maze.
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Females showed less anxiety-related behavior than

males, spending a greater proportion of time on the open

arms of the EPM (F1,28.13 = 8.67, P < 0.01, data square

root transformed, Fig. 1C), and showing a trend toward

making more arm entries in the EPM (F1,29.88 = 2.88,

P = 0.09, Fig. 1D), as well as making more crossings in

the open field (F1,36.83 = 6.81, P = 0.01, Fig. 2D) and

emerging sooner from the dark side of the emergence

apparatus (F1,35.42 = 27.25, P < 0.0001 Fig. 3B). However,

there was no difference between the sexes in the amount

of time spent in the center of the open field

(F1,39.75 = 0.3, P = 0.86, Fig. 1C).

Overall, JS animals had higher expression of hippocam-

pal MR mRNA than controls (F1,2.81 = 25.13, P = 0.02,

Fig. 4A) and lower GR:MR ratio (F1,2.58 = 22.78,

P = 0.02, data box-cox transformed, Fig. 4B) than control

animals. There was no interaction between group and sex

on hippocampal MR expression (F1,16.3 = 0.01, P = 0.91)

or GR:MR ratio (data box-cox transformed,

F1,16.15 = 0.003, P = 0.95). There was no difference

between control and JS animals in hippocampal GR

expression (F1,9.48 = 0.23, P = 0.64) and no group 9 sex

interaction (F1,19.94 = 0.26, P = 0.62).

Females expressed greater hippocampal mRNA levels of

GR (F1,19.94 = 5.88, P = 0.02, Fig. 4C) and a higher GR:

MR ratio (F1,16.15 = 7.04, P = 0.02, data box-cox trans-

formed, Fig. 4D) than males. There were no sex differ-

ences in hippocampal MR expression (F1,16.3 = 2.9,

P = 0.1).

There were no differences in the expression of the

housekeeping gene, HPRT1, between groups

(F1,8.59 = 1.33, P = 0.28), sexes (F1,14.38 = 0.17, P = 0.69),

or group 9 sex interaction (F1,14.38 = 0.48, P = 0.5).

Discussion

Juvenile stress

The experience of stress in the juvenile phase increased

anxiety-like behavior on the EPM in adulthood. This

result is in agreement with previous studies in rats,

(Avital and Richter-Levin 2005; Tsoory et al. 2007; Ilin

(A) (B)

(C) (D)

Figure 1. Elevated plus maze. (A) Percentage of time spent in the open arms and (B) number of crossings made in the elevated plus maze (EPM)

by control (Con) and juvenile stress (JS) animals. (C) Percentage of time spent in the open arms and D) number of crossing made in the EPM by

female and male animals. Error bars represent 1 SE, bars connected by an asterisk are significantly different to one another. (*P < 0.05,

**P < 0.01, ***P < 0.001).
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and Richter-Levin 2009), suggesting that the effects of JS

on anxiety are conserved across rats and mice. However,

it contrasts with results from one study using mice, in

which no effects of JS were found on adulthood behavior

in an EPM (Peleg-Raibstein and Feldon 2011). One possi-

ble explanation for the disagreement between studies is

differences in the type and duration of JS protocols used,

as well as sample sizes. In particular, the previous study

used 5 days of variable stress (including exposure to a

shaking platform, water deprivation, and exposure to a

predator, stressors not used in the present study) whereas

3 days were used in this study. Furthermore, sample sizes

were significantly smaller (n = 7/group) in the Peleg-Raib-

stein and Feldon (2011) study, whereas the present study

used 18 control and 17 stressed animals (combined over

males and females). Our result also reflects the findings in

(A) (B)

(C) (D)

Figure 2. Open field test. (A) Percentage of time spent in the center of the open field maze and (B) number of crossings made in the open field by

control (Con) and juvenile stress (JS) animals. (C) Percentage of time spent in the center of the open field maze and (D) number of crossings made in the

open field by female and male animals. Error bars represent 1 SE, bars connected by an asterisk are significantly different to one another. (*P < 0.05,

**P < 0.01, ***P < 0.001).

(A) (B)

Figure 3. Emergence test. Time to emerge from the emergence box for (A) control (Con) and juvenile stress (JS) and (B) female and male

animals. Error bars represent 1 SE, bars connected by an asterisk are significantly different to one another. (*P < 0.05, **P < 0.01, ***P < 0.001).
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human populations, in which juvenile or childhood stress

shows a strong correlation with anxiety disorders in adult-

hood (Green et al. 2010). The specific mechanisms under-

lying these disruptions are not well understood, although

existing studies suggest that reprogramming of the HPA

axis may be involved (Meaney et al. 2007; McGowan et al.

2009; Belay et al. 2011; van Hasselt et al. 2012). Therefore,

we investigated hippocampal mRNA expression of genes

involved in the stress response (specifically, CRs) in adult

animals that had experienced JS.

Compared to control animals, hippocampal MR mRNA

expression was upregulated in adults that had experienced

JS, and the GR:MR ratio was lower. Previous studies have

revealed mixed results regarding the effects of stress on

corticosteroid expression in the hippocampus (Welberg

et al. 2001). Acute forced swim and novelty exposure

increased MR expression in the hippocampus 24 h later

in adult rats (Reul et al. 2000), and neonatal stress

increased hippocampal MR expression and anxiety behav-

ior in adulthood (Gill et al. 2012). In contrast, predator

stress in adulthood decreased hippocampal MR expression

4 months later (Wang et al. 2012), and environmental

enrichment restored chronic cerebral hypoperfusion

induced reductions in hippocampal MR and GR in adult

rats (Zhang et al. 2013). Furthermore, exposure to stress

in the prenatal period resulted in decreased MR and GR

expression in the hippocampus, and increased GR expres-

sion in the amygdala in adulthood (Levitt et al. 1996).

The discrepancies between studies are likely due to differ-

ences in experimental protocols as well as timing and type

of stress exposure.

Glucocorticoid receptors and MR are involved in regu-

lating the stress response via the HPA axis, and are abun-

dantly expressed in the hippocampus (Reul et al. 2000).

Nuclear MR has a high affinity for glucocorticoids, and is

thought to maintain the stress response, setting thresholds

for its activation (vanHaarst et al. 1997; Joels et al. 2008).

Membrane bound MR has a lower affinity for glucocortic-

oids, and is thought to mediate fast nongenomic actions,

playing a crucial role at the onset of the stress reaction

(Karst et al. 2005; Joels et al. 2008). Specifically, in

the hippocampus, nongenomic presynaptic MR increases

excitability through promoting glutamate release, and

postsynaptic nuclear MR enhances potential probability

(Karst et al. 2005; Joels et al. 2008). Following this, GR-

mediated mechanisms dampen the initial stress response,

(A) (B)

(C) (D)

Figure 4. Hippocampal mRNA expression. (A) MR and (B) GR:MR ratio in control (Con) and juvenile Stress (JS) animals. Hippocampal mRNA

expression of (C) GR, (D) GR:MR ratio in males and females. Error bars represent 1 SE, bars connected by an asterisk are significantly different to

one another. (*P < 0.05, **P < 0.01, ***P < 0.001).
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normalizing brain activity and promoting recovery, with

nonnuclear postsynaptic GR receptors decreasing excita-

tion (Joels et al. 2008). In the present experiment,

increased levels of MR in the hippocampus of stressed ani-

mals could result in a greater magnitude of initial stress

response, with the lower GR:MR ratio resulting in a

decreased magnitude of or longer duration to GR-medi-

ated dampening. This could be a potential mechanism

underlying the increased anxiety behavior observed in this

model, although further experiments are needed to inves-

tigate this hypothesis further. In agreement with these

findings, blocking the action of MR receptors with an

antagonist has been found to decrease anxiety behavior in

rats (Smythe et al. 1997), and MR/GR imbalances have

been found in patients with psychiatric disorders (Baes

et al. 2012). Some studies have found increased GR and

MR expression in depressed individuals, others decreased,

and it has therefore been suggested that any alteration in

these receptors should be considered as a biomarker of

disease (McGowan et al. 2009; Berardelli et al. 2013; Med-

ina et al. 2013). Furthermore, human carriers of certain

MR alleles are more reactive to stress, showing enhanced

amygdala activation and HPA activation in response to

stress (van Leeuwen et al. 2011; Bogdan et al. 2012).

It should be noted that behavioral alterations between

JS and control animals were only found in one measure

of anxiety behavior, the EPM, and not in two subsequent

tests (open field and emergence test). A possible reason

for this is that experience of the EPM (first test encoun-

tered) could have affected subsequent performance in the

open field and emergence tests, and suggests caution

when performing multiple behavioral tests on the same

animal, something which remains an unresolved issue in

behavioral test batteries (Paylor et al. 2006; Blokland

et al. 2012). Alternatively, it has been suggested that these

three tests measure subtly different aspects of anxiety-like

behavior (Ramos 2008), with the current results suggest-

ing a selective deficit on the EPM. A further option is

that stress effects on anxiety are subtle, with effects seen

in only one out of the three tests performed.

Sex differences

Sex differences were found in all three behavioral tests per-

formed, with female animals displaying lower levels of

anxiety-like behavior and greater levels of activity. Female

mice and rats typically display less anxiety than males in

the EPM (Zimmerberg and Farley 1993; Voikar et al.

2001). In the present study, we find that hippocampal GR

expression is higher in females, suggesting a role for CRs

in differences in anxiety behavior between the sexes. This

result adds to recent findings of sex differences in forebrain

GR (including hippocampus) on HPA axis regulation and

depression-type behaviors (Solomon et al. 2012). As sex

differences are found in the development of neuropsychi-

atric disorders (Bao and Swaab 2010), this highlights fur-

ther that males and females need to be considered

separately in basic research models, and suggests different

MR/GR between sexes may contribute to sex differences in

vulnerability to stress-related disorders.

Conclusion

Experiencing stress in the prepubertal or juvenile phase

increased anxiety-like behavior and altered the expression

of MR and GR:MR in the hippocampus in adulthood.

This alteration in CR expression provides a potential

mechanism for the observed increase in anxiety-like

behavior observed in adulthood. Further evidence for the

involvement of CR receptors in adult anxiety-like behav-

ior is provided by the finding that females demonstrated

greater GR and GR:MR expression in the hippocampus,

with corresponding decreases in anxiety-type behaviors

when compared to males. These results demonstrate the

potential role of CR in mediating later anxiety-type

behavior when stress is experienced early in life.
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