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ABSTRACT: Combining metal and polymer into hybrid
composite materials is finding increasing interest in many
industries. Special attention is being paid to increase the adhesion
between the metal and polymer interface. In this paper, the current
research progress of surface treatment methods for improving the
interfacial adhesion of stainless steel and resin is reviewed. It
involves the stainless steel surface treatment method, resin surface
treatment method, and adhesion test methods of stainless steel and
resin. The methods of improving the interfacial adhesion of
stainless steel and resin are summarized and prospected according
to the research status.

1. INTRODUCTION
Resin−matrix composites are frequently utilized in the
maritime, aerospace, shipping, medical, automotive, and
other fields due to their low weight and high strength
characteristics.1−8 Lightweight constructions with dependable
structural strength can be fabricated using hybrids of stainless
steel and resin-based composites.9 The interfacial adhesion of
the stainless steel and the resin directly affects the load-bearing
capacity of composite components. The bonding process is
one of the most significant aspects of bonding between
composite parts and different composite structures using
distinct bonding processes.10 In order to improve the load-
carrying capacity of composite materials, it is necessary to
design and embed stainless steel parts in the joint part of the
composite material’s load-bearing structure.11 The excellent
mechanical properties of the interface between stainless steel
and composite materials mostly depends on its interlayer-
bonding properties.12,13 When the interfacial bond between
stainless steel and resin is strong, the load can be successfully
transferred from the matrix to the stainless steel without
causing damage to any component. Therefore, improving the
interfacial adhesion between stainless steel and resin is the key
to prepare composites with high performance.14

The adhesiveness of stainless steel and resin directly affects
the load-bearing capacity of composite components. Although
the resin can effectively penetrate the stainless steel surfaces, its
low adhesion severely limits its use. Many different surface
treatment methods are used to change the surface of the
substrate to solve the above problems. The methods include
changing the surface roughness of the substrate or the chemical

properties of the substrate surface, thus improving the
interfacial adhesion of stainless steel and resin. Sandblasting
treatment,15 mechanical grinding treatment,16 chemical
oxidation treatment, etching treatment,17,18 plasma treat-
ment,19 and coupling agent treatment methods are frequently
used procedures for stainless steel surface treatment. Sand-
paper sanding and carbon nanotube modification, resin
modification, and fiber reinforcement are typical techniques
for treating resin surfaces. The surface treatment methods are
shown in Figure 1.
For stainless steel, the surface will be affected by biofouling,

resulting in undesirable results on the surface of the material.
Bezek et al.20 studied glucose concentration, temperature, and
stainless steel surface roughness on biofouling by four common
pathogens. It was indicated that 3D polished, brushed, or
electropolished stainless steel is less susceptible to biological
contamination than untreated stainless steel, and when the
temperature is 4 °C, psychrophilic biofouling is still inhibited.
In general, for the stainless steel and resin interface, the higher
the bond strength, the better the mechanical properties of the
material obtained. Generally speaking, the mechanical
characteristics of the material are improved the stronger the

Received: August 4, 2023
Accepted: October 5, 2023
Published: October 18, 2023

Reviewhttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

39984
https://doi.org/10.1021/acsomega.3c05728

ACS Omega 2023, 8, 39984−40004

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bing+Du"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xinyu+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qichang+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jingwei+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuxi+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xianjun+Zeng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiangrong+Cheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hanjie+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hanjie+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c05728&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?fig=&ref=pdf
https://pubs.acs.org/toc/acsodf/8/43?ref=pdf
https://pubs.acs.org/toc/acsodf/8/43?ref=pdf
https://pubs.acs.org/toc/acsodf/8/43?ref=pdf
https://pubs.acs.org/toc/acsodf/8/43?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c05728?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


connection is at the stainless steel and resin contact. The
interlaminar characteristics of composite components are
examined with monofilament pull-out, lap tests, and fracture
toughness. Based on the above, this paper first introduces the
stainless steel and resin surface treatment methods, respec-
tively. Subsequently, the test method of stainless steel and resin
adhesion is introduced. Finally, the current status of research
on the methods to improve the adhesion of stainless steel and
resin is summarized.

2. SURFACE TREATMENT METHOD OF STAINLESS
STEEL

Stainless steel has the advantages of high strength, heat
resistance, corrosion resistance, and resistance to rust. The
interfacial adhesion of stainless steel and resin can be improved
by enhancing the surface roughness and surface wettability of
stainless steel. Table 1 summarizes the published work on
surface treatment of stainless steel.

2.1. Surface Roughness. An appropriate enlargement in
stainless steel surface roughness can increase the contact area
between stainless steel and resin, thus improving the adhesion
between stainless steel and resin. Surface treatment has been
widely used to improve the surface roughness of stainless steel.
To improve the surface state of stainless steel, surface
silanization, oxidation treatment, chemical etching, etc., are
often applied.
2.1.1. Surface Silanization. Silane coupling agents are

reactive to inorganic materials due to their silicone alkoxy
groups and reactivity or compatibility with organic materials
due to their organic functional groups. Silanization modifica-
tion contains functional groups that can provide stainless steel
with a more electrically stable surface. This can help minimize
static charge buildup. Silanization modification of stainless
steel increases the surface roughness between stainless steel
and polymer, thereby improving the interfacial adhesion. In
addition, silanization modification can improve the surface

Figure 1. Surface treatment method.
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functionalization and contamination resistance of stainless
steel.
They are commonly used to improve the bonding properties

between organic and inorganic materials, whether for
composite fibers, paints, or the production of metal/plastic
blends for automobiles.21 Rohart et al.22 found that the silane
molecules form oligomers with neighboring molecules
according to the mechanism shown in Figure 2a. The hydroxyl
molecules are formed by the hydrolysis of siloxyl groups. The
oligomers condense on the surface and form covalent bonds
with the surface through the hydrogen-bonding process. The
ATR-FTIR spectra in Figure 2b show that the spectra of SS
treated with clean, pickled, oxidized, and parameter P silylation
do not show any peaks, and the spectra of SS treated with
parameter F for silylation have no peaks either. It indicates that
after hydrolysis the adjacent silane molecules form a siloxane
network with Si−O−Si bonds. The TEM image of the SS/PPS
interface of the grid-welded joint treated with parameter F
silanization is shown in Figure 2c. Silicon and oxygen form an
interface at the boundary between SS and PPS, which increases
the surface roughness.
Wang23 found that the −Si−O− functional group at one end

of the hydrolyzed silane MEMO molecule could react with the
hydroxyl group on the surface of stainless steel to form a stable
chemical bond. The results by XPS showed that the surface
bonding energies of coated MEMO and A-1110 were 284.6,
286.3, and 288.5 eV, respectively, compared with the stainless
steel not treated with silane. Li24 found that a stable chemical
bond was formed between the stainless steel surface and PA6
resin in the presence of silane coupling agent.
Ghosh et al.25 found that silane hydroxyl groups formed

hydrogen bonds with metal hydroxyl groups through
adsorption and silanol groups covalently linked to each other

with the substrate surface. The forming of a siloxane network
and metal−siloxane increased the surface roughness. Interfacial
strength of the silanized SS/epoxy resin increases, and the
failure mode evolves from the mixed adhesive-integrated failure
to the more cohesive failure mode. Li et al.26 studied silane
coupling agent grafting treatment on the SSM surface. The
stainless steel mesh surface showed a significant increase in
surface roughness compared to the aryl diazo-grafted and
sandblasted stainless steel surface. The treatment significantly
enhanced the interfacial adhesion between the stainless steel
and the PEEK substrate. The surface contact between the
PEEK substrate and the stainless steel was greatly improved as
a result. Yang27 discovered that the silane coupling agent
creates a filmlike interfacial layer between the ABS and the
stainless steel fibers that can operate as a buffer to disperse and
release the impact energy.
2.1.2. Surface Oxidation Treatment. A practical way to

adjust the surface roughness of stainless steel is to apply the
surface oxidation process, which comprises cathodic oxidation,
microarc oxidation, and acid oxidation. The microarc oxidation
method sets the metal or alloy in an aqueous solution of
electrolyte. The metal acts as the anode, and the electrolyzer
acts as the cathode. Through the combined action of
electrochemistry, plasma chemistry, and thermochemistry, a
ceramic layer with high bond strength is formed on the surface
of the metal, thereby increasing the surface roughness.28

Zhao29 found that the microarc oxidation reaction is violent,
which generates oxide film on the surface of the specimen, and
there are a lot of holes in the film layer. Due to the high
temperature of the microarc oxidation method, a large amount
of molten material is generated around the holes, which
increases the surface roughness. They evaluated the surface
roughness of the specimens treated with different microarc

Figure 2. (a) Silane hydrolysis mechanism, (b) IR spectra of cleaned, acid-pickled, oxidized at 500 °C for 30 min, and silane-coated SS plates with
parameters P and F, and (c) TEM image of the SS/PPS interface of a joint welded with a mesh coated with parameter F, reproduced with
permission from Rohart et al. Copyright 2020, Elsevier Ltd.22
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oxidation times by confocal laser equipment. The surface
height diagrams of the specimens treated with different
microarc oxidation times are shown in Figure 3. The result

shows that with the increase of reaction time, the diameter of
micropores on the film surface increased, but the quantity
declined, and the surface flatness decreased.
Acid oxidation treatment produces moderate chemical

corrosion on the metal surface and changes the surface
physicochemical properties, thus improving its surface rough-
ness and exhibiting better surface adsorption. Zhou et al.30,31

found that the surface treatment of stainless steel workpieces
by hydrochloric acid oxidation or oxalic/sulfuric acid oxidation

showed large uniform and continuous concave surfaces. This
increases the surface roughness and yields the highest gluing
shear strength. A consistent, thick oxide layer can be grown
through anodizing on metals and a number of alloys. Ni et al.32

found that the range of crater sizes increased for anodized
316L stainless steel, and the roughness increased from 0.15 ±
0.01 nm to 3.83 ± 0.02 nm as the crater size on the anodized
SS surface increased. Bouquet et al.33 found that after
anodizing stainless steel, the surface porosity and the
roughness increased. Gaillard and Romand34 found that after
anodizing the stainless steel surface with nitric acid electrolyte,
the surface roughness increased. and the bonding performance
of the stainless steel/epoxy system was greatly improved.
2.1.3. Chemical Etching. Oxide layer is a quick, flexible

form of surface modification that offers high precision, high
speed, and customizable etching depth. When stainless steel
mesh is used as a heating element, the surface of the stainless
steel mesh can be optimally designed by chemical etching
methods. This method significantly improves the bonding
properties at the weld interface, increasing the strength of the
welded joint. Zhao35 studied the chemical etching of the
stainless steel mesh surface using HCl solution. Figure 4a
shows that the surface roughness of the stainless steel mesh
increases with the growth of soaking time. Figure 4b shows
that the single stainless steel wire diameter with tensile
strength decreases. When t = 50 min the retention of tensile
strength is about 88%. According to Figure 4c, the hydro-
phobicity of SS increases with t, and the contact angle suddenly
increases after the time passes 20 min, reaching the maximum
of 120° at 50 min.

Figure 3. Surface height of specimens treated with different microarc
oxidation times: (a) 0, (b) 10, (c) 20, and (d) 30 min, image courtesy
of Zhao.29

Figure 4. (a) Surface morphologies of SS mesh etched for different te, , (b) SS wire diameter and tensile strength retention rate for different t, and
(c) contact angle of the SS wire against water, image courtesy of Zhao.35
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Stainless steel surface etching pits and roughness increased
when the stainless steel grid was immersed in a hydrochloric
acid solution for chemical etching.36 However, IFSS testing
could not be finished if the etching time was more than 30
min. Kwom and Lee37 found microcracks and etching pits on
the surface of acid-treated stainless steel fibers and an increase
in the adhesion strength of stainless steel fibers and epoxy
resin. Van Rooijen et al.38 found etching pits on the surface of
sulfuric acid−sodium dichromate-treated stainless steel sheets
and an increase in the peel strength of stainless steel.
2.1.4. Plasma Jet. By plasma surface treatment technology,

the material surface can be assaulted with high-energy plasma
particles, thereby deteriorating the surface material and
improving the surface roughness. Baniya et al.39 employed
the plasma jet experiment setup shown in Figure 5a for surface
modification of polymers. The experiment procedure is shown
in Figure 5b, where a plasma jet is generated between two
electrodes. The experimental results show the ability to
improve its surface adhesion. Chen et al.40 found that the
surface roughness of stainless steel treated with Ar−N2 mixed
gas plasma jet increased when the surface roughness was
measured by a roughness meter. The plasma jet method can
clean the surface of the stainless steel and reduce
contaminants. The plasma has highly charged particles.41

The adhesion of stainless steel after plasma jet treatment was

significantly improved, indicating that plasma treatment has a
significant effect on improving the adhesion of metal to resin.
2.2. Surface Wettability. The contact angle, denoted by

the wetting theory,42 is the angle between the tension at the
gas−liquid interface and the solid−liquid interface at the
intersection of the gas, liquid, and solid phases. The degree of
wetting of a solid by a liquid can be inferred from the value of
the contact angle. When the angle is >90°, the solid is not wet.
When the angle is between 0° and 90°, the solid can be wetted,
and when the angle = 0°, the liquid can wet the solid substrate;
this is the optimum situation.43 It is obvious that the
wettability of the stainless steel surface increases with the
decreasing of the contact angle.
2.2.1. Surface Preparation of Carbon Nanotubes. Due to

the carbon nanotube (CNT) nanoreinforcement, the inter-
facial bond strength of composites can be enhanced by
incorporating the CNT into their interfaces. The increased
porosity of the CNT makes stainless steel more wettable.
According to the microdrop tests, the CNT-grafted CF-
reinforced composites demonstrated a 30% higher interfacial
shear strength than the CF-reinforced composites.44 Zhao35

found that CNTs synthesized by the flame method used
grooves as growth templates and grew as arrays on the surface
of stainless steel mesh. The capillary effect of the high-porosity
CNT increased the wettability of the stainless steel wire and
improved the interfacial adhesion of stainless steel and PEI

Figure 5. Schematic diagram of the experimental setup for plasma jets: (a) schematic diagram of the experimental setup for plasma jets, (b) image
of the discharge (jet) during polymer treatment, and (c) image of the discharge (jet) during an electrical characterization, reproduced with
permission from Baniya et al. Copyright 2021, Scrivener Publishing LLC.39
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resin. Xiong et al.45,46 used the flame method to graft CNTs on
the surface of stainless steel, and the experimental flowchart is
shown in Figure 6a. The CNTs can grow an overall ordered fir
tree structure of CNTs by continuous accumulation of
neighboring, short-term, crowded catalyst sites, as shown in
Figure 6b. Figure 6c shows that the CNTs grow vertically in a
nonuniform array on the surface of the SS lines. According to
Figure 6d, the content of nickel elements decreases sharply
from the top to the bottom of the CNTs array. Figure 6e
shows the Raman spectroscopy plot, where the value of ID/
TG reaches 1.21 when t reaches 20 min. The capillary effect of
the high-porosity CNTs arrays improves the wettability of
stainless steel and enhances the interfacial capability of
stainless steel and resin.
2.2.2. Plasma Treatment. Positive and negative ions,

electrons, and free radicals in the plasma can realize plasma−
surface interactions.47 Ochoa-Putman and Vaidya48 found that
the treatment of metal surfaces with plasma-activated chemical
vapor deposition (PACVD) decreased the water contact angle
and increased their surface wettability. Williams et al.49 found
that the water contact angle of 410 stainless steel reduced after
He/O2 plasma treatment. The surface wettability was
increased, and the adhesion of bonded stainless steel
specimens was increased by 50%. Kim et al.51 studied the
surface modification of stainless use steel (SUS) using an
atmospheric pressure plasma jet. The contact angle of SUS was
greatly reduced from 49.928° to 10.92°, which increased its
wettability.
2.2.3. Resin Precoating. The resin-precoated stainless steel

surface can effectively improve the wettability of stainless steel.
Wang et al.52 precoated the steel substrate surface with resin,
as shown in Figure 7a. The resin precoat can improve the
wettability of the stainless steel through removing micro-
porosity, thus improving the interfacial adhesion. Figure 7b
compares the epoxy resin droplets on different substrate

surfaces, and the improvement in wettability is evident. The
effect of different surface treatments on the bond strength was
tested by single-lap shear (SLS). Figure 7c shows that the
interfacial shear strength increased by 57% for the 10 wt %
resin−acetone solution for precoating.
2.2.4. Titanate Coupling Agent Treatment. It has been

amply demonstrated that the titanate coupling agent in
thermoplastics, thermosets, rubber, and other filler systems
improves the compatibility of organic and inorganic materials.
Zhu et al.53 treated the stainless steel with bis(dioctyl
pyrophosphate) ethylene titanate (TMC-2). The polar portion
of its solid surface energy was reduced, and the contact angle
between the hydrophobic stainless steel surface and the
phenolic binder was lower, resulting in increased wettability.
The adhesion strength rose from 26.21 to 35.37 MPa as the
phthalate coupling agent concentration increased, peaking at
39.56 MPa at a concentration of 2%.

3. SURFACE TREATMENT METHOD OF RESIN
The interfacial adhesion of stainless steel and resin can be
enhanced by improving the flow of resin, short-cut fiber-
reinforced resin, and resin modification. The published
research on resin surface treatment is listed in Table 2.
3.1. Resin Fluidity. By combining resin with carbon

nanotubes, ultraviolet (UA)-ozone treatment, and resin, resin
flow can increase. Due to their superior mechanical qualities,
the CNTs are frequently employed in the composites made
from the modified polymers.54 The CNTs are often dispersed
directly into the resin as a means of altering continuous fiber-
reinforced resin matrix composites. However, the performance
of CNTs cannot be effectively utilized due to issues like
viscosity and self-filtration effects.55−57 Therefore, CNTs can
be effectively dispersed in the resin by in situ growth or
chemical grafting of CNTs onto continuous fibers. Baltzis et
al.58 found that the modification of epoxy resin by carbon

Figure 6. (a) Schematic of CNT-grafted SSM; (b) SEM and TEM micrographs of CNTs; image courtesy of Xiong et al.45 (c) SEM images of
CNTs on the SS wire, (d) EDX spectrum of nickel element intensity on the CNT array, and (e) Raman spectra of CNTs at tg = 10, 15, and 20 min,
reproduced with permission from Xiong et al. Copyright 2021, Taylor. & Francis.46
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nanotubes can improve its wettability to 304 stainless steel,
thus significantly enhancing the bond strength of the resin to
stainless steel.
Wang23 found that mixing modified petroleum resin can

improve the flowability of ethylene acrylic acid/linear low-
density polyethylene (EAA/LLDPE), thus increasing its
wettability to stainless steel, besides increasing the surface
adhesion of EAA/LLDPE to stainless steel. Arai et al.59 used
ultraviolet (UV) ozone to pretreat the surface of cyclic olefin

polymer (COP) specimens with metal. As in Figure 8a, COP
was laser bonded to SUS304. Then the samples were subjected
to tensile shear tests. They compared the appearance of the
different pretreatment times. At 600 s, the joint interface
appears yellow, which is considered to be oxidative
degradation. Figure 8b shows a TEM photograph of the
interface between COP and SUS304, and it can be concluded
that there is a thin film of about 6 nm at the joint interface.
EDX analysis shows that this film contains Cr203. Figure 8c

Figure 7. (a) Cross-sectional view of sandblasted steel substrate, (b) top view of small epoxy droplets on five different substrate surfaces, and (c)
shear strength measured by SLS tests on the grit-blasted surfaces with 0, 5, 10, and 20 wt % of resin−acetone solutions. Reproduced with
permission from Wang et al. Copyright 2016, Elsevier Ltd.52
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shows that C−O and C�O increase and newly generate COO
bonds on the COP surface. The percentage of oxygen
functional groups and the surface binding energy significantly
increased, indicating that the improved mobility of oxygen
functional groups with COP improves the strength of the
connection.
3.2. Short-Fiber-Reinforced Resin. The short-fiber-

reinforced composites with random orientation are less
expensive to create, easier to automate, and more moldable
than continuous long-fiber composites.60 Short-fiber-reinforced
thermoplastic composites have high mechanical qualities due
to their high short-fiber content.61,62 With the benefit of short
fibers, the resin is reinforced with short fibers, which can
improve the adhesion between stainless steel and resin. Cui et
al.63 performed the resistance welding with SSM after using
carbon fiber-reinforced PEI resin, and the experimental
procedure is shown in Figure 9a. Figure 9b shows the SEM
image of the PEI film, in which it can concluded that the
surface of the pure PEI film is smoother, and the internal and
surface fibers of the fiber-reinforced PEI composite film are

disordered. Figure 9c shows that the tensile strength of the
fiber-reinforced PEI film is significantly higher, compared to
the pure PEI film. Figure 9d shows that the welded joint
strength of the fiber-reinforced is higher than that of the
welded joint without the addition of fibers.
Zhao35 found that the addition of fibers to the weld head in

the stainless steel mesh and the weld body of the interlayer
failure changed. By transforming to stainless steel mesh and
fiber tearing, the mechanical properties of the welded head
were significantly improved. Wang et al.52 found that short
Kevlar fibers (SKF)-reinforced epoxy resin improved the shear
strength between the steel plate and stainless steel. SKF
reinforcement has a better shear strength because the cohesion
damage to multiwall carbon nanotube reinforcement is
primarily in the bonding. Shi et al.64 found that SCF was
distributed in PE after short-carbon fiber-reinforced PE resin.
The load of the hybrid welding interface was taken up, which
improved the shear strength of the welded joint.
3.3. Resin Modification. The interface contact between

the resin and stainless steel can be significantly improved by

Table 2. Resin Surface Treatment Method Summary

improvement
method surface treatment

performance
test methods results ref

resin fluidity addition of C5/C9 petroleum resin
modified by grafting with maleic
anhydride

peel strength
test

After adding the modified C5 petroleum resin, the peel strength before and
after soaking reached 28.6N/cm and 15.2 N/m, respectively.

23

surface pretreatment of cyclic olefin
polymers(COP) using UA-ozone

microscopic
observation

COP surface generated functional groups to improve the adhesion between
304 stainless steel and COP.

59

carbon nanotube (CNT)-reinforced
epoxy resin

single-lap
shear

The lap strength was increased by nearly 50%, and the maximum shear
strength was achieved when the CNT content in the adhesive was 0.6%.

58

short-fiber
reinforcement

adding short-fiber strand to the resin
solution

single-lap
shear

The mechanical properties of the weld head were significantly improved,
with a maximum tensile strength of 35.97 MPa.

35

short Kevlar fiber-toughened epoxy resin shear strength
test

Further improvement of the shear strength of the glued joint was seen. 62

short carbon fiber (SCF)-reinforced
polyethylene (PE) polymer composites

shear strength
test

The shear strength of SCF/PE−PE composite weld interface was 6.1%%
higher than that of pure PE−PE weld interface.

64

resin
modification

modification of epoxy resins with
polymers containing catechol

single-turn
shear test

Maximum lap shear strength increased by nearly two times. 66

UV-treated modified thermoplastic resin
matrix composites

lap shear
strength

The UA treatment formed a carbonyl group, and the bonding properties of
the joint were significantly improved.

68

Figure 8. (a) Schematic diagram of laser joining, (b) TEM image of the interface between COP and SU304, and (c) C 1s spectra of COP,
reproduced with permission from Arai et al. Copyright 2014, Elsevier Ltd.59
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adding chemical groups to the resin through chemical reaction.
In recent years, epoxy-modified silicone resins have received
widespread attention, and their applications have been
continuously expanded..65 Zou et al.66 introduced polar
functional groups into the nonpolar chain of polypropylene
through grafting reaction and subjected the stainless steel mesh
in GF/PP/SSM laminates to surface decay and phosphorus
treatment, thereby improving the bonding strength between
metal and stainless steel. Zhang et al.67 designed poly[glycidyl
methacrylate-co-(N-(3,4-dihydroxyphenethyl)methacrylamide]
[P(GMA-co-DOMAm)] shown in Figure 10a. The catechol
unit acts as an anchoring group, and the epoxy group enables
the epoxy−amine reaction to improve the interaction between
the metal surface and the epoxy binder. Figure 10b shows that
after 60 min of polymer adsorption, the C/O ratio was as high
as 1.01. Figure 10c shows the uniform adsorption of the
polymer on the SUS surface and the completion of the
P(GMA-co-DOMAm) adsorption. The specimens were
subjected to pull-off testing. The microscope image in Figure
10d shows that the adhesive appeared on only one SUS plate.
It indicates that the adhesion is enhanced after polymer
treatment.
In addition to the epoxy resin that has been chemically

changed, UV treatment can impart new chemical groups to the
resin to increase its adherence to stainless steel. UV treatments
are usually prolonged as the result of chemical changes on the
surface. Scarselli et al.68 found the UV treatment process

produced carbonyl groups that produced a strong chemical
bond with the epoxy resin binder.

4. ADHESION TEST METHOD OF STAINLESS STEEL
AND RESIN

The interfacial bonding qualities of stainless steel and resin can
be evaluated using macroscopic and microscopic mechanical
testing methods. Microscopic tests use monofilament pull-out,
while macroscopic tests use fracture toughness and inter-
laminar shear strength tests. The published research on
adhesion testing techniques is summarized in Table 3.
4.1. Monofilament Pull-out. There are five testing

procedures for determining the interfacial bonding character-
istics of composites that are widely used. Depending on the
applied stress or object, they include the following: monofila-
ment pull-out, microbond, monofilament extrusion, monofila-
ment fragmentation, and Broutman. The experiments using the
microbond method are a sophisticated way of examining the
interfacial strength of the composites. Nishikawa et al.69

measured the fracture toughness of fiber-reinforced composite
interfaces by pulling the fibers out of the droplets of the matrix
through a knife edge. Microbond tests were performed by
T800S carbon fiber specimens with epoxy droplets. The
scanning electron microscope (SEM) was able to observe the
droplets on the fibers, the location of the tracts, and the matrix
cracking in the meniscus area. According to the fiber breaking
strain and Hooke’s law, it is known that the pull-out force is at

Figure 9. (a) Schematic diagram of the welding, (b) SEM images of film, (c) tensile strength of film, and (d) fiber-reinforced resin composite film
for enhancing the strength of the welded interface. Image courtesy of Cui et al.63
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most 0.12 N. Li et al.26 prepared a microbond test sample of
the monofilament SS wire and the polymer matrix on a U-
shaped metal plate, as shown in Figure 11a. Microbond tests
were performed to determine the IFSS of the SS wire and the
polymer matrix. Figure 11b shows the fracture morphology of
the PPEK droplets on the SS wire. The surface morphology of
the untreated SS wire was smooth, and the PEEK droplet was
successfully peeled off from the SS wire. The treated SS wire
was severely damaged in the contact area with the PEEK. By
IFSS testing, the results are shown in Figure 11c, and the IFSS
increased from 28 to 34 MPa.
Microbond and monofilament extraction methods are

probably the most popular due to the their ease of
experimental design, the ability to utilize well-defined test

geometries, and the excellent reproducibility of their results. It
is simple to define the interfacial bonding characteristics of
stainless steel to the resin matrix. The monofilament pull-out
method differs from other micromechanical tests in that it
applies to most softer and rigid fibers and ductile and brittle
substrates. These substrates can be either thermoplastic or
thermosetting. The monofilament pull-out technique involves
burying the monofilament vertically in the matrix and
removing it after curing and measuring the tensile force
needed to extract the fibers to determine the flexural
strength.70 The usage of the method is constrained by the
length of the fibers buried in the matrix. If the fibers are too
long, they are likely to shatter during extraction. Zhao35 pulled
the stainless steel wire out of the PEI resin drops by a knife tip.

Figure 10. (a) Synthesis strategy of P(GMA-co-DOPAm), (b) C/O ratio of SUS (red line) and Al (black line) plates with various immersion
durations, (c) surface morphology of SUS sample, and (d) microscope observation of the adhesion area in SUS joints; image courtesy of Zhang et
al.67
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The test results show that the IFSS value between the stainless
steel wire and PEI resin increased from 2.76 to 7.98 MPa after
grafting CNT. Chen et al.40 measured the adhesion between
the test piece and the epoxy-based resin by pull-off testing and
inserting the test piece into the resin. Through the test results,
they concluded that the adhesion between the plasma jet-
treated stainless steel and the epoxy-based resin was improved.
The IFSS testing of the composite materials is challenging

due to the many variables influencing the results. In addition,
since the research object in the sample making and testing
phases is single filament, it leads to strict requirements for
operation. Even the smallest mistake can easily result in a
broken filament.
4.2. Lap Test. The size of the lap shear strength can reflect

the solid degree of stainless steel and resin bonding; the
stronger the bond, the better the process performance. It is
often used to evaluate the welding quality of the macro-
composites. It is divided into single-lap test and double-lap test

according to the form of the joint. A single -lap joint will bend
under a tensile load because the loading surface and the
symmetry of the connection are not coplanar; however, a
double-lap joint can reduce the bending force and
deformation.
4.2.1. Single-Lap Test. Zhu et al.71 conducted single-lap

tests on the steel plates and the CFRP with reference to ASTM
D5868-01 (2014). Williams et al.49 performed single-lap shear
tests with reference to ASTM D3165-07 and ASTM D3762,
and the plasma treatment resulted in maximum shear strength.
Chen et al.50 studied the influence of different parameters of
the adhesive layer and structure on the connection perform-
ance of laminates and studied the shear strength through
single-lap experiments, according to GB/T 3334-2016. Liu et
al.66 performed single-lap shear tests on polyethylene/
graphene sheet composites with stainless steel according to
ASTM D3164M-98. Shear strength reaches the maximum
value of 9.42 MPa when the GFs concentration is 0.5 wt %.

Figure 11. (a) Schematic illustration of the preparation of microbond test samples, (b) fracture morphology of PEEK droplets on the SS wires, and
(c) IFSS results. Image courtesy of Li et al.26
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Li et al.26 performed LSS tests at room temperature as
shown in Figure 12e. Figure 12f shows that the increase in CF/
PEEK joints after silane coupling agent treatment of the
stainless steel surface to 40 MPa is 9%. Figure 12a1−d2 shows
SEM images of the fracture surface, and the gap between SSM-
SiG (silane coupling agent treated) is covered by PEEK with a
high residual resin content on the surface, showing good
adhesion between SSM-SiG.
4.2.2. Double-Lap Test. Chen et al.73 investigated the effect

of different temperatures on double-lap joints of the steel
CFRP sheets by double-lap joints. Gao et al.74 tested the shear
strength of the composite double-lap specimens in a damp heat
environment according to ASTM D638, and they concluded
that the shear strength of the structure decreased by 22.9%
after damp heat. Dube ́ et al.75 investigated resistance welding
of the thermoplastic composite double-lap joints with the
operation schematic shown in Figure 13a. The sample strip
with dimensions of 190.5 mm in length and 25.4 mm in width
was generated using the ASTM D3528 test procedure. The lap
shear test was performed using the experimental setup in
Figure 13b. The load−displacement curve of the double-lap
shear specimen was obtained as shown in Figure 13c. The CF/
PEI and GF/PEI specimens showed linear behavior until
maximum load followed by abrupt damage. The CF/PEEK
and CF/PEKK specimens showed linear behavior initially
followed by a nonlinear response to damage. By observing the
fracture of the CF/PEKK examples during fatigue loading, it is
possible to identify different regions where the fibers and
polymer exhibit good adhesion. The IFSS test data can reflect
the actual interfacial bonding state of stainless steel and resin

matrix. Therefore, IFSS is the most used test method to
characterize the interfacial bonding strength of composite
materials in industrial production.
4.3. Pull-off Test. The bonding force of the composite and

stainless steel can be evaluated using a pull-off test. The
specimen geometry and dimensions are presented in Figure
14a. Liu et al.72 performed adhesive bond tension tests on
polyethylene/graphene sheet composites according to the
ASTM D2095-96 standard, and the specimen geometry and
dimensions are shown in Figure 14a. They concluded that
when the GFs concentration was 0.5 wt %, the tensile bond
strength reached a maximum value of 4.23 MPa, as shown in
Figure 14b. Ghosh et al.25 performed pull-off tests according to
the ISO 4624:2003 standard, using the sample preparation
scheme and test method. The surface-treated SS plate inserted
between the carts and the glass beads controls the thickness of
the epoxy resin layer. After the epoxy resin cured, a pull-off test
was performed with a speed setting of 0.5 mm/min.
4.4. Fracture Toughness. Fracture toughness is a

quantitative indicator of the ability of a material to prevent
crack expansion and a measure of the toughness of a material.
Fracture toughness refers to the measure of the ability of a
material to prevent the expansion of macroscopic crack
instability and a toughness parameter of a material to resist
brittle damage. Different stress states of the same material in
the same environment will lead to different deformations and
crack states. In fracture mechanics, the fracture mode of cracks
is usually divided into three models,76 as illustrated in Figure
15.77 Among them, mode I cracks belong to the open mode
cracks, and the member I is mainly subjected to tensile load

Figure 12. Fracture surfaces of welded joints after lap shear tests for (a1), (a2) untreated SSM; (b1), (b2) SSM-SA; (c1), (c2) SSM-NG, and (d1),
(d2) SSM-SiG; (e) LSS testing; (f) LSS of untreated SSM, SSM-SA, SSM-NG, and SSM-SiG welded joints, image courtesy of Li.26
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Figure 13. (a) Schematic representation of resistance welding operations for double-lap shear joints, (b) schematic representation of a DLS
specimen and picture of the test setup, (c) load−displacement curves of double-lap shear specimens, and (d) typical fracture surface of CF/PEKK
DLS specimens tested under fatigue loading. Image courtesy of Dube.́75

Figure 14. (a) Diagram of the adhesive tensile specimen, (b) tensile adhesive strength with respect to GFs concentrations, reproduced with
permission from Liu et al. Copyright 2021, Elsevier Ltd.72
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perpendicular to the crack direction.78 Mode II cracks belong
to the slip-mode cracks, and the member is mainly subjected to
shear load parallel to the crack direction. Mode III crack is a
tearing crack, and the member is mainly subjected to shear
load parallel to the crack surface and perpendicular to the crack
direction.77 Currently, the commonly used fracture toughness
specimens are three-point bending specimens and compact
tensile specimens. The test method is to open a crack in the
middle of the specimen, through the three-point or four-point
bending fracture test, to get the material fracture toughness.
Chandrasekaran et al.79 used the Zwick Roell Z010 universal
testing machine to evaluate fracture toughness using a three-
point end-notch bending test.
4.4.1. Mode I Fracture Toughness. Mode I cracks expand

mainly at the connecting interfaces among the bonding layer
and the carbon fiber laminate, the bonding layer and the steel
plate surface, and the bonding layer itself when a carbon fiber/
steel composite structure is damaged. The double cantilever
beam method (DCB), which is frequently employed in
composite laminate mode I fracture toughness test locations,
is depicted in Figure 16a.80 Wang77 used DCB to conduct

testing on four bonding interfaces (immediate groove,
grooved/short fiber, sandblasted, and sandblasted/MWCNT)
specimens in line with the ASTM D5528-01 standard, as
shown in Figure 16b. Figure 16c shows the average fracture
toughness graph, and the mode I fracture energy of the
bonding interface of the sandblasted/MWCNT specimen is
larger than the other three interfaces. Ding and Xu81 tested the
composite by a wedge-embedded double cantilever beam
(WDCB), to apply and verify the J-integral to determine mode
I fracture toughness under large deformation. Experiment
results were obtained for the J-integral of the mode I fracture
toughness of the composite WDCB and a simplified method
for the available data. It was feasible to calculate the correct
power extraction efficiency of WDCB using the J-integral.
4.4.2. Mode II Fracture Toughness. The relative displace-

ment directions of the upper and lower surfaces of a mode II
slip-mode crack are distinct, with one cracking surface moving
in the same direction as the crack expansion and the other
cracking surface moving in the opposite direction. The test
methods for mode II fracture toughness of composite materials
are confined layer slip (CLS), end load split (ELS), and end-

Figure 15. Three modes of fracture: (a) mode I crack extension; (b) mode II crack extension; (c) mode III crack extension. Image courtesy of
Wang.77

Figure 16. (a) Mode I interlaminar fracture toughness test setup (DCB specimen with loading blocks and with piano hinges), reproduced with
permission form Sharma et al. Copyright 2020 Iran Polymer and Petrochemical Institute;80 (b) DCB experimental process diagram; (c) mean
fracture toughness. Image courtesy of Wang.77
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notched flexure (ENF), etc. The ENF test method has become
the most commonly used test method because of its
advantages of easy processing of the specimen and simplicity
of the test. The test setup and specimen are shown in Figure
17a. Luo82 tested specimens for three bonding interfaces
(instant groove/Kevlar, grooved/Kevlar/MWCNT, and sand-
blasted/MWCNT). The test results show that the fracture
energy and final slip distance of the specimens interviewed at
the grooved/Kevlar/MWCNT bonding interface are greater
than those of the other two interfaces.
Almansour et al.83 tested the flax/basalt-reinforced vinyl

ester composites by the three-point end-notch bending
(3ENF) test to measure the crack length and critical strain
energy release rate GIIC. The mode II fracture toughness of
flax/basalt-reinforced vinyl ester composites was obtained by
testing. Barbosa et al.84 conducted mode II fracture toughness
tests on epoxy composites with reference to the ASTM D7905
M 14 test standard. Gliszczynski and Wiac̨ek85 performed end-
notch flexure (ENF) tests on GRFP unidirectional laminates,
with specimens manufactured according to ASTM 7905. The
initial length of precracking was 30 mm, and the experimental
procedure fixture is shown in Figure 17b. The end value of the
average GIIC was 2.08 N/mm, indicating that the delamination
development of the NPC specimens was unstable.

4.4.3. Mode III Fracture Toughness. Mode III fracture
toughness is also known as fracture tear mode, and there are
test methods for mode III fracture toughness of composite
materials, such as Split Cantilever Beam (SCB), Edge Ring
Crack Torsion (ERCT), and Longitudinal Half Fixed Beam
(LHFB). It is mainly characterized by edge crack torsion
(ECT) test specimens with specimen size and external loading
system.80 Pennas and Cantwell86 investigated the mode III
fracture toughness of a glass/epoxy steel bimaterial system
using ECT test geometries. Audd et al.87 conducted edge crack
torsion tests on laminated composites, with ECT specimens
prepregged with carbon/epoxy tape.
The characterization of composites in mode III fracture

mode is equally applicable to the longitudinal semifixed beam
(LHFB) test. Bertorello et al.88 performed LHFB tests on three
different modes of composites: Hexply AS/8552 RC34 AW196
(8552), Hexply AS/3501-6 RC37 AW190 (3501-6), and ACG
MTM45-1/IM7-145 (MTM45-1), using the experimental
setup as shown in Figure 18a. The experimental results
obtained are shown in Figure 18b, where the fatigue
performance loss of the AS4/35011-6 material during fatigue
is low. Figure 18c shows the micrographs of different materials,
and the AS4/8552 material demonstrates fracture fibers and a
typical mode III fracture. The AS4/3501-6 material shows a
sawtooth-dominated morphology with few fractured fibers.

Figure 17. (a) Mode II interlaminar fracture toughness test setup (ENF specimen), reproduced with permission form Sharma et al. Copyright
2020, Iran Polymer and Petrochemical Institute.80 (b) ENF test fixture and (c) mode II fracture toughnesses obtained for considered GFRP
laminate by using different data reduction schemes for PC and NPC specimens; image courtesy of Gliszczynski and Wiac̨ek.85
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The fractured picture of the IM7/MT M45-1 material shows
almost no fractured fibers. The findings demonstrate that
laminated composites can efficiently obtain static and cyclic
fatigue ERR values using the LHFB device without taking the
mode of resin that makes up their matrix into account.

5. CONCLUSIONS AND PROSPECTS
In summary, the main methods to improve the adhesion of
stainless steel and resin interface are stainless steel surface

silane coupling agent treatment, oxidation treatment, chemical
etching, plasma treatment, carbon nanotubes (CNTs) treat-
ment and resin CNTs reinforcement, fiber reinforcement, and
chemical modification. Among them, stainless steel surface
silane coupling agent treatment, oxidation treatment, chemical
etching, and plasma treatment can effectively improve the
surface roughness of stainless steel and increase the oxygen-
containing polar functional groups. It is beneficial to promote
the formation of mechanical interlocking and chemical

Figure 18. (a) Mode III fracture test device, (b) results of all tests performed for all three materials at different percentages of the maximum torque,
and (c) micrographs of different materials. Image courtesy of Bertorello et al.88

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c05728
ACS Omega 2023, 8, 39984−40004

40001

https://pubs.acs.org/doi/10.1021/acsomega.3c05728?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05728?fig=fig18&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05728?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bonding between stainless steel and resin matrix, thus
improving the interfacial properties of stainless steel and
resin. Microscopic level monofilament pull-out and macro-
scopic level fracture toughness and interlaminar shear strength
tests are mainly used to characterize the interfacial bond
strength. Future attempts to improve the adhesion between
stainless steel and resin interfaces are as follows:
(1) Most of the researchers’ methods for improving the

adhesion of stainless steel and resin are for stainless steel or
resin alone. In the future, the integrated combination of
stainless steel surface treatment and resin modification can be
further explored.
(2) For the chemical etching, interfacial characterization at

the microscopic level allows for more adequate regulation of
the interfacial microstructure and better interfacial bonding
properties.
(3) The introduction of CNTs in both stainless steel and

resin can improve the interlayer properties to some extent, but
there are some problems influenced by the method of CNT
introduction. How to realize the uniform dispersion more
simply and effectively of carbon nanotubes is a direction
worthy of future research.
(4) In the future, the effect of more environmental factors

such as the heat resistance, corrosion resistance, and aging
resistance of stainless steel and resin interface can be explored.
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