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Background. The tumor microenvironment (TME) of lung adenocarcinoma (LUAD) comprise various cell types that
communicate with each other through ligand-receptor interactions. This study focused on the identification of cell types in
LUAD by single-cell RNA sequencing (scRNA-seq) data and screening of intercellular communication-related genes. Methods.
The Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) provided the RNA-seq data of LUAD
patients in the GSE149655, GSE31210, and GSE72094 datasets. Quality control of the scRNA-seq data in GSE149655 was
performed by the Seurat package (http://seurat.r-forge.r-project.org) for identifying highly variable genes for principal
component analysis (PCA) and cell clustering. The CellPhoneDB (http://www.cellphonedb.org) was used for filtering
intercellular communication-related ligand-receptor pairs. According to ligand and receptor expressions, LUAD samples were
clustered using ConsensusClusterPlus (https://www.bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus).
Additionally, the identification of prognosis-related ligand and receptor genes was conducted along with the development of a
risk prediction model by the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Results. This
study identified twelve cell types in 8170 cells of LUAD tissues along with 219 ligand and receptor genes. LUAD was classified
into three different molecular subtypes, among which cluster 3 (C3) had the longest overall survival (OS) time and cluster (C1)
had the shortest OS time. In comparison with the other two molecular subtypes, it was observed that C1 had a higher rate of
somatic mutations and lower levels of infiltrating immune cells and immune scores. Ten genes were screened from the total
ligand and receptor genes to construct a risk model, which showed a strong prediction power in the prognosis of patients with
LUAD. Conclusion. The results of this study revealed cell types specific to LUAD, which were classified into different molecular
subtypes according to intercellular communication-related genes. A novel prognostic risk model was developed in this study,
providing new insights into prognostic assessment models for LUAD.

1. Introduction

Lung cancer results in almost one-quarter of all cancer-
related mortalities [1]. Lung adenocarcinoma (LUAD) is
the most widely diagnosed histological subtype of lung can-
cer and usually progresses from human small airway epithe-

lial cells and type II alveolar cells [2]. LUAD consists of
adenocarcinoma in situ, atypical adenomatous hyperplasia,
minimally invasive adenocarcinoma, and invasive adenocar-
cinoma [3]. The occurrence of LUAD is still increasing in
people without smoking habit, and patients with topical
and early-stage LUAD can take standard surgery. However,
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a large number of patients are typically diagnosed with
advanced LUAD requiring conventional treatment such as
chemotherapy combined with radiotherapy and face a high
mortality risk, with a 5-year survival rate of about 15% [4].
Immunotherapies such as immune checkpoint inhibitors
have proved to be highly effective in clinical trials. None-
theless, many patients receiving immunotherapy will still
develop immune resistance [5]. Intratumoral heterogeneity
compromises the clinical efficacy of anticancer drugs, for
instance, in the case of immunotherapy in cancer. It can
be reasonably clarified that heterogeneity and different
Spatio-temporal interactions among all cellular compo-
nents within the tumor microenvironment (TME) results
in cancer adaptation and treatment pressure [6]. There-
fore, explaining the intratumoral heterogeneity of LUAD
may help develop strategies to control or prevent drug
resistance.

Recently, advances in single-cell sequencing technology
help understand the heterogeneity of tumor cells. As an
important factor in single-cell sequencing technology,
single-cell RNA sequencing (scRNA-seq) technology is
undoubtedly a helpful tool for understanding the properties
of the variety of cell types within [7]. For instance, according
to a recent report, scRNA-seq can examine cell clusters in
tumor tissues, identify cell clusters causing drug resistance,
and enable an analysis of the genetic features of drug-
resistance cell clusters [8]. According to a previous report,
the scRNA-seq has identified cell clusters with various func-
tions and high invasive potential in heterogeneous primary
glioblastoma [9]. scRNA-seq analysis in 15208 cells from a
pair of primary and metastatic sites of collecting duct renal
cell carcinoma identified cancer stem cell clusters that con-
tribute to bone destruction in a positive feedback loop in
bone metastasis microenvironment [10]. Other than charac-
terizing the cellular composition of tumors, scRNA-seq can
also improve the understanding of how the major cellular
components cooperate to stimulate the emergent tumor
behavior [11]. Currently, this exploratory area is also a sig-
nificant part of cancer research. However, further research
is required in this direction.

In this report, scRNA-seq data from 8170 cells of 2
LUAD samples and 2 normal samples were analyzed to
explore the intratumor heterogeneity of LUAD by exploring
cell clusters. Molecular subtyping of LUAD samples from
The Cancer Genome Atlas (TCGA) (https://www.cancer
.gov/about-nci/organization/ccg/research/structural-
genomics/tcga), GSE31210, and GSE72094 was also per-
formed by delineating gene expression profiles related to
intercellular interactions among cell clusters. The risk assess-
ment tool was constructed according to the intercellular
communication-related genes for prognostic prediction of
patients with LUAD. The work flow chart of this study is
shown in Figure S1.

2. Materials and Methods

2.1. Single-Cell RNA Sequencing Data and RNA Sequencing
Data of Lung Adenocarcinoma. The scRNA-seq data were
provided by the Gene Expression Omnibus (GEO) database

with the accession number GSE149655 [12] for the two pri-
mary LUAD samples and two normal samples.

We downloaded RNA-Seq data from 485 primary
LUAD samples using the TCGA GDC API, and the
GSE31210 [13] and GSE72094 [14] datasets were identified
from the GEO database. After removing samples without
records of survival status and survival times of less than 1
month, RNA-seq data of 226 and 386 LUAD samples in
both datasets were collected, respectively.

2.2. Quality Control and Data Analysis of Single-Cell RNA
Sequencing Data. Quality control and scRNA-seq data filter-
ing were carried out to isolate cells with high-quality data
utilizing the Seurat package (http://seurat.r-forge.r-project
.org). Seurat objects were generated for each sample with
the cell-by-gene count matrix using the CreateSeuratObject
function (min.cells =3, min.features =250). We retained the
cells of nFeature_RNA>600 and nFeature_RNA<6000 and
mitochondrial gene percentage<35%. Raw counts were nor-
malized based on the LogNormalize method in the Normal-
izeData function. Highly variable genes were recognized for
principal component analysis (PCA). Additionally, impor-
tant principal components (PCs) were identified using the
jackStraw function. Subsequently, the top 50 PCs were used
as input to the uniform manifold approximation and projec-
tion (UMAP). The resolution was set =0.2 and the cells were
clustered by the Louvain algorithm with the FindClusters
function. Finally, the FindAllMarkers function was used for
the identification of the marker genes for a specific cluster.

2.3. Cell Type Identification. The CellMarker database
(http://biocc.hrbmu.edu.cn/CellMarker/) [15] was used to
download cell marker genes for lung tissue. Cellular clusters
were annotated on the basis of well-known marker genes
using the enricher function of the ClusterProfiler package
[16] to identify the cell types to which various clusters
belong.

2.4. Analysis of Intercellular Interactions. Intercellular com-
munication was determined by the CellPhoneDB (version:
2.0) [17] applying the cluster annotation and counts from
our scRNA-seq data to compute intercellular communica-
tion within the identified cell subtypes [18]. The default set-
tings were used in the procedure. The higher ligand-receptor
interaction scores reflected stronger potential interactions
between cells.

2.5. Identification of Different Molecular Subtypes of LUAD
Based on Ligand-Receptor Gene Expression. Spearman’s cor-
relation coefficients were calculated for the significant
ligand-receptor pairs in the intercellular communication
analysis on TCGA-LUAD dataset. This study screened the
ligand-receptor pairs with Spearman’s correlation coefficient
greater than 0.3. The samples in the TCGA-LUAD dataset
were clustered according to the gene expression of ligand-
receptor pairs using ConsensusClusterPlus, where the
parameters were set to metric distance=1 - Pearson correla-
tion and bootstraps =500. The areas under the cumulative
distribution function (CDF) curves at different k values were
measured for determining the number of clusters.
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Figure 1: Continued.
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2.6. Gene Set Enrichment Analysis and Functional
Annotation. The ‘clusterProfiler’ package was used to
explore the potential molecular mechanisms of different
molecular subtypes, including gene set enrichment analysis
(GSEA), gene ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways. The gene sets used
in GSEA were all candidate gene sets from the Hallmark
database. These outcomes were visualized by Dotplot as
bubble plots.

2.7. Differences in the Tumor Microenvironment. To quantify
the proportion of immune cells in the TME, differences in
the proportion of immune cells in TME were assessed
between different molecular subtypes in the three separate
datasets, TCGA-LUAD, GSE31210, and GSE72094. Addi-
tionally, immune scores and stroma scores were also mea-
sured for the various subtypes in the three datasets using
the ESTIMATE tool.

2.8. Construction and Validation of an Intercellular
Communication-Related Risk Model Using Public
Databases. To identify molecular subtype-related intercellu-
lar communication-related genes, differential expression
analysis of ligand and receptor genes between molecular
subtypes was performed to select ligand and receptor genes
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Figure 1: Cellular composition of LUAD tumor samples and normal samples. (a).UMAP plots of all cells used in this study are annotated
according to cell cluster, sample source, and sample type. (b). Sample distribution of the 18 cell clusters. (c). Heat map of the most important
differentially expressed genes in different cell clusters. (d). UMAP plots of scRNA-seq data for 12 cell types.

Table 1: Cell types represented by 18 cell clusters.

Cell type Cluster

Secretory cell 0

Ionocyte cell 1

Ciliated cell 2

Secretory cell 3

M2 macrophage 4

Cancer stem cell 5

Myofibroblast 6

M1 macrophage 7

Ciliated cell 8

Ciliated cell 9

Secretory cell 10

SLC16A7+ cell 11

Basal cell 12

FOXN4+ cell 13

Fibroblast 14

Epithelial cell 15

SLC16A7+ cell 16

SLC16A7+ cell 17
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differentially expressed between molecular subtypes. Subse-
quently, the selected genes were subjected to survival-
related univariate Cox regression analysis. A last absolute
shrinkage was performed along with selection operator
(LASSO) and multivariate Cox regression analyses to filter
genes with the most prognostic value and to obtain a fit coef-
ficient for every gene. Using the formula risk score =Ʃ (βi ∗
Expi), the risk scores of standardized patients in TCGA-
LUAD, GSE31210, and GSE72094 datasets were measured
and the optimal cut-off values obtained by the R package
“survminer” were used to sort the patients into two groups
(the high-risk group and the low-risk group). Kaplan-
Meier analysis with a log-rank test was used for the assess-
ment of patients’ overall survival (OS) and the receiver oper-
ating characteristic (ROC) curve was time-dependent and
plotted using the ‘timeROC’ tool.

2.9. Statistical Analysis. The R software (version: 4.1.0) was
used to carry out all statistical analyses. The RMaftools pack-
age presented the molecular mutations in different molecu-

lar subtypes via waterfall plots. Univariate and multivariate
COX regression analyses helped assess the independent
prognostic value of risk scores, and risk ratios (HR) and
95% confidence intervals (CI) are also granted for each var-
iable. Unless otherwise stated, all parameters were default
and p<0.05 represented a significant difference.

3. Results

3.1. Cellular Composition of LUAD Tumor Samples and
Normal Samples. For understanding the intercellular hetero-
geneity of LUAD, the RNA-seq data were analyzed from a
total of 12,254 cells taken from two LUAD samples and
two normal samples. The relationship between the number
of unique molecular identifiers (UMIs) and the number of
mitochondrial genes or mRNAs were analyzed. The out-
comes demonstrated that the number of UMIs did not cor-
relate substantially with the percentage of mitochondrial
genes, but was positively correlated with the number of
mRNAs (Figure S2a and S2b). After initial quality control
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Figure 2: Network of 12 types of intercellular interactions in LUAD. A. Heat map showing the number of potential ligand-receptor pairs in
12 cell types. B and C. Interaction network of 12 cell types constructed by CellPhoneDB, where the thicker line indicates more interactions
with other cell types. D. Important ligand-receptor pairs for Hedgehog, Notch, TGFβ, WNT signaling, and EGFR signaling pathways during
interactions between different cell types.
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by Seurat, a total of 8170 cells were included in the analysis,
including 4637 cells in normal tissues and 3533 cells in
LUAD tumor tissues (Figure S2c and S2d). Among them,
the genes highly variable were used for downstream analysis
(Figure S2e). Unsupervised clustering analysis and the
UMAP was performed for visualizing 18 cell clusters
(Figure 1(a)). Notably, cluster 3, cluster 7, cluster 12, and
cluster 16 were the predominant cell clusters present in nor-
mal tissues, whereas cluster 0, cluster 2, cluster 8, cluster 11,
cluster 13, cluster 14, and cluster 17 were the predominant
cell clusters present in LUAD tumor tissues (Figure 1(b)).
Subsequently, cluster-specific marker genes were screened
by differential gene expression analysis to define the identity
of each cell cluster (Figure 1(c)). To demonstrate the cell
identities represented by those clusters, 12 cell types were
annotated according to the CellMarker package
(Figure 1(d)), representing a wide variety of cell types
including secretory cells, fibroblasts, epithelial cells, immune
cells, and tumor cells (Table 1).

3.2. Global Comparative Analysis of Intercellular
Communication in Lung Adenocarcinoma. To better under-
stand the interactions of various types of cells in the LUAD
TME, the number of ligand-receptor pairs in 12 cell types in
LUAD was analyzed with cellphoneDB. Among them, there
were more ligand-receptor pairs between three cell types,

including myofibroblast, basic cell, and myofibroblast
(Figure 2(a)). The interaction network between the 12 cell
types is illustrated in Figure 2(b). It was also observed that
myofibroblast, basal cells, and M1 macrophages had the
strongest intercellular interactions between clusters
(Figure 2(c)). Additionally, genes in the Hedgehog, Notch,
TGFβ, WNT signaling, and EGFR signaling pathways,
which are related to malignant progression of tumor, were
selected for further investigating whether there were notable
interactions between cell clusters. The bubble map indicated
that the receptor TNFRSF1A and its corresponding ligand
GRN played an important role in the communication
between myofibroblasts and basal cells or cancer stem cells.
Moreover, the ligand-receptor pair consisting of EGFR
ligand and COPA or AREG was also the key ligand-
receptor pair in the communication between myofibroblasts
and cancer stem cells. Ligand-receptor pairs of EGFR and
AREG also played a significant role in the communication
of M1 macrophage with other types of cells (Figure 2(d)).

3.3. Three Molecular Subtypes of LUAD Based on Ligand and
Receptor Genes. As the massive variations in the ligand-
receptor pairs playing a leading role in interactions between
different cell types, ligand-receptor pair genes that are
involved in major interactions in different cell types were
extracted and used to classify the molecular subtypes of the
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Figure 3: Classification of LUAD subtypes based on intercellular communication of ligand-receptor genes. A and B. CDF curves and delta
area for the consensus cluster analysis of LUAD samples in TCGA; C. The consensus fraction matrix of TCGA samples when k =3; D.
Survival analysis of three subtypes in TCGA; E. Kaplan-Meier curves for the three LUAD subtypes in GSE31210; F. Prognostic analysis
of molecular subtypes of LUAD in GSE72094.
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Figure 4: Analysis of genetic alterations in the three subtypes. (a). Aneuploidy scores, homologous recombination defects, fraction altered,
number of segments, and tumor mutation burden for the three molecular subtypes (Kruskal-Wallis test). (b). The top panel represents
mutation rates in the three subtype samples; the middle panel represents copy number deletions; the bottom panel represents copy
number amplifications (Fish test). ∗ P<0.05, ∗∗ P<0.01, ∗∗∗ P<0.001, ∗∗∗∗ P<0.0001.
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485 LUAD samples in TCGA. The 3-cluster solution corre-
sponded to the largest cluster number that induced the least
incremental change in the area under the CDF curves while
keeping the maximal consensus within clusters and the min-
imal rate of ambiguity in cluster assignments (Figures 3 (a)
and 3(b)). In particular, LUAD was classified into three
molecular subtypes namely, cluster 1 (C1), cluster 2 (C2),
and cluster 3 (C3) (Figure 3(c)). In terms of OS time, C3
had the longest OS time, while C1 had the shortest OS time
both in the TCGA and in the GSE31210 and GSE72094
datasets. There were major differences in OS among the
three subtypes (Figures 3(d)–3(f)).

3.4. Molecular Characteristics of the Three Molecular
Subtypes. For observing the molecular features of different
subtypes, we performed the genomic damage analysis on
the three molecular subtypes. The three subtypes showed

greatly variable aneuploidy scores, homologous recombina-
tion defects, fraction altered, number of segments, and
tumor mutation burden, with the C1 subtype indicating
higher levels of these five indicators (Figure 4(a)). Among
the mutations in the three subtypes of TCGA, substantially
higher mutation rates were observed for BRINP3, ITGAX,
and LAMA4 in C1 than in C2 and C3. The mutation rate
of the classical cancer-related gene EGFR was substantially
higher in C3 than in C1 and C2. Additionally, the mutation
rate of the gene IL1RAPL1 was much higher in C2 than in
C1 and C3 and C1 demonstrated the most prevalent copy
number amplification and deletion in all three subtypes
(Figure 4(b)).

3.5. Functional Analysis of Three Molecular Subtypes. After-
ward, the potential biological pathways involved in each
molecular subtype in the TCGA, GSE31210, and GSE72094
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Figure 5: GSEA analysis of molecular subtypes. A-C. GSEA analysis of C1 vs. C3 in TCGA, GSE31210, and GSE72094 datasets. D. The heat
map demonstrating normalized enrichment scores (NESs) of Hallmark pathways calculated by comparing C1 with C3. E. Radar plots
indicating NESs of Hallmark pathways calculated through a GSEA of C 1 vs. C3 and of C2 vs. C3 in TCGA, GSE31210, and GSE72094
datasets.
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datasets were analyzed. In TCGA, 13 activated pathways
were detected along with 15 inhibited pathways in the C1
subtype in comparison with the C3 subtype, and the acti-
vated pathways in C1 included oncogenic pathways such as
MYC targets, E2F targets, and G2M checkpoint. The inhib-
ited P53 pathway and apoptosis were well recognized path-
ways (Figure 5(a)). Furthermore, the MYC targets, E2F
targets, and G2M checkpoint were also greatly activated in
the C1 subtype of the GSE31210 and GSE72094 datasets
(Figure 5(b) and 5(c)). In addition, consistent activation
and inhibition of pathways between subtypes for the differ-
ent LUAD datasets were demonstrated (Figure 5(d)). Over-
all, the C1 subtype showed an activated state in the cell
cycle and an inhibited state in the immune regulatory path-
way (Figure 5(e)). Therefore, it was hypothesized that these
ligand and receptor genes used to classify molecules may
play major regulatory roles in the immunosuppressive
microenvironment and the cell cycle.

3.6. Tumor Microenvironment Characteristics of Different
Molecular Subtypes. This study found the cell infiltration
within TME in LUAD molecular subtypes grouped based
on intercellular communication-related genes. The cell levels
in TME of the three subtypes in TCGA, GSE31210, and
GSE72094 datasets were first observed based on marker
genes [19] in immune cells and 26 TME cells were found
to be much different among the three molecular subtypes,
such as dendritic cells (DC), B cells, T cells, cytotoxic cells,
eosinophils, macrophages, mast cells, and natural killer cells
(NK cells). Furthermore, the three molecular subtypes dif-
fered greatly in terms of angiogenesis and antigen-
presenting machinery, with C3 scoring much higher on
these two measures than C1 (Figure 6(a)). In addition, the
stromal score, immune score, and ESTIMATE score gener-
ated by the ESTIMATE algorithm indicated that C3 had a
substantially higher immune score and ESTIMATE score
compared to C1 in all the three datasets (Figure 6(b)).
Therefore, C3 showed relatively high immune cell infiltra-
tion. By performing an unsupervised hierarchical clustering

of immune cell scores for C1 and C3, patients were classified
into two groups, namely, the high- and low-immune infiltra-
tion groups. It was observed that the majority of the C3 sam-
ples were in the high-immune infiltration group, whereas
most C1 belonged to the low-immune infiltration group
(Figure 6(c)).

3.7. Identification of Ligand and Receptor Genes Associated
with the Prognostic Prediction of LUAD Patients. Finally, dif-
ferential expression of ligand and receptor genes was ana-
lyzed in the three subtypes, and it was observed that 180
of the ligand and receptor genes were differentially
expressed in the three molecular subtypes. Univariate Cox
regression analysis identified 32 genes among the 180
ligands and receptors correlated with the survival of LUAD
patients. LASSO Cox regression analysis based on the 32
genes helped identified10 hub ligand and receptor genes,
and regression coefficients were measured for individual
genes (Figures 7(a) and 7(b)). VEGFC was the risk factor
of LUAD, while the FCER2, CD1D, OGN, HGF, NTRK3,
TNFRSF17, CR2, VIPR1, and CD200R1 were the protective
factors of LUAD (Figure 7(c)). After calculating the risk
score for each sample in the training set, a survival analysis
was carried out and the results indicated that high-risk
LUAD patients had worse OS as compared to the low-risk
LUAD patients. Among them, high-risk samples mainly
came from C1 subgroup, a small amount from C2 subgroup,
and low-risk samples mainly came from C3 and most of C2
subgroup (Figure S3a). ROC curves were plotted and the
one-, three-, and five-year areas under the curve (AUC)
were noted to be 0.74, 0.68, and 0.61, respectively
(Figure 7(d)). Kaplan-Meier curves were plotted in the two
GEO validation datasets, and the outcomes highlighted that
high-risk scores were greatly linked to shorter OS for LUAD
patients in the GSE31210 and GSE72094 validation data-
sets. The AUC values for the ROC used to assess the risk
model were higher in both independent validation datasets
(Figures 7(e) and 7(f)).
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Figure 6: Assessment of TME characteristics of three molecular subtypes in different datasets. (a). TME cell content of the three molecular
subtypes in the TCGA, GSE31210, and GSE72094 datasets evaluated as per the marker genes in immune cells. (b). Stromal score, immune
score, and ESTIMATE score of the three molecular subtypes calculated using the ESTIMATE algorithm in the TCGA, GSE31210, and
GSE72094 datasets. (c). Unsupervised hierarchical clustering of immune cell scores based on C1 and C3.
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4. Discussion

The TME consists of various cell types, and the interactions
between these different cell types are correlated with tumor-
igenesis, tumor progression, treatment resistance, and the
stroma of immune infiltration [20]. These various cell types
interact with each other via ligand-receptor interactions.
Considering the significance of such interactions in patients’
treatment outcomes, therapies targeted towards intercellular
interactions have become increasingly popular in clinical
practice [11]. However, to date, enough research has not

been done to identify genes linked to intercellular
communication.

Numerous tools have been established using scRNA-seq
data for the analysis of intercellular ligand-receptor interac-
tions, and therefore reveal intercellular communication in
TME [17, 21, 22]. In this report, the scRNA-seq data was
provided by GSE149655 for two LUAD samples and two
normal samples. Analysis of scRNA-seq data from the
obtained 8,170 cells revealed that 18 cell clusters belonged
to 12 cell types, involving broad cell types such as secretory
cells, fibroblasts, epithelial cells, immune cells, and tumor
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Figure 7: Prognostic risk model of the ten genes associated with intercellular communication in the training dataset and external validation
datasets.A and B. LASSO Cox regression analysis according to 32 ligand and receptor genes. C. LASSO coefficient distributions for 10 hub
ligand and receptor genes. D-F. Kaplan-Meier curves and corresponding areas under ROC curve for LUAD samples in TCGA, GSE31210,
and GSE72094 datasets.
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cells. Interaction networks were created for the 12 cell types
using cellphoneDB, a tool the most widely utilized for study-
ing intercellular interactions. Moreover, in this study,
ligand-receptor pairs that greatly interact in the 12 cell types
of communication were extracted and we further divided
LUAD into three molecular subtypes according to these
intercellular communication-related molecules.

Among the three molecular subtypes, C3 showed the
longest OS time, followed by C2 and C1. Single nucleotide
variants have been reported to increase progressively
throughout progressive lesions from lung tumor precursors
to LUAD [23]. Furthermore, pre-malignant lesions in inva-
sive LUAD show immune activation and anti-tumor
immune deficits in more advanced lesions [24]. It was
observed in this study that C1 displayed more severe DNA
damage and somatic cell alterations in the three molecular
subtypes. Moreover, the C1 subtype showed an activated
state in the cell cycle, while the immune regulation was sup-
pressed. The MYC targets, E2F targets, and G2M check-
point, which are all hub pathways regulating cell
proliferation [25], were activated in the subtype C1. There-
fore, these results indicated that the C1 subtype was more
malignant, leading to the shortest OS time.

Finally, the intercellular communication-related scoring
model was constructed by screening ligand and receptor genes
that were all differentially expressed in the three subtypes. Fur-
thermore, the effects of some of the genes in the model on
tumors have been highlighted in several reports. The VEGFC,
an activator of lymphangiogenesis, has been observed to pro-
mote all aspects of oncogenicity by autocrine regulation [26]
and is correlated with poor prognosis in patients with LUAD
[27]. The CD1Dmolecules may stimulate anti-tumor immune
responses by presenting tumor-derived lipid and glycolipid
antigens to T cells and NKT cells [28]. OGN plays an onco-
genic role in the progression of both breast cancer [29] and
colorectal cancer [30]. The Overexpression of HGF is linked
to a poor prognosis of patients in many solid tumors, such
as lung cancer, head and neck, gastrointestinal, breast, and cer-
vical cancers [31]. Similarly, NTRK3 is a tumor suppressor
gene [32]. The VIPR1 gene is downregulated at the level of
LUAD cells and plays a key tumor suppressor role in the pro-
gression of LUAD [33]. The mRNA expression of CD2000R1
was a favorable prognostic factor in patients with non-small
cell lung cancer [34]. The analysis in this study suggested that
the VEGFC was a risk factor in LUAD, whereas the rest of the
nine genes were protective factors, which aligned with the
results shown in the mentioned previously reported research.
In addition, we also compared the expression relationship of
these 10 genes. It can be observed that most of these genes
showed significant positive correlation. It is worth mentioning
that VEGFC had the weakest correlation with other genes,
suggesting that VEGFC may be independently involved in
the occurrence and development of tumors (Figure S3b).
Comparison on the relationship between these genes and
immune cell infiltration in the immune microenvironment
demonstrated that these 10 genes were highly correlated with
immune cell infiltration in 22. Among them, CD2000R1，
CD1D,FCER2 and TNFRSF17 were mainly positively corre-
lated with immune infiltrating cells, VIPR1 and VEGFC were

mainly negatively correlated with immune infiltrating cells
(Figure S3c). These results showed that these 10 genes were
highly involved in the regulation of immune microenviron-
ment, and they may play different roles in different temporal
and spatial states. In conclusion, according to the analysis of
scRNA-seq data from LUAD samples, this study characterized
heterogeneous cell clusters in LUAD, providing a deeper
understanding of the potential intercellular interactions in
the TME of LUAD. Moreover, ligand-receptor genes that
determined intercellular interactions were identified, different
molecular subtypes of LUAD were clarified, and a novel inter-
cellular communication-related risk model was developed.
Our results not only improved the current classification of
LUAD at the cellular level, but also provided a potential pre-
dictive model for the prognosis of LUAD patients.
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Supplementary 2. Fig. S2 Quality control of single cells in
LUAD tissues and in normal tissues. A. Relationship
between the percentage of mitochondrial genes and mRNA
reads. B. Relationship between the number of mRNA and
mRNA reads. C. Scatter plot before quality control illustrat-
ing the number of genes, UMI, and percentage of mitochon-
drial genes in each cell type from four samples. D. Scatter
plot after quality filtering showing the number of genes,
UMI, and percentage of mitochondrial genes in each cell
type from four samples. E. Scatterplot of the top 2000 highly
variable genes.
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the three subtypes and high and low risk samples. B: Heat
map of expression correlation among 10 genes. C: Heat
map of the correlation between the expression of 10 genes
and the scores of 22 immune infiltrating cells.∗Indicates P
<0.05, ∗∗ indicates P <0.01, ∗∗∗ indicates P <0.001.
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