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Michał Wojciech Szcześniak1,*, Sebastian Deorowicz2, Jakub Gapski1,
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ABSTRACT

Despite accumulating data on animal and plant
microRNAs and their functions, existing public
miRNA resources usually collect miRNAs from
a very limited number of species. A lot of
microRNAs, including those from model organisms,
remain undiscovered. As a result there is a continu-
ous need to search for new microRNAs. We present
miRNEST (http://mirnest.amu.edu.pl), a comprehen-
sive database of animal, plant and virus microRNAs.
The core part of the database is built from
our miRNA predictions conducted on Expressed
Sequence Tags of 225 animal and 202 plant
species. The miRNA search was performed based
on sequence similarity and as many as 10 004
miRNA candidates in 221 animal and 199 plant
species were discovered. Out of them only 299
have already been deposited in miRBase.
Additionally, miRNEST has been integrated with
external miRNA data from literature and 13 data-
bases, which includes miRNA sequences, small
RNA sequencing data, expression, polymorphisms
and targets data as well as links to external
miRNA resources, whenever applicable. All this
makes miRNEST a considerable miRNA resource
in a sense of number of species (544) that integrates
a scattered miRNA data into a uniform format with a
user-friendly web interface.

INTRODUCTION

Animal and plant miRNA genes are transcribed by RNA
polymerase II or III into a primary transcript, called
pri-miRNA (1). During initial steps of miRNA biogenesis,
pri-miRNA is cut and a hairpin-shaped intermediate,

called pre-miRNA, is produced. This process is catalyzed
by Drosha in animals (2) and DCL1 (DICER-LIKE 1) in
plants (3). Subsequently, a pre-miRNA is specifically cut
at stem part of the hairpin and a miRNA/miRNA* duplex
with 2-nt overhangs at 30-ends is released. In animals this
process is run by Dicer (2) and in plants it is controlled by
DCL1 (3). In cytoplasm, one of duplex components,
referred to as mature miRNA, gets incorporated into a
riboprotein complex, named RISC (RNA-induced
silencing complex) (4). RISC contains a functional unit,
which allows regulation of the gene expression based on
complementarity of the miRNA and the transcript of
targeted gene. There are two modes of the regulation: by
cleaving transcripts (5) and by inhibiting translation (6).
The first one requires high complementarity between
miRNA and targeted transcript and is ubiquitously
observed in plants, while in animals it is translation
inhibition that constitutes a major mechanism of
miRNA action.

miRNAs regulate the expression of thousands of genes
in plants and animals and are key players in developmen-
tal (7), stress-related (8) and signalling processes (9). A
number of miRNAs have been associated with diseases
in human, e.g. Alzheimer’s disease (10), pancreatic
cancer (11), or leukemia (12). Hence, identification of
miRNAs and subsequent elucidation of their functions,
both in plants and animals, became a critical issue not
only in molecular biology but also in medical research
and agriculture.

Recently, a number of investigations aimed at the iden-
tification of miRNAs have been published. Reported
miRNAs were discovered either based on computational
(13) or experimental approaches (14). Consequently, the
growing number of miRNA studies led to accumulation of
miRNA databases. However, many of these databases,
like miRO (15) or miROrtho (16), are limited to species
of high interest. Other resources are focused on selected
taxa, e.g. microPC (13) and PMRD (17) contain only
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plant miRNAs, CoGemiR (18) consists of miRNAs from
selected animal species and Vir-Mir db (19) is dedicated to
viruses only. The main miRNA repository database,
miRBase (20), although accommodates data from a wide
range of species, contains only already published results.
Similarly, databases like miRecords (21) or miRNAMap
(22) consist exclusively of experimentally verified
miRNAs. Contrary, microPC dataset is based solely on
computational methods. Therefore, despite of the
ever-growing number of miRNA-related resources, there
is a lack of a single universal repository and users need to
browse through a number of dispersed data sets to collect
information related to specific species or miRNA type.

To overcome these limitations, we developed miRNEST
as a comprehensive online resource for plant, animal and
virus miRNAs. We applied a comparative approach to
search for new microRNAs in animal and plant EST se-
quences from dbEST (23). The approach applied by us
made it possible to identify 10 004 miRNA candidates in
221 animal and 199 plant species. To the best of our
knowledge, for 236 species no miRNAs have been
known before. Besides miRNA identification, we also per-
formed miRNA target search in plant candidates and for
29 species we collected small RNA reads from Gene
Expression Omnibus (24). Since our goal was not only
to identify new miRNAs but also to develop a resource
that would integrate miRNA data scattered across litera-
ture and databases, we complemented data resulting from
our computational analysis with miRNA sequences from
three other databases and two publications. In addition,
based on availability, we incorporated the data from
twelve resources providing further annotations of
miRNAs from selected species. This gives the possibility
to access, search and browse data from different resources
simultaneously. Altogether the miRNEST database
contains 39 122 miRNAs from 544 species. All data are
presented in the same format via miRNEST interface
and are available at http://mirnest.amu.edu.pl.

Data acquisition

We imported 16 961 known mature miRNA sequences
from miRBase (20) and 9212 sequences from PMRD
(17), which were used for comparative analysis and iden-
tification of conserved miRNAs. EST sequences of 225
animal and 202 plant species were downloaded from
dbEST (23). We took into consideration only the species
that had at least 10 000 EST sequences. For EST annota-
tion, the UniProtKB/Swiss-Prot protein data set was
obtained from UniProt (25), and to remove tRNAs and
rRNAs from ESTs and for further miRNA annotation,
we obtained ncRNA sequences from RFAM release 9.1
(26). Also, 192 small RNA deep sequencing libraries were
downloaded from GEO, Gene Expression Omnibus (24).

In addition to mature miRNA and pre-miRNA data
from miRBase and PMRD, we downloaded sequences
from microPC (18) and two publications (27,28).
The choice of databases and papers was made based on
the overlap between resources and the availability of the
data. For example, the sets of miRNAs deposited in
miRNAMap (22) and RNAdb (29) fully overlapped with

miRBase and therefore were not considered for the
download. On the other hand, data from resources like
miROrtho (16) or GrapeMiRNA (30) could not be down-
loaded and consequently, were not integrated with
miRNEST. Targets data were collected from the largest
and most recognized resources as miRDB (31),
miRTarBase (32), miRecords (21), PMRD and ASRP
(33). We also obtained miRNA expression data from
PhenomiR 2.0 (34) and dbDEMC (35), miRNA regulation
data and promoters from dPORE-miRNA (36) and
PMRD, genomics information from CoGemiR v1.2b
(18), miRNA polymorphisms from Patrocles (37) and im-
printing data from ncRNAimprint (38). In particular, we
took advantage of data available in miRBase, which
among others provided us with literature references,
links to external databases, genomics data, and served as
a source of uniform, non-redundant miRNA nomencla-
ture, which was of great importance when integrating
the miRNEST external miRNA data. The list of all data-
bases used for the data assembly is provided in
Supplementary Table S1 and the range of miRNA
overlap between resources in Supplementary Table S2.

Prediction of miRNAs

The prediction of animal and plant microRNA candidates
was performed according to modified algorithm
applied by Zhang et al. (39) and Mhuantong et al. (13)
(Figure 1). The modifications include removal of se-
quences with high percentage of low-complexity regions,
assembling ESTs into contigs using CAP3 (40) and
position-based allowance for substitutions in mature
miRNAs. Schema of all data processing steps is presented
in Figure 1.
In the first step, mature miRNA sequences from

miRBase and PMRDwere searched against EST sequences
using BLASTN (41). We filtered the BLASTN search
results, based on pre-computed distribution of mismatches
in mature miRNAs within miRNA homologs in animals
and plants (Supplementary Figure S1). Then, EST se-
quences, clustered based on the similarity to the same
miRNA, were assembled into contigs using CAP3. This
step is important in plant microRNA prediction where
pre-miRNA length occasionally exceeds 600 nucleotides
(Supplementary Figure S2). Next, we ran BLASTN
search against RFAM non-coding RNA sequences to
remove rRNAs and tRNAs (with E-value < 1e-20).
After that we searched for low-complexity regions using
Dustmasker (42) and removed sequences containing more
than 60% of low complexity regions. Then, RNA second-
ary structures were predicted using RNAfold (43). We
filtered the secondary structures and left only the candi-
dates with mature miRNA located in a stem part of the
hairpin structure and with no more than five mismatches
and two bulges between mature miRNA and the opposite
hairpin arm (Supplementary Figure S3). At the same time,
we extracted the hairpin sequences out of longer contig or
singleton. After that, we performed a BLASTX search
against UniProt to remove sequences with high similarity
to proteins (E-value < 1e-20). Finally, we removed animal
pre-miRNAs with length exceeding 215 nt, which is the
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maximum length for animal pre-miRNA in miRBase. As a
result, we obtained 10 004 miRNA candidates in 221
animal and 199 plant species.
The ratio of sequences removed from the data set at

various filtering steps differed between species; examples
for Arabidopsis thaliana and Bos taurus are presented in
Supplementary Table S3.

miRNA prediction accuracy

Specificity. To assess the specificity of miRNEST algo-
rithm we generated one million random sequences that
were subsequently subject to the algorithm. The initial
number of BLAST hits, i.e. mature miRNAs against
generated sequences, was 231 260. After filtering steps,
Dustmasker and BLASTN against RFAM, the number
of candidates has decreased substantially to 1120 and
only three candidates left after secondary structure check
point. The last step, BLAST against UniProt, reduced the
number of candidates to two, which produces the false
positives ratio of 0.0002% (two per million). This result
is comparable with the one calculated in a very similar

way by authors of microPC database (13). Applying a
similar approach they obtained the ratio of 0.00064%.
We have also checked how many of our human miRNA
predictions are classified as true miRNAs by microPred
(44), a tool for miRNA/non-miRNA classification. This
tool was specifically designed for human pre-miRNAs and
it classified as miRNAs 75.9% of miRNEST predicted
human miRNAs. At the same time, 90.16% of miRBase
human pre-miRNAs are considered as true miRNAs by
this program.

Sensitivity. To estimate the sensitivity of applied algo-
rithm known pre-miRNAs of B. taurus and A. thaliana,
from miRBase database, were subjected to miRNA
search. Out of 229 Arabidopsis hairpins, 209 (91.3%)
have been recovered. In case of B. taurus, the result was
lower and only 61.1% (392 out of 662) of hairpins have
been recognized as miRNA by miRNEST algorithm. This
is mostly because of the architecture of animal hairpins:
most of the miRNAs that have not been recovered bear
more than five mismatches and/or two bulges between
mature miRNA and the opposite hairpin arm.

Figure 1. A computational pipeline applied for prediction of microRNAs in EST sequences and their annotation. The seven steps in miRNA search
part are designed to minimize the false positives rate and provide a high quality set of candidates. In some of them, plant- and animal-specific
parameters were applied, as described in the main text. The annotation part serves to provide more data on predicted miRNAs and no candidates are
discarded there.
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Nonetheless, we decided to keep this filtering threshold in
order to maintain the low false positives ratio. Authors of
microPC database, where miRNAs are also predicted
based on EST sequences analysis, estimated the sensitivity
of their method for all analyzed plant species as 81.3%.
We did calculation separately for individual species but on
average, the rate of specificity is similar to this obtained in
microPC.

Further annotation of predicted miRNAs

Plant mature miRNAs generally show a high level of com-
plementarity with targeted mRNA sequences, thus target
identification usually is not a very complex problem here.
On the other hand, effective methods for target search in
animals heavily rely on the evolutionary conservation of
miRNA target site (45). Since such data are unavailable
for a great majority of analyzed by us animal sequences,
we decided to focus on target search for plant candidates
and we used external target data for animal species
whenever possible.

The targets were searched for in EST sequences from
corresponding species applying standard rules of plant
miRNA–mRNA interactions (46). In the final scoring a
mismatch was given a score of 1, a wobble (G:U) was
given a score of 0.5 and a bulge was given a score of
2.0. All matches with score above 3.5 were discarded.
It was also important that positions 10 and 11 of
miRNA perfectly matched to its target and that there
was no more than 1 mismatch at positions 2 to 9. As a
result, we identified targets for 6963 mature miRNAs in
187 plant species. Sequences of all potentially targeted
ESTs were checked against UniProt data for functional
annotations.

For 29 species, we downloaded small RNA deep
sequencing libraries from GEO. The reads were mapped
to predicted pre-miRNAs using Bowtie (47). The mapping
was performed against both pre-miRNA strands and only
one mismatch was allowed. The choice of species for
which deep sequencing data were downloaded was solely
based on the availability.

Processing of external data

The goal of our project was not only to predict miRNAs
in EST sequences but also to build a comprehensive
miRNA database. Therefore, we supplemented data set
from our computational analyses with the sequence data
from three external resources: miRBase, PMRD, microPC
and two publications (27,28) reporting miRNAs not
deposited in miRBase. All imported sequences were run
through our pipeline so that all data are deposited and
displayed in identical format. However, filtering steps
were turned off to ensure that all external miRNAs
would be incorporated into the miRNEST database even
if they did not match criteria applied in miRNEST algo-
rithm. Finally, we run reciprocal BLASTN search: each
miRNEST pre-miRNA against each other to identify
similar miRNAs across data sets.

Web interface

The miRNEST web interface has been divided into five
sections that correspond to distinct types of data.

Browse. By clicking Browse in main menu, the user gets
access to all miRNA sequences: miRNEST predictions
and miRNAs from external sources. For each miRNA
record we provide miRNA* sequence, coordinates of
miRNA and miRNA* in pre-miRNA, guide strand,
number of mismatches and bulges between mature
miRNA and the opposite hairpin arm, secondary struc-
tures of pre-miRNAs, family assignment, experimental
evidence and identical miRNEST, miRBase, PMRD or
microPC miRNAs, whenever found (Figure 2). There
are also links to miRNEST internal resources providing
access to results of BLAST search, target predictions in
EST sequences as well as target information from external
sources, most similar mature miRNAs, source sequences
for miRNAs predicted from ESTs, graphical display of
deep sequencing reads mapping as well as data collected
from external resources: miRNA genomics data, SNPs,
promoters, TFBSs, miRNA-disease association, miRNA
polymorphism, expression data, literature references, links
to external resources and information on imprinted
miRNAs. From here users have also opportunity to run
BLASTN searches against selected sources of miRNA
sequences and to build ClustalW (48) alignments based
on BLASTN results. If species is selected, its full NCBI
taxonomy is provided (49). By clicking a taxon, all
miRNEST species belonging to the taxon are displayed
as active links to miRNA data in corresponding
species. Users can also browse through species in a taxo-
nomic tree view.

Search. Using a search option users have the possibility to
filter miRNA data by a number of parametres: species,
sequence source (miRNEST prediction and/or external
sources), mature miRNA sequence or its part, hairpin
length, free folding energy, number of allowed mismatches
and bulges between mature miRNA and the opposite arm
in pre-miRNA hairpin structure, and E-values for BLAST
search that was pre-run against UniProt, RFAM,
miRBase, PMRD, and microPC. We also incorporated
the target search option, where user can search for
specific targets by typing mature miRNA sequence and
selecting a species of interest. Moreover, users can limit
their search to the records that have additional data,
downloaded from outside resources, like experimental
evidence or target sequences.

Unclassified. Unclassified section provides users with a list
of miRNEST predictions that were not classified as poten-
tial miRNAs as they violated at least one of the following
criteria: E-value for BLASTX search against UniProt
>1e-20 or pre-miRNA length for animal candidate �215
nucleotides. There are 66 predictions that fall into this
section due to the first criterion, 465—the latter and 8 pre-
dictions that violence both criteria. Unclassified and
Search possess a very similar interface, however some
options are unavailable in Unclassified category.
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RNA-Seq. This component of the miRNEST database
presents small RNA sequencing data that correspond to
miRNEST predictions from 29 species (Supplementary
Table S4). The user can select species, miRNA of
interest, small RNA deep sequencing library, strand and
number of allowed mismatches between reads and
pre-miRNA. The results are displayed in a graphical
form as an alignment of reads to the pre-miRNA. If no
library is specified, then unique reads from all libraries
from a given species are displayed. Otherwise, the read
counts, as transcripts per million, are supplied. RNA-Seq
data are also accessible from Browse section through deep
sequencing internal link that corresponds to a given
miRNA record.

Taxonomy. Taxonomy option provides a user with a
phylogenetic tree of species that are included in
miRNEST predictions. It presents clickable taxon names

(kingdom, phylum, subclass, order, family, genus, and
species) along with a number of taxon-specific miRNA
families. By clicking on the taxon, the user gains access
to more detailed information on the taxon-specific
miRNA families and links to corresponding miRNEST
records.

Comparison with other miRNA databases

miRNEST is a large collection of miRNA sequences and
associated miRNA data (Supplementary Table 1).
It encompasses 522 animal and plant species as well as
22 viruses (Supplementary Table S5) and as many as
9429 miRNA predictions can be found uniquely in
miRNEST, though a fraction of the predictions overlap
with known miRNA data (Supplementary Table S5). For
comparison, miRBase (Release 17), the second largest
miRNA database collects data from only 153 distinct

Figure 2. (a) An example of miRNEST record (MNEST002602) (b) by clicking analyse link it is possible to perform BLASTN search and ClustalW
analysis. (c) deep sequencing link leads to mapping pattern of small RNA deep sequencing reads.
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animals, plants and viruses. As many as 236 miRNEST
species were not taken into account in any other miRNA
database. These include a number of model species as well
as the ones of high interest in agriculture and medical
research like Salmo salar, Takifugu rubripes, Actinidia
chinensis, Anolis carolinensis, Bos indicus or Trichinella
spiralis.

Another distinguishing feature of miRNEST is the
extent of usage of small RNA deep sequencing reads.
We incorporated data from 192 libraries from 29 species
retrieved from GEO and mapped the reads to predicted
pre-miRNAs. We carefully selected the libraries in order
to make sure that they encompass a wide array of tissues,
developmental stages and conditions. For comparison,
deepBase (50), which is a platform for annotating and
discovering small and long ncRNAs from next-generation
sequencing, collects data from 185 small RNA libraries
from seven species and in miRBase, Release 17, deep
sequencing data has been added for seven species, yet
this functionality is now being expanded to more species.

miRNEST also gives access to large-scale target search
predictions for 187 plant species that were generated using
standard rules for plant miRNA target prediction. For
more than half of the species this is the first and only
miRNA targets prediction.

Finally, miRNEST predictions are complemented with
a wide range of external data retrieved from 13 databases.
Our goal was to create a resource that would integrate the
miRNA data that are currently scattered across multiple
resources and to limit existing necessity of searching
multiple databases to investigate a single miRNA or
miRNAs from a given species.

AVAILABILITY AND REQUIREMENTS

miRNEST is freely available at http://mirnest.amu.edu.pl.
The database was constructed using Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS), PHP
5.2.11 (http://www.php.net/), and MySQL 4.0.31 (http://
www.mysql.com/). pre-miRNA secondary structures are
drawn using Java lightweight applet VARNA (51) which
requires the installation of Java plugin.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–3, Supplementary Tables 1–5.
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