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Abstract: To date, few data have been accumulated on the contribution of meiotic restitution to
the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding,
karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aber-
rations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all
groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition
to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82%
of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1
plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes,
with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants
was asynchronous cell division and omission of the second division. Diploid gametes did not form
because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence
of the formed dyads was negatively correlated (r =−0.73) with the seed sets. Thus, meiotic restitution
in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.

Keywords: wheat–rye amphidiploids; karyotype reorganization; FISH; C-banding; meiotic restitu-
tion; sterility

1. Introduction

Polyploidy plays a central role in plant genome evolution and in the formation of new
species [1,2]. In addition to the ancient process of genome-wide duplication in all seed
plants, in most plant species, including cultivated ones, two or more divergent genomes
can merge via hybridization in a single nucleus [3]. The high heterozygosity of such
allopolyploid species ensures the high genetic diversity of their progeny [4,5].

The formation of polyploids is followed by their passing through a bottleneck of
instability [6]. When two parental genomes join to form an allopolyploid genome, a
“genomic shock” is experienced [7]. A multitude of evolutionary processes affects polyploid
genomes, including rapid and substantial genome reorganization, transgressive gene
expression alterations, gene fractionation, gene conversion, genome downsizing, and the
sub- and neofunctionalization of duplicate genes [2,5,8–15]. Thus, new polyploid species,
most of which have experienced several cycles of polyploidization [16], end up suffering a
massive loss of “redundant” DNA and the restructuring of their chromosomes, as well as a
repeated reduction in genome size [17]. Other changes in genomes at the chromosomal
level involve duplications, deletions, fissions, fusions, translocations, and inversions of
whole chromosomes, chromosome arms, or smaller segments [18].

The Poaceae family includes many typical allopolyploids. It has been found that
the bread wheat subgenomes A, B, and D were originally derived from three diploid (2x;
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2n = 14) species within the tribe Triticeae: Triticum urartu (AA), an extinct or undiscov-
ered species in the lineage of Aegilops speltoides (BB), and Ae. tauschii (DD) [19,20]. The
coadaptation of bread wheat subgenomes is evidenced by their structural and functional
dissymmetry, manifesting itself as regional asymmetrical gene distribution and a lack of
interaction at the transcriptional level of gene regulation, and by homologous exchange
within genes [21–28].

The evolution of cereals has involved variations in chromosome structure and number.
Recently, Murat et al. [29] and Pont et al. [21] suggested that Poaceae originated from an
Ancestral Grass Karyotype (AGK), which existed 90 million years ago and contained n = 7
protochromosomes. In the first step of paleoploidization—paleotetraploidization—a whole-
genome duplication (WGD) produced n = 14 chromosomes 65 million years ago. This was
followed by reciprocal translocations, inversions, and telomeric/centromeric fusions to
reach an n = 12 chromosome intermediate [29]. Common wheat developed in the same
way [25,29]. It is hypothesized that the Ancestral Triticeae Karyotype (ATK) originated from
the 12 chromosomes of the AGK intermediate by means of six fusions and one fission (n = 7),
followed by two rounds of neohexaploidization (involving progenitors/subgenomes A,
B, and D) that finally shaped the 21 modern bread wheat chromosomes [21]. Although
gross chromosome homologies are conserved, structural changes involving chromosomes
4A, 5A, and 7B are apparently present in all hexaploid and tetraploid wheat in the Emmer
group and 1G-4G-6At +3At -4At in the Timopheevii group [30–35]. Intra- and interspecific
divergence, accompanied by species-specific chromosome rearrangements, have been
found in two wheat groups, Emmer and Timopheevii [36]. Although all extant wild wheat
have x = 7, comparative cytogenetics highlights considerable chromosomal rearrangements
within and among wild diploid and polyploid species [37–39].

Artificial polyploidization and remote hybridization are employed in breeding to
increase crop yield [40]. Wild relatives are also used when raising allopolyploids in or-
der to expand the genetic diversity of common wheat by the introgression of valuable
alleles [41]. Triticale (×Triticosecale Wittmack), the hybrid of wheat and rye, is an allopoly-
ploid species that is evolutionarily younger than durum or common wheat. The earliest
naturally emerging wheat–rye hybrids were discovered at the southeastern experimental
agricultural station in Saratov in the late 1920s [42,43]. The plants showed intermediate
traits and were described by G.K. Meister as a new botanical species, Triticum Secalotriticum
saratoviense Meister [44]. The first stable amphiploid triticale (Triticosecale Wittmack) is
attributed to Rimpau in 1888 [43]. Cytological examinations of the first triticales raised in
Russia and Germany showed that their somatic chromosome number was 56 [44], which
indicates the combination of four genomes, BBAADDRR. About 68% of repetitive and
low-abundance DNA sequences are lost or modified when combined within a single nu-
cleus [45–47]. Allopolyploidization in triticale can also be accompanied by rapid variations
in retrotransposons, tandem repeats, regulatory units, coding sequences, and promoter
sequences [48,49]. The rye parental genome is more prone to changes than the wheat
one. After chromosome duplication, triticale genome reorganization occurs slowly, and
most changes are confined to the first five generations [46]. The parental genotype affects
genomic changes during allopolyploidization [49]. However, the expression of meiotic
genes is highly resistant to changes induced by polyploidization [50]. The analysis of
a large set of RNA-seq data showed that neither the level of synapsis, the ploidy level,
nor the Ph1 locus affected overall meiotic transcription during the leptotene–zygotene
transition stage in wheat–rye hybrids and doubled wheat–rye hybrids (newly synthesized
triticale) [50].

The loss of DNA sequences alters the structures of rye and wheat chromosomes in
the triticale chromosome set. This reorganization is also characterized by chromosome set
instability, that is, the elimination of chromosomes or whole subgenomes [51–59].

Nearly all molecular and cytogenetical studies of genome reorganization have been
conducted with triticale raised via colchicination. However, most natural polyploids
arose sexually through the formation of unreduced gametes with somatic (2n) rather than
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haploid (n) chromosome numbers [3,60–62]. Polyploids may arise in one step via the
fusion of two unreduced gametes or through a so-called triploid bridge. The triploid
bridge mechanism seems to occur more often than the single-step pathway because of
the low probability of the fusion of two unreduced gametes in natural populations [63].
Functional gametes in wheat–rye F1 hybrids are formed via meiotic restitution, in which
there is no pairing of chromosomes, and univalents are divided into sister chromatids in
the first meiosis after which the meiosis ends [64–66]. It was found that meiotic restitution
is genetically controlled in wheat–rye hybrids [64–68] and inherited in durum wheat–rye
hybrids [54,66,67].

At present, little is known about the possibility of inheriting meiotic restitution, or
about the contribution of meiotic restitution to the patterns of karyotype formation and the
rate of meiotic stability restoration in common wheat–rye hybrids. Previously, we examined
the chromosome sets, structures, and behavior in meiosis of the selected progenies (with
good seed-setting ability) of F2-3 wheat–rye hybrids, obtained using the bread wheat
cv. Saratovskaya 29 and the wheat–rye substitution line 1Rv(1A), which determines
meiotic restitution [64]. Karyotype analysis of the F2 Triticum aestivum L. cv. Saratovskaya
29× Secale cereale L. var. Onochoyskaya (S29× R) hybrid revealed 56 chromosomes; among
them were 42 wheat chromosomes and 14 rye chromosomes [69]. The karyotype of the F2
1Rv(1A) × R hybrid contained 46 chromosomes, of which three pairs of rye chromosomes
1R1R4R4R2RL2RL, 1R1R replaced the chromosomes 1A1A, and 2RL2RL and 4R4R were
added. In the F3 generation of S29× R hybrids, the octoploid number of chromosomes with
aneuploidy of single rye and wheat chromosomes was preserved, while in the 1Rv(1A)× R
hybrids, the number of chromosomes varied from 42 to 49, but in most plants, 2n = 46
was retained. The main meiotic disorders in hybrids F3 1Rv(1A) × R and S29 × R was the
presence of univalents in the first division and micronuclei in the second. Most disturbances
are terminated by the fifth generation of allopolyploid hybrids [46,70]. Based on this, in
the current work, we examined the chromosome sets, structures, and behaviors in meiosis
of three groups of F5 wheat–rye hybrids. Each group is the progeny of a single F1 plant
obtained by crossing the 1Rv(1A) common wheat disomic substitution line with the rye
Secale cereale var. Onochoyskaya. The significant elimination of rye chromosomes was
observed in the first two groups. The chromosome numbers in Group 3 varied from 52
to 56. All rye chromosomes were preserved there, but the wheat chromosomes showed
insignificant aneuploidy. Our observations suggest that genome reorganization is not
finished in any group of F5 descendants. The meiosis in the hybrids was unstable. Specific
features of meiosis in the plants of the third group included asynchronous cell division
and the omission of the second division, followed by significant disturbances during
mitosis in gametogenesis. In the other two groups, the second division of meiosis took
place. Therefore, meiotic restitution in 8n triticale was inherited but did not contribute to
increases in ploidy in subsequent generations.

2. Materials and Methods

Three groups of F5 plants were obtained by crossing the 1Rv(1A) disomic wheat–rye
substitution line (2n = 42) (T. aestivum L. cv. Saratovskaya 29/S. cereale L. cv. Vyatka) [71]
with spring rye Secale cereale L. var. Onokhoiskaya was investigated. Rye Onokhoiskaya
tolerates spring frosts and May–June drought and is resistant to diseases and pests. The
1Rv(1A) disomic wheat–rye substitution line is cytogenetically stable [71] and determines
meiotic restitution [64]. The partially fertile F1 hybrids 4-3, 4-7, and 73-1 arose from
unreduced gametes [64].

Six seeds were set in the F1 4-3 plant, and they produced only 2 fertile F2 plants (6-1
and 6-2), which were taken for further study (Table S1, Figure 1). As the seeds of each
plant were sown separately, starting from F1, their progeny was designated as lines. In
the F3 of plant 6-1 (subgroup 1a), only 1 plant (22-4) was fertile, while 4 high-yield plants
were obtained in F4. One low-yield plant (23-8) and 2 plants with different numbers of
grains (23-10 and 23-13) were chosen from the F3 progeny of plant 6-2 (subgroup 1b). A
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total of 12 high-yield plants were chosen from F4 in subgroup 1b (Figure 1). As a result,
the chromosome sets were analyzed in the F5 plants that originated from 16 F4 plants.
Some of the grains of one plant were sown in the greenhouse; karyotypes were analyzed
in vegetative plants using FISH. Other grains from the same plant were transferred for
karyotype analysis using C-banding.

Figure 1. Development of wheat–rye hybrids of Group 1. The scheme shows individual plants from
the F1–F4 generations, and the number of seeds in these plants. For the F5 generation, the number of
plants analyzed for karyotype is shown.

Five seeds were set in plant F1 4-7 (Group 2). They yielded 5 plants, and 3 high-yield
plants were chosen for further crosses. To obtain generation F3, 36 seeds were taken from
each plant, and 5 high-yield plants from these 36 were selected to obtain F4 (Table S1,
Figure 2). Finally, chromosome sets were analyzed in F5 plants originating from 15 F4
plants via C-banding.

Figure 2. Development of wheat–rye hybrids of Group 2. The scheme shows individual plants of
the F1–F4 generations, and the number of seeds in these plants. In the F5 generation, the number of
plants analyzed for karyotype is shown.

One seed was set in plant F1 73-1 (Table S1, Group 3), and 35 seeds in F2 (26-1).
Generation F3 plants were grown from these seeds, only 8 of which were fertile (Figure 3).
The 3 plants with the most seeds were selected. In total, 4 plants with the most seeds were
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chosen from F4. Some of the grains of each of the 4 plants were sown in the greenhouse;
karyotypes were analyzed in the vegetative plants using FISH. Other grains from the same
plants were transferred for karyotype analysis using C-banding.

Figure 3. Development of wheat–rye hybrids of Group 3. The scheme shows individual plants of the
F1–F4 generations and the number of seeds in these plants. The number of plants in the F5 generation
in which the karyotype was analyzed is shown.

F5 hybrids were grown in a greenhouse under a 24/18 ◦C day/night temperature
regime and a 16/8 h day/night schedule.

2.1. Routine Meiosis Analysis

To analyze meiotic division, young spikes were fixed in ethyl alcohol–acetic acid 3:1
and stored at 4 ◦C. Pollen mother cells (PMCs) were stained with and squashed in 3%
acetocarmine. All of the anthers with PMCs at metaphase I–anaphase I and anaphase
II–telophase II, and with separate microspores, were examined (Table 1). Each anther was
analyzed individually, assaying all PMCs in each anther.

Table 1. Material analyzed.

Hybrid F2 Hybrid F3 Hybrid F4

Hybrids F5

Routine Analysis FISH

Plants Anthers Meiocytes+ Microspores Plants Anthers Meiocytes

6-1 (subgroup 1a) 22-4

72-3 7 15 1419 3 7 228

72-4 4 11 826 5 10 489

72-11 4 17 1851 2 7 315

72-12 6 23 2934 6 10 684

6-2 (subgroup 1b)

23-8 76-1 11 27 3304 - - -

23-10

77-1 4 11 1007 - - -

77-4 6 16 1482 - - -

77-8 6 12 961 - - -

73-1 (group 3)

41-7 87-1 9 43 3215 3 7 112

41-16 88-1 9 47 2862 2 5 72

88-2 6 34 3117 - - -

41-22 89-6 8 41 3096 3 6 82
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2.2. Giemsa C-banding

C-banding was carried out as in [72]. The slides were examined under an Amplival
microscope (Carl Zeiss Jena). Images were recorded with a LeicaDS300 camera (Leica
Microsystems) and processed using the Adobe Photoshop CC2017 software.

Chromosomes were identified using a generalized species idiogram [73,74].

2.3. Fluorescence In Situ Hybridization (FISH)

The mitotic and meiotic slides used for FISH were prepared as in [64]. Meiocytes
were analyzed at metaphase I (MI) (Table 1). The following probes were used: Aegilops
tauschii pAet6-09, specific to centromeric repeats on chromosomes of rice, wheat, rye, and
barley [75,76]; pAWRc, specific to the rye chromosome centromeric repeat [77]; rye genomic
DNA. The samples of plasmid DNA containing the corresponding repeats were kindly
provided by Dr. A. Lukaszewski (University of California, United States). Centromere-
specific probe pAet6-09 was labeled with biotin-16-dUTP and pAWRc with digoxigenin-11-
dUTP via polymerase chain reaction (PCR). Total rye DNA was labeled by nick translation
using digoxigenin-11-dUTP. The probes were used separately or in combination (rye
DNA/centromere and pAet6-09/ pAWRc) and were mixed with blocking (sonicated)
wheat DNA. Biotinylated probes were detected using avidin conjugated to fluorescein
(Fluorescein Avidin D, Vector Laboratories, No. A-2001), and the hybridization signal was
amplified using fluorescein anti-avidin (Fluorescein Anti-Avidin D, Vector Laboratories,
No. SP-2040). Digoxigenin-labeled probes were detected using anti-digoxigenin antibodies
conjugated with rhodamine (Anti-digoxigenin-rhodamine, Fab fragments, Sigma-Aldrich,
no. 11207750910 ROCHE). Chromatin was stained with 1 mg/mL DAPI (4′,6-diamidino-2-
phenylindole) in Vectashield anti-fade solution (Vector Laboratories).

All slides were examined under an Axio Imager M1 (Carl Zeiss) microscope. Images
were recorded with a ProgRes MF camera (Meta Systems, Jenoptic) and processed using
the Adobe Photoshop CS2 software.

2.4. Statistical Analysis

Associations between 2 traits (the number of grains and the percentage of micronuclei
at telophase II, the number of grains, and the percentage of dyads at telophase II) were
determined using the Pearson correlation coefficient (Microsoft Excel program). The
significance of the correlation was determined using the Student’s t-test and the Chaddock
scale (Table 2).

Table 2. Criteria for interpreting the strength of the relationship between two variables.

Correlation Coefficient Interpretation

0.90 to 1.00 (−0.90 to −1.00) Very high positive (negative) correlations, very
dependable associations

0.70 to 0.90 (−0.70 to −0.90) High positive (negative) correlations, marked
associations

0.50 to 0.70 (−0.50 to −0.70) Moderate positive (negative) correlations,
substantial associations

0.30 to 0.50 (−0.30 to −0.50) Low positive (negative) correlations, defined
but small associations

0 to 0.30 (0 to −0.30) Negligible correlations

3. Results
3.1. Karyotyping
3.1.1. Group 1

The FISH and C-banding data indicate that the chromosome sets of the F5 descendants
of two sister lines (subgroups 1a and 1b) differ. Plants with 2n = 44 and 2n = 43 (47.05
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and 36.76%, respectively) were predominant in subgroup 1a (Figure 4). The numbers
of rye chromosomes varied from three to six, and most sets (79.4%) displayed four rye
chromosomes, namely, disomic 1R and 4R (Figure 5). Chromosome 1R was trisomic or
tetrasomic in sets with six rye chromosomes. Wheat chromosomes were mostly present in
the disomic state, and chromosomes 3B, 4A, 4D, 5D, and 7D were monosomic in sets one,
two, one, one, and one, respectively. The rye chromosome 1R always replaced wheat 1A.
Chromosome 4R replaced chromosome 4D in one plant and 4A in two. In other plants, this
chromosome was added to the wheat chromosomes.

Figure 4. Frequencies of different chromosome sets in the plant karyotypes of subgroup 1a, 22-4
plant progeny. Designations: T, Robertsonian translocation; t, telocentric; W, wheat chromosomes; R,
rye chromosomes.

Figure 5. Chromosome sets of plants of subgroup 1a: (a) 2n = 44, 1R(1A) substitution, 4R4R added
(C-banding); (b) 2n = 44, four rye chromosomes (GISH; rye chromosomes are labeled red and
centromeres, green).

Subgroup 1b included chromosome sets of F5 plants obtained from three F3 plants
(Figures 1 and 6). This subgroup was distinguished by the presence of the three rye
chromosomes 1R, 2R, and 7R, while 4R was absent. Chromosome 1R was found in the
disomic state in all plants, and it replaced wheat chromosome 1A. The chromosomes
2R and 7R were monosomic. This group was also marked by wheat–rye Robertsonian
translocations and wheat and rye telocentric chromosomes (Figure 6).
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Figure 6. Frequencies of different chromosome sets in the plant karyotypes of subgroup 1b: (a) 23-8
plant progeny; (b) 23-10 progeny; (c) 23-13 progeny. Designations follow Figure 4.

Chromosome sets in the progeny of plant 23-8 (Figure 7a) formed three major groups:
39W+1R1R+T1BL.1RL (43.75%) (Figure 6a), 40W+1R1R (31.25%), and 40W+2R+T1BL.1RL
(18.75%). The three major groups in the progeny of 23-13 were 40W+1R1R (35%),
40W+1R1R+2R (23.33%), and 40W+1R1R+2R+7R (18.33%) (Figure 6c). Wheat chromosomes
were in the disomic state with few exceptions (3A, 2D, and 4B were monosomic).

A different pattern was observed in the progeny of plant 23-10. Their chromosome sets
were more diverse: a total of 20 different sets were found (Figure 6b). The most frequent
chromosome sets were 39W+1R1R+2R+7R (18.75%), 38W+1R1R+2R2R+T2RL.W (12.5%),
and 40W+1R1R+2R+7R (10.41%). The numbers of rye chromosomes varied from two to
five. The 40W+1R1R set was found in only one plant. Sets with wheat and rye telocentrics
and with Robertsonian translocations were found in 33.33% of plants. The translocated
chromosomes had hybrid centromeres because the centromeric repeats pAet6-09 and
pAWRc did not overlap (Figure 8).
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Figure 7. Chromosome sets of the same plant progeny of subgroup 1b with a 1BL.1RL translocation
(2n = 42) (shown with an arrow): (a) C-banding; (b) GISH; rye chromosomes are labeled red and
centromeres with green.

Figure 8. A chromosome set with a wheat–rye Robertsonian translocation (in circle). GISH, rye
chromosomes are labeled red and pAet6-09, green. The inset shows the chromosome centromere
with two non-overlapping probes pAet6-09 (green) and pAWRc (red).

3.1.2. Group 2

The chromosome sets of the F5 plants in Group 2 were relatively uniform. As shown
by C-banding, only two rye chromosomes were present in the disomic state: 1R1R and
4R4R (Figures 9 and 10).
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Figure 9. Frequencies of different chromosome sets in plant karyotypes of Group 2. Designations
follow Figure 4.

Figure 10. Karyotype with disomic substitution 1R(1A) and monosomic substitutions 4R(4A) and
4R(4D) 2n = 42. C-banding.

The intergenomic substitution 1R(1A) was preserved in the first homeologous group
in all sets. A 4R4R pair was added to the whole set of common wheat chromosomes in
58.59% of sets. Alternatively, it replaced one of three wheat chromosomes of the fourth
homeologous group in 13.15% of sets. Monosomic was observed in 11 chromosome sets
(Figure 10), and disomic substitution in 6: in 1 plant with 4R(4A) substitution and in 5 with
4R(4B) (Table 3). Chromosome 4B was the most commonly eliminated or rearranged (19
plants, Table 3). Aneuploidy for chromosomes 6A, 5B, and 7D was detected in 11 plants—7,
1, and 3, respectively.
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Table 3. Combinations of rye and wheat chromosomes of the 4th homeologous group.

Homeologous Group 4 Plants/%

AABBDDRR 76/58.9%

A-BBDDRR 1/0.77%

AA-BDDRR 4/3.1%

AABB-DRR 3/2.32%

–BBDDRR 1/0.77%

AA–DDRR 5/3.87%

A-B-DDRR 1/0.77%

A-BB-DRR 2/1.55%

AABBDD-R 3/2.32%

AA-BDDR- 1 /0.77%

AABBDD-RL 2/1.55%

AABBD-RRL 1/0.77%

AABBLDDRR 1/0.77%

AABLBLDDRR 7/5.43%

AABBDDRS- 1/0.77%

AABBDDRRR 1/0.77%

AABBDD– 19/14.73%

Total 129/100%

3.1.3. Group 3

The chromosome numbers in Group 3 plants were nearly octoploid, varying from
52 to 56. Plants with 2n = 56 constituted 36.84%; 52, 14.03%; 53, 8.77%; 54, 26.3%, and 55,
14.03% (Figure 11).

Figure 11. Frequencies of different chromosome sets in plant karyotypes of Group 3. Designations
follow Figure 4.

The presence of 16 rye chromosomes owing to chromosome 1R tetrasomy (68.4% of
plants) was a specific feature of the chromosome sets (Figure 11). The 40W+16R chro-
mosome combination was found in 28.07% of the sets. Four sets lacked one pair of 1R
chromosomes, and one set lacked one 6R chromosome. Intergenomic substitution 1R(1A)
was preserved in homeologous group 1. It was found in all chromosome sets but four. Dis-
omic and monosomic intergenomic substitutions of wheat chromosomes 3R(3A), 6R(6A),
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2R(2B), 3R(3D), and 4R(4D) were detected in nine plants, of which six showed substitutions
of the chromosomes of homeologous group 3 (Figure 12). Chromosomes with altered
structures were identified by GISH in only six plants—five with a rye telocentric and one
with a wheat telocentric.

Figure 12. Chromosome sets of plants of Group 3: (a) Chromosome number 2n = 53, 1R(1A)
substitution, and monosomic substitutions 3R(3A) and 6R(6A), C-banding; (b) 2n = 56, 40W+16R;
GISH. Rye chromosomes are labeled red.

3.2. Chromosome Behavior in Meiosis

Chromosome behavior was studied in plants from Groups 1 and 3. The predominant
meiotic aberrations in Group 1 were (i) the formation of univalents and their improper
disjunction, leading to the formation of micronuclei, and (ii) cell cycle asynchronization
(Figure 13).

Figure 13. The behavior of chromosomes undergoing meiosis in plants of Group 1: (a) Diakinesis—
chromosomes form bivalents; (b) metaphase I and anaphase I. Two univalents in a meiocyte at
metaphase I; univalents arrested on the metaphase plate at anaphase I; (c) cell cycle asynchronization
in meiocytes in one anther; meiocytes at MI–AII; (d) meiocytes at TII; micronuclei are shown with
arrows. Staining acetocarmine. Scale bar 10 µm.

Meiocytes with univalents constituted 68.3 ± 2.64% to 100% of subgroup 1a and
60± 3.05 to 92± 2.16% of subgroup 1b (progeny of plant 23-10), and made up 32.4± 1.05%
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of the progeny of plant 23-8. Univalents were lagged on the metaphase plate at anaphases
I and II. The arrest of chromosomes on the metaphase plate at AII caused the formation
of micronuclei at the tetrad stage. The counting of micronuclei in tetrads revealed differ-
ences within Group 1 and within each of its subgroups. In subgroup 1a, meiocytes with
micronuclei constituted 47 ± 3.75 to 70.26 ± 6.2% (Table 4).

Table 4. Micronucleus formation at telophase II and seed sets in F5 plants of Group 1.

Hybrid F1 Hybrid F2 Hybrid F3 Hybrid F4
Hybrids F5

Meiocytes with Micronuclei, % Seed Set

4-7

6-1 (subgroup 1a) 22-4

72-3 47 ± 3.75 67 ± 6.2

72-4 56.35 ± 8.3 61.83 ± 9.2

72-11 70.26 ± 6.2 81.88 ± 9.4

72-12 60.37 ± 6.0 102.47 ± 9.3

6-2 (subgroup 1b)

23-8 76-1 13.93 ± 1.89 55.93 ± 6.7

23-10

77-1 65.21 ± 9.4 37.19 ± 8.5

77-4 46.5 ± 2.45 40.92 ± 7.9

77-8 46.95 ± 7.95 40 ± 6.2

The asynchronous cell cycle manifested itself as the presence of meiocytes from
metaphase I to telophase II inside the same anther (Figure 13). Such anthers were noted in
all plants, but their frequencies varied broadly, from 13.2 to 64%. The frequency of anthers
with asynchronous meiocyte division did not correlate with poor seed sets (r = 0.19).

In subgroup 1b, the lowest number of meiocytes with micronuclei was found in
the progeny of plant 23-8: 13.93 ± 1.89%. In the progeny of 23-10, the percentage of
meiocytes with micronuclei varied from 46.5 ± 2.45 to 65.21 ± 9.4%. Seed sets varied
among plants within subgroups, and showed negligible correlations with micronucleus
numbers, according to the Chaddock scale (Table 1, Figure 14).

Figure 14. Absence of correlation between the frequency of micronuclei in meiosis and the seed set: (a) Subgroup 1a, 22-4
plant progeny; (b) subgroup 1b, 23-8 plant progeny; (c) subgroup 1b, 23-10 plant progeny. r—correlation coefficient.

The rye chromosomes 1R1R and 4R4R were identified in the chromosome sets of
subgroup 1a. To understand the cause of the preservation of chromosomes 4R4R up to
generation F5, we analyzed the behavior of rye chromosomes at metaphase I and found
that chromosomes 1R1R and 4R4R together formed 1.82 ± 0.05 rod and ring bivalents per
meiocyte (Figure 15). Univalent rye chromosomes were detected in 17.8% of cells.
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Figure 15. Rye chromosomes 1R1R and 4R4R form rod bivalents at metaphase I. Scale bar = 40 µm.

Chromatin migration was also detected in meiosis. Cytomixis was identified in MI
meiocytes and in pollen grains (Figure 16). Chromosome disjunction was not disturbed in
donor cells (with fewer chromosomes). In contrast, the division machinery was inoperative
in the recipient cells, and chromosomes occurred in indistinct clusters.

Figure 16. Cytomixis in meiosis in plants of Group 1: (a) Chromosomes in the donor cell behave
normally, whereas abnormal chromosome behavior is observed in the recipient cell (shown with an
arrow); (b) pollen grains of different sizes. Staining acetocarmine. Scale bar = 10µm.

Univalents were found in 77.07 ± 2.01% of the meiocytes in metaphase I in Group
3 plants. They were formed from both wheat and rye chromosomes (Figure 17a,b). Mi-
cronuclei were detected in 68.9 ± 3.86% of the microsporocytes in telophase II (Figure 17d).
Some meiocytes showed no chromosome pairing at all (Figure 17c).

Figure 17. Typical chromosome behavior in meiosis in plants of Group 3: (a) Metaphase I; (b)
metaphase I and anaphase I; (c) meiocyte without chromosome pairing; (d) tetrads with micronuclei
and a dyad amid tetrads. (a) GISH; rye chromosomes are labeled red and pAet6-09, green; (b–d)
acetocarmine. Scale bars = 40 µm in (a) and 10 µm in (b–d).

Some cells displayed chromatin breakage and cytomixis (Figure 18). The migration
of chromatin between a tapetum cell and a meiocyte was detected at prophase I, at which
point its compaction changed.



Plants 2021, 10, 2052 15 of 25

Figure 18. Meiotic aberrations in plants of Group 3. (a) Cytomixis; chromatin migrates between a
tapetum cell and a meiocyte at prophase I. (b) Chromosome breaks at AI. Staining acetocarmine.
Scale bar = 10 µm.

Asynchronous cell cycles were characteristic of meiosis in hybrids of this group. At
the leptotene–zygotene stage, all anther meiocytes corresponded to this state (Figure 19a),
whereas meiocytes corresponding to leptotene–zygotene was present in all subsequent
meiotic phases, from pachytene to telophase II (Figure 19b–f).

Figure 19. Meiocytes at early prophase stages retard in development in plants of Group 3. (a) The
leptotene–zygotene stage; all meiocytes develop synchronously; (b) a meiocyte at the zygotene stage
amid meiocytes at the pachytene stage; (c,d) meiocytes at prophase amid meiocytes at MI, TI; (e) a
meiocyte at the zygotene stage amid meiocytes at the tetrad stage. Staining acetocarmine. Scale
bar = 10 µm.

The omission of meiotic division II was observed in some plants, and dyads were
identified among tetrads (Figure 20a). The percentage of dyads varied from 21.9 to 100
(Figure 20c). Significant aberrations in the mitotic division and chromatin structure were
observed during pollen grain formation (Figure 20b).



Plants 2021, 10, 2052 16 of 25

Figure 20. Dyad formation in plants of Group 3. (a) Dyads amid tetrads; (b) abnormal pollen grain
development; meiocytes at the leptotene stage amid pollen grains (shown with an arrow); (c) The
frequency of dyad formation inversely correlates (r = −0.73) with seed set. r—correlation coefficient.
Staining acetocarmine. Scale bar = 10 µm.

To summarize, the data on meiosis in particular plants and their fertility show that
the high frequency of dyad formation is negatively correlated (r = −0.73) with the seed set
(Figure 20c). According to the Chaddock scale, a correlation coefficient r = −0.73 indicates
high correlations with marked associations. Dyad formation and seed set were significantly
associated (Student’s t-test, p ≤ 0.001, df = 15).

4. Discussion
4.1. Chromosome Instability in F5 1Rv(1A) × R Hybrids

Meiotic restitution (spontaneous chromosome duplication in gametes, yielding 2n ga-
metes) in F1 of interspecies and intergeneric hybrids is the means by which new polyploids
(allopolyploids) arise in angiosperms [78–80]. The earliest wheat–rye hybrids, octoploid
triticales, were also obtained by means of spontaneous chromosome duplication, including
anthers as well as ovules [47]. Although triticales have a complete chromosome set, almost
all newly formed triticales produce some chromosomally variable progeny [47,49,65,81,82].
In this study, the F1 hybrids from which F5 were obtained via self-pollination were pro-
duced using unreduced gametes. The unreduction occurs as follows: univalents congregate
on the metaphase plate and separate into sister chromatids at AI. Then, two daughter nu-
clei are formed, and meiosis ends after meiosis I [64]. It was expected that the fusion of
2n gametes would give rise to octoploid triticales. However, the analysis of the chromo-
some sets of the three groups studied revealed their different means of reorganization. A
common feature of the chromosome sets of the three groups was the predominant trans-
mission of chromosome 1R, which replaces wheat chromosome 1A. This was predictable,
as line 1Rv(1A) was used for hybridization to rye. One-third of Group 3 plants were
octoploids (2n = 56) bearing the tetrasome rye chromosome 1R. Other chromosome sets
showed aneuploidy for two rye chromosomes and five intergenomic substitutions for
wheat chromosomes. In contrast, the chromosome sets in Groups 1 and 2 reverted to
the ancestral substitution line 1Rv(1A). They retained 37 to 40 wheat chromosomes and
eliminated four to five rye chromosome pairs. The F2 hybrid 7-4, the ancestor of the F5
of Group 2, comprised a set of 46 chromosomes, with 40 wheat and 6 rye chromosomes
(1R1R4R4R2RL2RL), as shown by C-banding [69]. The long arms 2RL2RL were preserved
in the F3 generation [69] and were eliminated by F5. One reason for the absence of rye
chromosomes from F2 might be their elimination in hybrid embryogenesis [69]. Alien
chromosome elimination has been reported in crosses of wheat with Secale cereale, species
of genus Hordeum, and species more distantly related to wheat, such as maize (Zea mays),
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pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor), and Imperata cylindrica [83–97].
The preferred elimination of wheat D-genome chromosomes in the first generations af-
ter synthetic wheat (BBAADD) × rye (RR) hybridization was also observed, and an F2
seedling carrying 48 chromosomes was observed [56]. Hexaploid triticales with 28 intact
A/B and 14 intact R chromosomes, and with other chromosome constitutions, including
monosomic, substitution, and translocation lines, were found in F5 of these hybrids [54,56].
Another reason for the absence of rye chromosomes from F2 may be meiotic irregularities
in F1, which produce laggard chromosomes and aneuploid gametes [98]. Alterations in
chromosome disjunction in wheat–rye hybrids may produce gametes with chromosome
numbers other than 21 or 28 [65,81]. The analysis of F2 T. aestivum L.× S. cereale L. indicated
chromosome number variability. Plants in one group had the euploid chromosome number
2n = 56, and others had aneuploid numbers 49 to 54 [81]. The same study showed that
most of megaspores in F1 hybrids were aneuploid for one to four chromosomes, wheat or
rye. Aneuploid plants were detected among hybrids T. turgidum L. × S. cereale L. using the
meiotic restitution pathway: one was monosomic (41 chromosomes) for rye chromosome
3R, two had 42 chromosomes each, one was a nullisomic-1R-tetrasomic-1B heterozygous
for deficiency in approximately half of the long arm of chromosome 2B, and one was
nullisomic-1R-trisomic-2A-trisomic-1B [65].

In this study, univalents and micronuclei were also formed in the meiosis of F5 hybrids,
regardless of chromosome number and set completeness. Thus, genome reorganization
was not completed in any of the three groups of wheat–rye F5 generation. Little is known
about how long an allopolyploid chromosome set can remain unstable for, and how it
can affect the allopolyploid evolution. Artificially resynthesized allopolyploids obtained
by meiotic restitution mimic the allopolyploidization process. Studies in this field show
different advances in the increase in stable allopolyploids in different taxa. An attempt to
resynthesize the ancient polyploid Arabidopsis suecica by crossing A. thaliana and A. arenosa
produced a viable hybrid, which showed homologous pairing and no important structural
reorganization of the homeologous genomes in F5 [99]. In contrast, chromosomal variation
is ubiquitous in newly developed synthetic hexaploid wheat (SHW) created by crossing
T. turgidum with A. tauschii [100–102]. The common occurrence of univalency during meiotic
metaphase I was associated with chromosome instability [102]. Young allopolyploids,
termed neopolyploids, are appropriate evolutionary model systems for understanding
early allopolyploid formation. Chromosome set instability is exemplified by the natural
neoallotetraploids Tragopogon mirus and T. miscellus (about 40 generations). Aneuploids
constitute 38 and 69% of these plants, respectively [103].

Cytological instability and aneuploidy in wheat–rye octoploid and hexaploid allopoly-
ploids have presented problems since their creation [47,49,104–106]. The cytological study
of triticale demonstrates that the interaction of wheat and rye genomes in the cells of
one plant leads to profound derangements in cell physiology, which are maintained for
decades at least. Thus, the same irregularities in meiosis and mitosis are noted in the
triticale produced by Rimpau in 1889 as are found in triticale derived in later studies,
including this one. In spite of the complete chromosome set, univalents are abundant in
the meiosis of triticales of different ploidies [47,65,104–106]. In a comprehensive study
of this phenomenon, only bivalents were found at diakinesis, but at MI, a pattern was
established that can be interpreted as either chromosome lagging or the presence of a
univalent. Aneuploid cells may arise in triticale as a result of the asynchronized func-
tioning of rye and wheat chromosomes, and from chromosome lagging at the anaphase
and telophase [105]. Chromosome disjunction depends on the proper functioning of the
kinetochore [107]. As such, in stable hybrids, the CENH3 produced by one parent must be
able to support the functionality of the other parent’s centromeres, despite differences in
each parent’s centromere sequences [83]. Thus, the conservation of chromosome sets of
the parental subgenomes in octoploid triticale over generations may be associated with
the increased expression of rye centromeric histone CENH3 variants in the new genomic
environment [108].
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4.2. Rye Chromosome 4R Is Preserved until F5 in 1Rv(1A) × R Hybrids

Unexpectedly, we detected the preservation of rye 4R chromosomes in a monosomic
or disomic state up until generation F5. While in F2, the chromosome pair 4R4R only sup-
plemented the wheat chromosome set [69], in F5, 4R4R was added to wheat chromosomes
in 58.59% of plants and replaced chromosomes of the fourth homeologous group in 13.15%
of plants, which implies its compensational and competitive activity in a new genomic
environment. The short arm of chromosome 4R is known to be homeologous to wheat
chromosome arms 4BS and 4DS, and partially homeologous to chromosome arm 4AL [109],
which is itself involved in evolutionary translocations between chromosome arms 4AL,
5AL, and 7BS [37,39]. On the other hand, it has been shown that rye chromosomes are
incorporated into the wheat genome at different frequencies depending on cross direction
and genotype [110,111]. This is true for chromosome 4R as well, which can be eliminated
at high frequencies from triticale [111,112] or from disomic addition lines [113], but at the
same time it can be successfully transmitted in crosses of wheat and octoploid triticale,
which results in the 4R addition line [114] and in offspring from the substitution line [115].
The transmission rate of the 4R chromosome pair was consistent at 98% in subsequent gen-
erations [114]. In a study summarizing the genetic stability of several wheat–rye disomic
addition lines, the frequency of progeny plants being disomic for 4R ranged from 74% to
93% [116]. In our study, the preservation of the 4R chromosome copy in F5 1Rv(1A) × R
likely results from the great similarity to corresponding homeologs in the genomes of
wheat, similarly to the preservation of rye genes in allohexaploid triticale with a high
similarity to their homeologs in Triticum genomes [117].

4.3. Alterations of Centromeric Regions

Deletions and translocations of individual chromosomal regions and chromosome
arms are also among the most common chromosomal alterations [57,106]. The chromosome
sets of our F5 hybrids contain rye and wheat telocentrics and Robertsonian translocations.
The formation of inter- and intrachromosomal translocations in wheat–rye hybrids cause
reductions, eliminations, or expansions in the centromeric retrotransposon sequences, and
the formation of multiple centromeres [53,59]. In our experiments, a centromere carrying
two nonoverlapping loci, rye-specific pAWRc and pAet06, was identified in a 1RL.1BL
Robertsonian translocation. Multicentric chromosomes are frequently formed in hybrids of
wheat and related species, such as Th. elongatum, Th. poticum, Th. intermedium, Agropyron
cristatum, Hordeum vulgare, and S. cereale [59]. Wheat and Th. elongatum chromosomes with
two regions containing centromeric sequences were observed in the F1 hybrids of null-tetra
lines N3AT3B, N5BT5A, N5DT5B, and N6AT6B, and in the hexaploid amphiploid 8802
(AABBEE), which originated from hybrids between T. durum and Th. elongatum [59].

4.4. Meiotic Restitution Does Not Increase Ploidy in Progenitors of Octoploid Triticale

The heritability of meiotic restitution has been described in wheat hybrids [54,67,101].
The genes for meiotic restitution in those studies originated from various accessions of du-
rum wheat T. turgidum [65–68]. Lines of synthetic hexaploid wheat (SHW) were produced
by spontaneous chromosome doubling via unreduced gametes resulting from meiotic
restitution in T. turgidum × A. tauschii hybrids [66]. These hexaploids also inherited the
gene(s) for meiotic restitution, because meiotic restitution also occurs in SHW–rye F1 hy-
brids and gives rise to amphiploids or partial amphiploids [66]. Another example is line
Do1, which was selected for its capacity to produce self-fertile F1 hybrids with rye [65,67].
Spontaneous chromosome duplication in androgenic haploids was observed when crossing
the F1 hybrid to hexaploid triticale [67].

Three groups of F5 1Rv(1A)× R hybrids were obtained via meiotic restitution, whereby
chromosome pairing occurs sporadically if at all, univalents segregate into sister chromatids
in meiosis I, and the second division is absent [64,118]. We found that the meiosis in some
F5 plants of Group 3 also ended after the first division; therefore, dyads formed after
division completion instead of tetrads. Another feature of chromosome behavior was the
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asynchronization of the meiotic cycle within an anther. Asynchronous cell division was
also noted in F5 plants of Groups 1 and 2, but the second division did occur there. An
Arabidopsis thaliana mutant named tardy asynchronous meiosis (tam), with a phenotype of
delayed and asynchronous cell divisions during male meiosis, has been described [119].
The genes TAM (also known as CYCA1;2) and OSD1 (omission of second division) are essential
for the meiosis I/meiosis II transition. A mutation in CYCA1;2/TAM or OSD1 leads to the
premature ending of meiosis after meiosis I, and, as a consequence, to the production of
diploid spores and gametes [120,121]. Hence, mutations in such genes as OSD1 and TAM
may favor polyploidization, as demonstrated in common wheat. A QTL responsible for the
unreduction in T. turgidum × Ae. tauschii hybrids, named QTug.sau-3B, was identified on
wheat chromosome 3B [122]. Comparative genomic analysis indicates that QTug.sau-3B is
a collinear homolog of cyca1;2/tam, which is known to be responsible for unreduced gamete
formation in Arabidopsis thaliana [121].

Whilst dyads in F1 hybrids 1Rv(1A) × R passed through mitotic divisions and formed
functional pollen grains after meiosis, the mitotic division in octoploid F5 hybrids was
greatly disturbed. The disturbances affected chromatin’s structure significantly. As a result,
functional pollen grains were not formed, and plants either offered few seeds or were
totally sterile. Arabidopsis thaliana osd1 mutants showed no somatic developmental defects,
male or female gametophyte lethality, or reduced fertility. Only tetraploids and triploids
were found in selfed progeny [123]. In plants homozygous for null alleles of CYCA1;2/TAM,
the unreduced gametes were functional, giving rise to polyploid progeny [121,124]. The
chromosome number in each generation of MiMe plants’ selfing (mitosis instead of meiosis,
triple osd1/Atrec8/Atspo11-1 mutants) doubled; as such, tetraploids (4n, 20 chromosomes)
and octoploids (8n, 40 chromosomes) were obtained [123]. However, the increase in ploidy
was accompanied by a seed set decrease. Fertility dropped from 25 ± 6 seeds/fruit in 2n
plants and 19 ± 4 in 4n plants to < 0.1 in 8n plants. The causes of this phenomenon remain
obscure. In the case of octoploid plants 1Rv(1A) × R, the formation of microspores with
56 chromosomes may induce stress, entailing a collapse in cell cycle regulation and, as
a consequence, apoptosis [125]. The Poaceae family includes perennial plants with over
100 chromosomes [126]. They are characterized by low fertility and sterility, probably
associated with meiotic anomalies induced by polyploidy. Studies of the genus Arundo
L. (Poaceae) have demonstrated that the sterility of A. micrantha (2n = 12x) and A. donax
(2n = 18x) is due to the early failure of gametogenesis [127]. In theory, unreduced gametes
form during meiosis in these species; however, these gametes have not been proven to
cause sterility.

Is there a limit to ploidy in flowering plants? Although the haploid chromosome
numbers in 66120 angiosperm species with known chromosome sets vary from n = 2 to
n = 320 [126], the chromosome numbers of 80% of angiosperms range from n = 5 to 20,
and in 95% the haploid chromosome numbers are less than n = 34. A similar distribution
in chromosome numbers is seen in the tribe Triticeae. All the species of this tribe have
the basic haploid chromosome number x = 7. About 31% of the species are diploids (or
rather paleopolyploids); 1% are triploids; 45%, tetraploids; 17%, hexaploids; 5%, octoploids;
0.2%, decaploids; and 0.2%, dodecaploids. Elymus displays the larger series and highest
level of polyploidy, from 2x to 12x [20]. Owing to the cyclic mode of polyploidy, most an-
giosperm species have less than 14 chromosome pairs, which show no signs of exponential
growth [128]. Genome synteny comparisons show that many ancient polyploidization
events were followed by striking reductions in chromosome number [16], which in some
cases are estimated to have occurred relatively soon after polyploidization [129]. For
instance, an n = 7 monocot ancestor underwent four tetraploidy events in the lineage
leading to Zea mays; had not it been for fusions, maize would have n = 112, but today it
has n = 10 [130]. On the other hand, chromosome sizes cannot rise infinitely after fusion.
Chromosome lengths are limited by the sizes of the dividing cells; chromosome arms longer
than half the cell length are truncated by the new cell wall, causing damage and gene loss at
the ends [131], as proven experimentally with artificial chromosomes in barley [132]. Ploidy
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increase may also be limited by other factors as well [133]. These include biochemical
and energetical expenses, cell size limits, time limitations caused by longer mitosis and
meiosis with larger genomes, and difficulties in support of gene expression diversity in
giant genomes in response to environmental changes.

5. Conclusions

In this work, we studied the karyotypes and meiotic behavior of chromosomes in
three groups of fifth-generation hybrids (1Rv(1A) × R) obtained via meiotic restitution.
Our observations suggest that genome reorganization is not finished in any of the groups
of F5 hybrids. It was found that in two groups of karyotypes, one to three rye chromosomes
were preserved in a disomic or monosomic state. The chromosome 4R in 13.15% of plants
substituted the chromosomes of the fourth group of wheat genomes, ABD. The karyotypes
of the plants of these groups were also characterized by the presence of Robertsonian
translocations. The chromosome sets of Group 3 were near octoploid, varying from 52 to
56. The presence of 16 rye chromosomes owing to chromosome 1R tetrasomy (68.4% of
plants) was a distinctive feature.

Meiosis in the hybrids was unstable. Univalents in the first division were found,
characterized by a violation of segregation, which led to the formation of micronuclei in
microspores. However, according to the correlation analysis, no connection was found
between the presence of micronuclei and seed sets. The analysis of meiosis in Group 3
revealed asynchronous cell division and omission of the second division. Diploid gametes
did not form because of significant disturbances during mitosis in gametogenesis. As a
result, the frequency of the formed dyads was negatively correlated (r = −0.73) with the
seed sets. Thus, the trait “meiotic restitution” is inherited in octoploid triticale; however,
gametogenesis does not take place in dyads, and functional gametes are not formed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10102052/s1, Table S1: Origin of F5 wheat–rye hybrids and number of karyotype studied.
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