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Abstract
Background and context: Resource planning is performed ahead of time within outpatient clinics 
(OPC). Due to local control of operations (department-centric decision-making) and limited resources, 
OPCs cannot handle high variability and uncertainty in demand. There is always a difference between 
planning and reality, and this leads to operational problems such as excessive waiting times. The OPCs 
often react to the situation when problems are encountered and reaction times play an important role 
in determining patient waiting times.

Objectives: To propose a predictive resource planning that incorporates variability in the short term 
with the OPC-wide perspective, not department-centric.

Methodology: The process and patient data were collected from the OPC under study by observation, 
interviews and from the records of the hospital management information system. A resource planning 
model (RPM) was developed that matched resources according to demand in short term. A math-
ematical model with outputs resource plan for a day was formulated utilizing Takt time (the average 
time a patient needs to move out of the OPC system) management that is used in Toyota Production 
System (TPS), to allocate resources to all the departments. Using a Discrete Event Simulation Model, 

Journal of Health Management 
19(4) 563–583

© 2017 Indian Institute of  
Health Management Research 

SAGE Publications
sagepub.in/home.nav

DOI: 10.1177/0972063417727627
http://jhm.sagepub.com

Article

Corresponding author: 
Jyoti R. Munavalli, Research Associate, Maastricht University Medical Centre, Maastricht, The Netherlands.
E-mail: jyothimunavalli@gmail.com 

1 Research Associate, Maastricht University Medical Centre, Maastricht, The Netherlands.
2 Cofounder, President and CTO, Forus Health, Bangalore, Technical Director, Maastricht University Medical Centre, Maastricht, 
The Netherlands.
3 Administrator, Aravind Eye Care, Madurai, Tamil Nadu, India.
4 Professor, Institute of Health Management Research, Bangalore, Karnataka, India.
5 Professor of Logistics and Operations Management in Health Care, Maastricht University Medical Centre, Maastricht, 
The Netherlands.



564		  Journal of Health Management 19(4)

the effects of predictive resource planning with different reaction times on waiting times and cycle 
times were analyzed. The resource plans were implemented in the OPC of Aravind Eye Hospital, 
Madurai, Tamil Nadu, India, that has high patient volumes and random patient arrivals.

Results and discussion: The simulation and implementation results indicate that predictive resource 
planning is robust and improves waiting times, and cycle times in OPCs. Study findings confirm that the 
predictive planning model reduces the average waiting time by 43.4 per cent during simulation and by 
41.1 per cent during its implementation. The reduction in standard deviations in waiting times indicate 
reduction of unregulated waiting times. The OPC scheduled 28 resources throughout the day, whereas 
with predictive resource planning, the number of resources varied between a minimum of 12 to a 
maximum around 30–34 resources.

Conclusions: The OPCs currently match demands to their supply, while matching resources to varying 
demand in short term; throughout the OPC (all departments) improves patient flow, and minimizes 
waiting time and cycle time. Previously, Takt time management (TTM) has applied to systems with even 
and stable demand; in this study, it has been applied to stochastic demand.

Implications: This planning model helps the management to identify resource requirements: types 
of resources and number of resources, for the future demand growth and expansion. It can probably 
be extended to general hospitals by considering their demand forecast, precedence constraints and 
workflow complexities.

Keywords
Predictive resource planning, waiting time, Takt time management, reaction time, outpatient clinic, 
demand-supply

Introduction

Resource planning and control are becoming extremely important in outpatient clinics (OPCs). Due to 
expanding patient demand, greater patient expectations and increasingly complex patient flow, OPC 
systems are under constant pressure to provide quality care despite limited resources (Huang, 1994; 
Pillay et al., 2011; Zhu, Heng & Teow, 2012). Patient waiting time is the major reason for complaints and 
patient dissatisfaction and plays a crucial role in quality management.

The OPCs face operational problems because of the variability and uncertainty in demand and service 
times, and often resource planning are based on aspects such as (i) average patient demand, (ii) the 
resource scheduling performed ahead of time and (iii) local optimization. In most clinics, resources in 
OPCs are planned and managed through a simple deterministic approach using average demand and 
average service times (Harper, 2002). Patient arrivals are not uniformly distributed but mostly Poisson 
(with patient demand changing from hour to hour) (Hassan, Zaqhloul & Mokhtar, 2005). Often OPCs 
fail to incorporate or overlook this variability and uncertainty in short terms (throughout the day), during 
planning (Nguyen, Sivakumar & Graves, 2015). As a result, OPCs face inefficiencies, long patient wait-
ing times and cycle times, and resource under-utilization, which in turn affects patient satisfaction 
adversely (Vermeulen et al., 2009).

The number of resources required in an OPC is determined at an aggregate level planning (Vissers, 
Bertrand & de Vries, 2001). The OPCs forecast demand based on experience, historical data or sometimes 
advanced analytics. Low demand clinics plan resources up to bimonthly, whereas high demand clinics plan 
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monthly or weekly (Mansdorf, 1975; Yurko et al., 2001). Planning depends on long-term forecasts, whereas 
variability in demand occurs in short term. The OPCs being open loop systems are influenced by its envi-
ronment and experience variability and uncertainties that are caused by late, early or random patient arrivals, 
varied service times and unpredictable clinical pathways (Vermeulen et al., 2009). Resource planning based 
on incomplete demand information does not fully reflect reality. The mismatch between planning and reality 
results in either long waiting time or under-utilization of resources. Often OPCs view these frustrating 
delays as a capacity problem, whereas delays are likely caused by poor capacity or resource management 
(Voort, Merode & Berden, 2010). Seasonal variations are predicted and managed by increasing capacity 
(e.g., part-time doctors) (Edward et al., 2008; Molema et al., 2007).

The disparate departments in OPCs plan and control their operations at the departmental level (local). 
Every department controls its own patient flow and resources. Decisions are taken often without coordi-
nation with other departments, because of which patients from upstream departments are pushed to 
downstream departments that are not ready to service them. Thus, patients wait in some departments, and 
resources remain idle in other departments. Ludwig, Merode and Groot (2010) provide an insight on the 
relation between departmental efficiency and hospital efficiency. The local optimization in departments 
might improve departmental efficiency but does not necessarily improve OPC-wide efficiency. The 
departmentally optimized OPCs match patient demand with their services, whereas an OPC to be patient-
centric should match its resources to patient demand. Van Merode Groothuis and Hasman (2004) suggest 
the use of short-term planning when demand is non-deterministic. Planning and control approaches that 
are commonly used are inadequate as they are not demand-driven and lack synchronization. Therefore, 
there is a need to design an OPC system that synchronizes patient flow between the departments and 
determines the service pace based on actual patient demand with minimum waiting time.

Toyota Production System (TPS) is a world leader in industrial production that controls its waiting 
times effectively. The TPS applies just-in-time for a system, not for a single department, that is, a depart-
ment should not work either slower or faster than the other departments in the line. The TPS sets a pace 
for product flow by applying Takt time management (TTM). ‘Takt time’ is derived from the German 
word Taktzeit for pace or rhythm. It is the desired time between units of output, to be synchronized to the 
customer demand. The TPS plans, schedules and controls its resources, raw materials, etc., around the 
required Takt time. The TPS also apply line balancing (dividing workload as evenly as possible) to 
increase the overall productivity (Alvarez & Antunes Jr., 2001; Day, Dean, Garfinkel & Thompson, 
2010; Eswaramoorthi et al., 2012; Sandanayake & Oduoza, 2009). Takt time can be used in a production 
management system termed as TTM. It fits well in assembly line systems with few product types, known 
(stable or even) demand, flexible, multi-skilled workforce, single routing and identical work times. 
A Takt time-based system is demand-driven. Therefore, it eliminates overtime and overproduction and 
stabilizes the system. The TPS utilizes a combination of push and pull to reach and maintain continuous 
process flow in order to reduce work-in-process (WIP) (Chan et al., 2014; Hopp & Lovejoy, 2012; 
Liker, 2004, p. 330).

This article is based on the case study of resource planning at the OPC in Aravind Eye Hospital 
(AEH). The AEH is a renowned eye care hospital in Madurai, South India, that provides patient-centred 
care (Brilliant & Brilliant, 2007; Chaudhary, Modi & Reddy, 2012; Mehta & Shenoy, 2011, p. 336). The 
AEH performed 401,529 surgeries and treated 2,396,864 outpatients during 2014–2015 (Activity-Report, 
2014–2015). The hospital runs with assembly line efficiency, strict quality norms, standardization, cost 
control and above all high patient volume. The resources (ophthalmologists and paramedical staff) are 
well trained and dedicated. The OPC predicts its patient demand and uses it for decisions on staff costing 
and recruiting and for creating awareness among managers. The AEH has a resemblance to an assembly 
line system (a line of workers and equipment along which a product being assembled passes consecu-
tively from operation to operation until completed) (Andersen & Poulfelt, 2014; Chaudhary et al., 2012; 
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Natchiar, Thulasiraj & Sundaram, 2008; Rangan & Thulasiraj, 2007). The patients in the OPC move 
through various departments that perform specific and successive tasks. However, some aspects of the 
OPC differ from assembly line systems like local control of operations in departments and uneven patient 
demand. The patient arrivals are random (no appointment systems used) and independent. This makes 
patient demand highly variable and uncertain. Additionally, it also presents no control on input and 
constraints on output, as the OPC provides care for all the arrived patients on the same day (Cayirli & 
Veral, 2003; Gupta & Denton, 2008).

The functional and operational structure of the OPC in AEH with respect to resource scheduling is 
shown in Figure 1. Accordingly, in this study, we consider an OPC with two identical units. Departments 
such as new registration (NR) and review registration (RR) are common to both units and each unit 
has five departments: Vision (V), refraction (RF), tension (TN), dilatation (DL) and preliminary and 
final examination (PE & FE). For clarity, only unit 1 is shown in Figure 1. All the queues (1–7) are 
first come, first served (FCFS) basis. The patient flow arrows show the possible pathways for new and 
review patients.

The OPC in Figure 1 runs according to the rules in Box 1. Managers are the controllers (C) who plan, 
schedule and control the activities of the departments (local). Different managers are responsible for 
scheduling the resources (r) such as ophthalmologists and paramedical staffs. The OPC schedules the 
ophthalmologists once a month, considering their availability after academic (teaching and research) 
activities and surgery schedules. Departments of both units have the same number of resources, which 
remains fixed throughout the day and month (rule 3). During peak hours, managers (controllers) apply 
rules 4 and 7 to the situation. Based on their experience, they increase resources in their departments or 
shorten the lunch breaks of the staff, to control waiting times, w(t). When upstream departments work 
faster, the patients flood the downstream departments, which are unready to handle the increased work-
load. Similarly, when upstream departments work slower than downstream departments, the latter starve 
(wait for patients). The lack of coordination among departments increases the unregulated waiting time 
in some departments and under-utilization in some departments.

Figure 1. Functional Structure and Operational Control in the OPC System of AEH

Source: Derived from workflow of OPC in AEH.
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Box 1. Rules Followed in OPC in AEH

Rule 1: All patients are provided with the service/care the same day of arrival.
Rule 2: All the queues are first come, first served basis.
Rule 3: Resource planning and scheduling time window is one month.
Rule 4: Numbers of resources are fixed throughout day and month.
Rule 5: Resources are scheduled by managers.
Rule 6: Number of resources in unit 1 = number of resources in unit 2
Rule 7: If (queue n > threshold workload)  (Resources ‘r’ is added to nth department Dn such that r ≤ RT, 
the total number of resources) else shorten the lunch times of the already working resource.
Rule 8: Patients should complete RF and PE before TN.
Rule 9: Control of operations is local (department-centric)

The patient workflow in the OPC starts with registration and finishes with the final examination. A 
patient is in one of these states: waiting state, processing state or finish state. The patient moves through 
various departments by pathways: NR-V-PE-RF-TN-DL-FE for new patients and RR- PE-RF-TN-
DL-FE for review patients. The order of departments RF and PE can be interchanged. Around 5 per cent 
of the total number of patients exit after the PE. We define five states (in perspective of operations) for a 
department. S1  initial state, S2  waiting state, S3  regular state, S4  reactive state and S5  
finish state. Figure 2 shows the transition of a department in different states.

Figure 2. State Transition Diagram for the Department

Source: Derived from departmental workflow of OPC in AEH.
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The department is in initial state S1 at the time t = 0 (start of the day) with patients not yet arrived. 
The department moves to waiting state S2 at t = T if either the patient waits for resources or vice versa. 
The department is in regular state S3 when patients arrive at t = T and are serviced by resources. During 
peak time, due to high patient demand, the department has the maximum WIP that the OPC can handle. 
Now the department moves to reactive state S4. The manager who controls the operations in departments 
responds to the change within limited knowledge (local and available) and follows Rule 7. Once the 
patient demand becomes regular, the department moves from S4 to regular state S3 and finally, when all 
the patients are serviced at the end of the day, the department moves to finish state S5.

The time taken by the manager to change from the regular to reactive state (S3 to S4) of the department 
is the reaction time r(t), and it affects the waiting time. The reaction time varies, as the resources to be trans-
ferred to the departments may be busy performing tasks elsewhere in different OPCs. Therefore, the reac-
tion time largely depends on the resource availability at the time of need and the kind of measures taken. 
The corrective measures improve waiting time in departments but not necessarily the cycle time of patients.

In current practice, though the OPC in AEH is efficient, still it faces operational problems such as 
long waiting times and cycle times and under-utilization. The OPC, like other hospitals, is an open loop 
system with uneven demand, lacks synchronization between departments and does not have demand-
driven resource planning.

As our main contribution, we present a robust predictive resource planning approach to adapt 
resources according to demand variability in short-term (hour–hour) and synchronize patient flow 
between departments through organization-wide perspective in planning. That is, OPC system that ser-
vices patients based on actual demand (pull system) rather than based on projected or average demand 
(push system). In this approach, the resources are planned and scheduled in short term (an hour timeslot) 
based on actual demand. We utilize TTM to implement demand-driven and organization-wide resource 
planning. Like in fast food chains, raw materials are stored based on projected demand (push), whereas 
burgers are prepared on customer order (pull). In this approach, we integrate organization-wide planning 
with almost real time (near to actual demand) planning. Additionally, we present an approach to deter-
mine an optimal number of resources throughout a day. By setting a pace between demand and service, 
waiting times and cycle times are minimized. We extensively evaluated our predictive resource planning 
in a precisely simulated environment. The planning model is solved using integer linear programming 
(ILP) to identify the required number of resources. We evaluated simulation under various scenarios. 
Later, we implemented the resource plans obtained from planning model in the OPC of AEH.

The remainder of this article is organized as follows: In the second section, a robust predictive RPM 
that incorporates short-term demand variability is presented. It allocates resources to all the departments 
such that it synchronizes departments through TTM and balance the patient flow in the OPC. The third 
section includes materials and methods that include data collection and analysis, model development, 
experimental design and simulation study. In the fourth section, the results from different scenarios cre-
ated on real case studies are reported. Discussion and conclusions are presented in the fifth and sixth 
sections, respectively.

Predictive Resource Planning Model

The proposed RPM aims to match resources with demand in short term that is hour by hour so that this 
planning helps OPC to be maximally prepared to handle patient flow. That is, the RPM gives a margin 
to keep the OPC working, even when the reality is different from the plan. The predictive resource plan-
ning uses three levels of control (Figure 3).
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1.	 A forecast generator is used to forecast daily patient volume and patient arrival patterns. Patient 
volume is predicted based on the seasonal variations, such as vacations, short holidays and festi-
vals, whereas patient arrival patterns are based on historical data.

2.	 A pace or Takt is set depending on the forecast data, in short term. A RPM identifies the resource 
requirements for all the departments throughout the day based on patient demand, considering 
constraints on resources and precedence in all the departments. This is organization-wide control 
and this resource plan is shared with all the departments.

3.	 Resources are planned to match the service rate with arrival rate, that is, resources are matched to 
patient demand.

To implement the predictive RPM, we proposed a few changes in the rules of the OPC (Box 2).
This model has proposed a modification of rules related to resources and their control but retains 

other rules 1, 2, 6 and 8 of the OPC system. The planning time window has been changed from a 
month to a day (Rule 3). Resources are scheduled every hour as compared to fixed over a day and 
month (Rule 4). The resource planning is performed by a planning and scheduling model, which incor-
porates variability in demand (Rule 5). This eliminates Rule 7 on corrective measures taken manually 
by managers. Control of operations remains local except for resource planning. Now managers in 
departments do not take planning and scheduling decisions related to resources but only follow the 
schedule given by the predictive planning model. And resources are scheduled in the OPC-wide view 
not department-centric.

In the proposed model, patient flow remains the same but departments have four states as compared 
to five states in Figure 2. The states are S1-initial state, S2-waiting state, S3-regular state and S4-finish 
state. The predictive planning model develops a resource plan based on demand forecast and schedule 
resources to all the departments accordingly. The model centrally determines organization-wide resource 
schedules, applied locally. There is no reactive state in the proposed model as in the current OPC (AEH) 
model: instead, the reaction time to follow the schedule becomes important. To make the planning better 
and schedule resources in organization-wide perspective, we use TTM in the predictive RPM.

Takt Time-based Predictive Resource Planning Model

Takt time in the OPC context can be translated as the average time at which a patient moves out of 
the OPC.

	
Takt time Effective available time in a day

No.of patients 
=

sserviced in a day 	
(1)

Box 2. Rules Proposed by Predictive RPM to OPC

Rule 3: Resource planning and scheduling time window is everyday/one day.
Rule 4: Resources are scheduled every hour.
Rule 5: Resources are scheduled by predictive planning model, and managers only follow the instructions.
Rule 9: Control of operations with respect to resources is organization-wide (OPC centric).
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To understand TTM, we consider an example of a system with two departments A and B with mean 
service times of 10 ± 2 minutes and 15 ± 4 minutes, respectively. The demand is assumed to be 150 
patients/day, and the system works for 12 hours. There are two breaks of 1 hour each. Therefore, the 
effective time will be 10 hours (600 minutes). The total cycle time will be 25 ± 6 minutes. (Here cycle time 
indicates time from start to end of service: some authors use it to indicate process time on one machine.) 
The Takt time will be (10 hours × 60 minutes)/150 = 4 minutes per patient. The Takt time of 4 minutes 
does not mean that the patients are treated in only 4 minutes (contradicting the service times in depart-
ments A and B), but it is every 4 minutes a patient should move out of the system. If the Takt time is less 
than 4 minutes then the service in the department is faster than the patient demand and the resources wait 
or are idle. If the Takt time exceeds 4 minutes, then the patient waits. To achieve a Takt of 4 minutes, the 
departments A and B need resources as calculated in Equation (2).

	
Number of resources r Service time

Takt time
=

	
(2)

The stochasticity associated with service times is discussed in detail later in this Section. In this exam-
ple, we use only mean service time to calculate a number of resources. Therefore, department A will need 
10/4 = 2.5 ≈ 3 resources, and department B will need 15/4 = 3.75 ≈ 4 resources to keep the pace of the 
system. A system would work smoothly with this number of resources if the patient demand were stable 
or uniform. However, patient arrivals in OPCs are random and uncertain. During peak hours, patient 
demand shoots up. In the rest of the day, it is less but still, varies. Therefore, setting a single Takt time 
for a day does not capture the problems associated with variability and uncertainty in shorter time hori-
zon like hours in a day. So, working hours in a day are divided into ‘m’ time slots. Patient arrivals are 
forecast using historical data. The patient arrival times are generated and the number of patients per time 
slot is identified. Further, the Takt time per time slot is determined using Equation (1). Takt time remains 
fixed for a time slot but varies between time slots depending on demand, whereas cycle time remains 
same. By setting pace (Takt) in each time slot, we match service rate (with respect to departments) or 
throughput rate (with respect to the OPC system) with patient demand throughout the day. In this way, 
Takt time gives a real target for improvement.

The Takt time design considers demand variability as well as process variability. The effective time 
taken to do the task is service time s(t). Occasionally the performance of the task is interrupted by a 
problem, and this occurs during the performance of the task with a probability p. Some amount of time 
(referred as ‘surplus time’ sp(t)) is required to solve this problem (Hopp & Spearman, 1996; Smith & 
Tan, 2013). Therefore, the overall processing time until the task is completed is p(t) = s(t) + p sp(t). For 
example, when a certain patient at a department requires more than average service time, the excess time 
will not be won back by using less time with another patient. So the surplus time above the average ser-
vice time should be included in the Takt time design. The squared coefficient of variation of service 
times (Equation (3)) includes the effects of surplus time, set-up times, irregularities, etc. The mean pro-
cessing time is E[p(t)] = E[s(t)] + pE[sp(t)]. Variance of p(t) is var s(t) + pvarsp(t) + p(1 − p)(E[sp(t)])2. 
The squared coefficient of variation of processing time p(t),

	
C var s t var sp t E[sp t ]

E[s t ] E[spp t( )
( ) ( ) ( )( ( ) )

( ( )
2

21
=

+ + −
+

p p p
p (( ) )t ] 2

	
(3)

Mean service time and coefficient of variation are two fundamental process parameters with respect 
to cycle time performance (Jacobs et al., 2003). The waiting time is directly proportional to the coefficient 
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of variation. Hence, to improve cycle time, it is important to minimize the coefficient of variation of 
service times, that is to minimize surplus time. Reducing process time variability is equivalent to increasing 
system capacity when measured by cycle time response (Curry & Feldman, 2010, pp. 109–123). The demand 
variability and process variability are buffered by first in, first out queue and buffer size (the number of 
patients that can wait in a queue) is estimated using Equation (4).

	
Buffer size

s t s t
Takt t

*Patient Demand=
−( ) ( )
( )

max

	
(4)

where s(t) is the mean service time at preceding department and s(t)max is the maximum service time at 
preceding department. Each department could have patients being serviced and waiting (buffers) that is 
WIP. When WIP is maximum, demand in manufacturing plants could be blocked, but in AEH when 
demand exceeds buffer capacity or departmental capacity, then neither can patient demand be blocked 
(due to maximum WIP) nor patients be made to wait. Therefore, the total amount of work (patient 
demand) needs to be spread and synchronized along the departments in the OPC. To balance the patient 
flow (line balancing), resource planning should also consider the relation or ratio of service times 
between the departments.

As discussed there is the difference between forecasting and reality, the OPC system when working 
according to a particular Takt should offer a margin when operational problems occur due to variability 
(Rother, 2009). Operator load (total work an employee can perform) varies due to working speed of 
employees, and thus, depends on their skill. A realistic load should be given to the operator for smooth 
and efficient flow without jeopardising quality. This we take into account by multiplying Takt time by a 
factor called fudge factor or efficiency factor. Generally, an efficiency factor of 85 per cent to 95 per cent 
is used in designing industrial processes and allows operators to work at a productive rate. This results 
in properly built, quality products (Duggan, 2002; Fekete & Hulvej, 2013; Ortiz, 2006). In this case, we 
estimate it by coefficient of variation of the cycle time, c(t).

	
f CV Standard deviation of  c t

Mean of  c tc t= =( )
( )

( ) 	
(5)

If OPC runs f % less than Takt time then it requires more resources, but it captures the operator load. 
If OPC runs f % more than Takt time, it captures constraints and allows buffers. Determining the Takt for 
a system is a design parameter that has to be assessed based on demand and service variability (buffer), 
resource constraints and space (layout) constraints. What is important is that the OPC systems under-
stand the difference from Takt to target (throughput) as waste and should seek to improve it, not just 
accept it. Hence, the use of Takt time goes beyond the numerical calculations. The demand variability, 
process time variability like surplus time, set-up times, irregularities and fudge factor help in setting the 
margin to keep the OPC working when reality differs from planned.

We derive a new operations management where resources’ planning is demand-driven and organization-
wide, to keep all departments in pace, neither slow nor fast. On contrary to fast food chains, here resources 
are scheduled based on predicted demand by taking short-term variability (nearly real time) into account 
with an organization-wide perspective (not department-level but OPC-wide). We develop a mathe-
matical model to identify a number of resources required, and the parameters used are listed in Table 1. 
The margin is a variable that is not directly used in the optimization problem. Reaction time is an exog-
enous variable that gets affected by the internal and external environment of the OPC. So its effect on 
dependent variables is analysed in the simulation model.
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The optimization problem is to find the minimum number of resources to achieve the required Takt 
time. That is we have to find

	
Min z r

m

M

n

N

m m n
= =
∑∑
1 1

,
	

(6)

subject to the condition that

	 m

M

n

N

n m n Tg r R
= =
∑∑ ≤
1 1

,
	

(7)

	 n

N

nr h r
=

+∑ ≤
1

1n n
	

(8)

	 m

M
m n

n p t n
m

r
s t C

z
= ( )
∑ +

≤
1

21
,

,( ) ( )
	

(9)

	 n

N

Tr R
=
∑ ≤
1

n
	

(10)

	 rm n, ≥1 	 (11)

	 r integerm n, 	 (12)

The objective (6) minimizes the number of required resources in each department in each time slot, 
to achieve the required Takt time. Resources are the decision variables in this optimization model. 

Table 1. List of Notations used in the Mathematical Model

Notation Description

n Number of departments in the OPC where n = 1, …, N

m Number of time slots in a day where m = 1, …, M
rm,n Number of resources in mth time slot in nth department

RT Total number of available resources in the OPC

f Coefficient of variation of cycle time c(t) to set margin

Takt (t) Takt time

zm Reciprocal of Takt time during mth time slot, z = 1/Takt(t)m(1+ f )

gn Ratio of Average Service Time of nth Department to Average Cycle Time

hn Ratio s(t)n/s(t)n+1

s(t)n Mean service time of the nth department

p(t)n Processing time that includes service time and surplus time of nth department

C2
p(t),n Squared coefficient of variation of processing time p(t) of nth department

Source: Authors’ own.
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Constraints (7) and (8) deal with the same or identical service rate in all the departments, neither too 
fast nor too slow, but in pace and within the total available resources (organization-wide optimiza-
tion). Constraint (9) relates the service variability, cycle time and Takt time to the resources. The solution 
is not just increasing resources when departmental demand is high, or conversely, but doing so without 
disturbing the flow of successive upstream or downstream departments. This synchronizes spread of 
work between departments in the OPC. Constraint (10) shows that the number of resources in all the 
departments in the mth time slot should be within an available total. This constraint takes care of the 
criterion of line balancing and the buffers. Constraint (11) assures that at least one resource is always 
allocated to every department in all the time slots. Finally, constraint (12) requires the integer assign-
ment of resources.

The mathematical model was solved using ILP. The ILP output was the resource plan that indicated 
the number of resources in each department in each of the time slots. We explain the planning model 
with an example. We selected 11-time slots of an hour each (based on demand analysis). Patient 
demand was identified and Takt time was determined for each time slot. The resources were sched-
uled based on this predictive plan for both the units as shown in Table 2. These resource plans were 
used in the OPC simulation model to see its effect on performance measures. The time slots where 
patient demand is high have smaller Takt time. It indicates the system needs to work faster and for 
this, the required number of resources must be scheduled to control waiting times. In time slots where 
patient demand is less, the number of resources scheduled can be reduced and under-utilization can 
be avoided.

Table 2. Output of the Mathematical Model Compared to the Existing Resource Schedule

Time Slots

Takt  
Time in 

Mins
New 

Registration
Review 

Registration Vision 1

Preliminary 
and Final 
Exam 1 Refraction 1 Tension 1 Dilatation 1

No. of 
Resources 
in Unit 1/
Both Units

1 0.8 2 2 1 4 4 2 1 16/28

2 1.2 2 2 1 4 4 2 1 16/28

3 0.6 3 3 2 4 4 2 1 20/32

4 0.7 2 3 1 4 4 2 1 17/29

5 0.7 2 3 1 4 4 2 1 17/29

6 1.2 1 2 1 3 4 1 1 13/23

7 1.4 1 2 1 3 3 1 1 12/21

8 2.4 1 1 1 2 2 1 1 9/16

9 5.4 1 1 1 1 1 1 1 7/12

10 12 1 1 1 1 1 1 1 7/12

11 20 1 1 1 1 1 1 1 7/12

Currently 
used schedule 
for whole day

— 2 2 1 3 5 2 1 16/28

Source:	 Obtained from resource plan of the OPC in AEH (optimization model-Matlab).
Note:	 The OPC currently follows the resource schedule as shown in the last row of Table 2. As per current scheduling, the 

total number of resources scheduled in both units is 28, only unit 1 and registration is 16, and this remains the same 
for a month.
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Materials and Methods

Data Collection and Analysis

The initial data were collected by observations and interviews of patients and hospital staff (ophthal-
mologists, paramedical, managers and administrative) of AEH. Patient and process data of 6 months 
were obtained from the in-house software: Integrated Hospital Management System (IHMS) and Clinical 
Management System (CMS). The data collected included the patient volume, arrival times and exit time, 
service times, resource schedule, waiting times and cycle times (which include registration time, service 
time and waiting time in all departments), and the reaction time, obtained through interviews of staffs 
and managers. Data of 53,802 patients were analysed, and the data-fitting tool Easy Fit was used to 
determine the probability distribution of service time and patient arrival time. The data analysis showed 
that the patient arrival pattern had two peaks, at around 8:00 AM and 10:00 AM. Therefore, a bimodal 
Poisson distribution (Karlis & Xekalaki, 2005; Li & Zha, 2006) was selected to generate the arrival times 
(Equation (13)).

	 P v v P= { } = { }1 2 1 2, , ,and    	 (13)

where P is the sum of two Poisson distributions with mean arrivals λ1 and λ2 mixed with proportions v1 = 
0.35 and v2 = 0.65. The goodness of fit test for input and output distribution was conducted using the 
Kolmogorov–Smirnov test. The workflow of the model was verified using flowcharts and a structured 
walk-through by the managers of the OPC.

Model Development

A discrete event simulation model of the OPC was developed using Java. A patient was an entity whose 
progress was tracked. Service times were uniformly distributed between the minimum and maximum 
service times from empirical data for each department and were randomly generated. The patient arrival 
time and the number of resources in each department were used from the empirical data. The managers 
of the OPC verified the program. Further, to improve the accuracy of the simulation model, it was cali-
brated by assigning the reaction time randomly between 20–30 minutes. The simulation model was run 
with the empirical data and performance parameters were collected. The results from the simulation 
model were compared with the empirical data of the OPC for validation as shown in Table 3, and there 
was no statistical difference between the two.

Table 3. Validation of the Simulation Model with the Existing OPC in AEH

Patient 
Demand

Waiting Time in Minutes Cycle Time in Minutes

Mean ± SD

p-value

Mean ± SD

p-valueExisting AEH Simulation Model Existing AEH Simulation Model

Low 48.6 ± 12.45 45.7 ± 10.57 0.5 98.9 ± 14.25 96.2 ± 12.54 0.4

Medium 68.2 ± 18.56 66.1 ± 19.11 0.4 122.3 ± 17.83 119.9 ± 20.43 0.3

High 82.1 ± 25.02 79 ± 23.54 0.6 138.9 ± 27.12 137.9 ± 25.32 0.5

Source:	 AEH data from IHMS and CMS.
Note:	 SD—Standard deviation.
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The difference in waiting times and cycle times of the simulation model and existing AEH is due to 
local optimization performed by paramedical staffs in the units. In the existing AEH, whenever conges-
tion is observed paramedical staffs manually change the sequence for patients in RF and PE. But in the 
simulation model, sequencing is performed for each patient.

Experimental Design

It is observed from literature and case study in AEH that the difference between planning and reality 
results in operational problems. In this study, we measured waiting times and cycle times. This experi-
mental design had three factors: patient demand, scheduling rules (control of operations) and reaction time. 
Patient demand in AEH is huge and variable and affects the waiting times. In AEH, the average demand is 
high around 1800 patients/day with 30.8 per cent of the monthly patient demand being 1000–1600 patients/
day, 49.9 per cent 1600–2000 patients/day and 19.3 per cent being greater than 2000 patients/day. Therefore, 
we classified patient demand into low, medium and high. The scheduling rules varied in two levels: existing 
with fixed number of resources (local) and with predictive resource plan based scheduling with varying 
number of resources within a day (organization-wide). Since the reaction time affects the waiting times, 
different reaction times in minutes: r(t1) that is ≤10, 11≤ r(t2) ≤ 20 and 21 ≤ r(t3) ≤ 30 were used for the 
experiment. Reaction times are randomly assigned to the departments in the selected range. Additionally, 
to analyse the effect of reaction times on departmental performance, we selected six combinations of reac-
tion times based on service times (high and low). There were in total 21 × 31 × 91 = 54 experiments and the 
performance measures were recorded for all the experiments in the design. A full factorial experiment was 
carried out to estimate the effect of selected factors on performance parameters.

Simulation Runs

The experimental design has been replicated 10 times with 540 runs to estimate the variability associated 
with the phenomenon. The simulation of a day took around 3–4 minutes per day. The seed in random 
variate was varied to generate different arrival times for the same mean patient arrivals. The same rand-
omizer input was used for simulation, with the two different scheduling scenarios: existing (fixed) and 
predictive plan-based (proposed) resource scheduling. This assured the results obtained were not due to 
randomness. The mean and standard deviation of the waiting time and cycle time were collected. These 
results were compared with the existing AEH. ANOVA-tests were conducted for statistical comparisons 
at a significance level of 0.05. Additionally, ANOVA-tests were performed using IBM SPSS to deter-
mine the significance of main effects and interaction effects of predictive planning and reaction time on 
waiting times and cycle times. Further, the proposed model was implemented in units 1 and 2 of the 
OPC. The daily resource schedule based on predictive planning was implemented for a month, the per-
formance measures were collected from the IHMS, and CMS are presented in the results section.

Results

The mean cycle time for existing scheduling scheme and predictive resource planning (simulation) was 
120.1 ± 19.7 minutes and 89.3 ± 9.3 minutes, respectively. The mean waiting time was 66.3 ± 18.7 
minutes and 37.5 ± 8.9 minutes, respectively. The mean and standard deviation of the waiting time and 
cycle time for existing and predictive planning are compared in Tables 4 and 5, respectively.
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Table 4. Comparison of Average Waiting Time in Minutes of Existing and Predictive Plan-based Scheduling

Patient 
Demand/
Reaction  
Time r(t)

Existing Scheduling with Local Control of 
Operations

Predictive Plan-based Scheduling with 
Organization-wide Control of Operations

Mean ± SD Mean ± SD

r(t1) min r(t2) min r(t3) min r(t1) min r(t2) min r(t3) min

Low 44.3 ± 8.3 49.3 ± 8.6 52.1 ± 10.9 15.1 ± 6.7 32.6 ± 8.1 44.7 ± 9.2

Medium 56.6 ± 15.8 62.9 ± 15.7 71.8 ± 18.2 24.1 ± 7.3 36.2 ± 9.2 52.9 ± 10.9

High 69.5 ± 20.1 75.3 ± 21.9 83.1 ± 23.9 30.1 ± 7.8 44.6 ± 9.9 54.2 ± 11.1

Source:	 Derived from AEH data and simulation model.
Note:	 SD—Standard deviation.

Table 5. Comparison of Average Cycle Time in Minutes of Existing and Predictive Plan-based Scheduling

Patient 
Demand/
Reaction  
Time r(t)

Existing Scheduling with Local Control of 
Operations

Predictive Plan-based Scheduling with 
Organization-wide Control of Operations

Mean ± SD Mean ± SD

r(t1) min r(t2) min r(t3) min r(t1) min r(t2) min r(t3) min

Low 93.5 ± 8.4 99.6 ± 8.8 101.1 ± 10.8 70.3 ± 6.9 85.8 ± 8 101.6 ± 9.3

Medium 107.5 ± 16.1 112.3 ± 16.9 119.9 ± 19.9 74.8 ± 7.7 86.4 ± 9.7 104.8 ± 12.3

High 119.7 ± 20.9 121.1 ± 22.1 132.7 ± 24.5 78.2 ± 7.5 94.5 ± 10.2 107.1 ± 12.4

Source:	 Derived from AEH data and simulation model.
Note:	 SD—Standard deviation.

The average waiting time was found to be reduced and regulated in all departments. The waiting times 
in both registrations, preliminary and final examinations have been reduced significantly. At the same 
time, we notice that there is an increase in average waiting time in the vision department by a few min-
utes as shown in Figure 4. The figure also compares the waiting times in departments for various com-
binations of different reaction times and their respective cycle times. Reaction times are selected based 
on low and high service times. Example for mix1: departments with low (L) service times (<5 minutes) 
is r(t1) and high (H) service times is r(t2).

Reaction time is an exogenous variable that influences performance measures. The two-way ANOVA-
tests (p = 0.05) showed the significance of main effects and interaction effects of predictive planning and 
reaction time are presented in Table 6.

Planning has a significant main effect on waiting times, whereas the main effect of reaction time is 
not significant. The interaction effects of planning and reaction time are significant. Further, pairwise 
comparisons were performed for the three levels of reaction times: r(t1) − r(t2), r(t2) − r(t3) and r(t1) − 
r(t3) and their significance were 0.205, 0.226 and 0.023, respectively. The interaction effect of r(t1) and 
r(t2) was comparatively more than r(t3) (Figure 5). The results show that reaction time contributes 
around 5 per cent (4.89 per cent) in reducing waiting times. As reaction times between departments var-
ied, tests of between-subjects effects were conducted. Main and interaction effects of departments, plan-
ning and reaction time on performance measures were analysed (with p-values for department × planning 
(0.001), department × reaction time (0.50) and planning × reaction time (0.003)). We observe that main 
and interaction effects of planning are significant in all the departments, whereas reaction time is not 
significant in departments with shorter service times.



578		  Journal of Health Management 19(4)

Table 6. Tests of Between-subjects Effects

Source
Type III Sum 
 of Squares df Mean Square F Significance

Intercept 829,177.965 1 82,9177.965 46.410 0.021

Planning 52,486.767 1 52,486.767 216.089 0.005

Reaction time 35,732.657 2 17,866.328 73.556 0.068

Planning*Reaction time 485.788 2 242.894 3.274 0.049

Source:	 Derived from minitab data.

Figure 4. Effect of Reaction Times on Average Waiting Times in All Departments and Average Cycle Time

Source:	 Derived from AEH data and resource planning model.
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The predictive resource planning was implemented for a month in OPC of AEH. The performance 
measures were collected from IHMS and CMS. The mean cycle time and waiting time after imple-
mentation were 92.4 ± 9.1 minutes and 39.0 ± 8.2 minutes, respectively (Table 7). The existing 
resource plan had a fixed number (28) of resources in both units in a day whereas the predictive 
resource plan has a minimum of 12 to a maximum around 30–34 resources. The additional resources 
were scheduled from different clinics of AEH and the resources that were reduced during some time 
slots were utilized for maintaining patient records (back-end work). As seen in Table 2, when com-
pared to the existing schedule, the number of resources required during time slots 3 and 4 is higher and 
in few time slots, it is lower.
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Figure 5. Result of Two-way ANOVA Test

Source:	 Derived from minitab data.
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The performance measures of the proposed model were significantly different from those of the exist-
ing situation. A p-value of 0.05 was selected, meaning that for a p-value less than 0.05, the null hypoth-
esis is rejected, and the difference is statistically significant.

Discussion

The OPC system in AEH consists of disparate departments that schedule their resources departmentally 
and ahead of time (once a month). The OPC being an open loop system is prone to variability and the 
current method of planning caused the formation of bottlenecks in a few departments and resulted in 
prolonged waiting times and cycle times. The OPC in AEH like other hospitals (as seen in literature) 
managed its services (by planning resources locally) based on average demand (day-wise) not the actual 
demand and its variability.

In this study, resources were planned and scheduled with an organization-wide perspective based on the 
actual demand (near to real time) by incorporating short-term variability. Our findings confirm that the pre-
dictive planning model reduces the average waiting time by 43.4 per cent during simulation (from 66.3 
minutes to 37.5 minutes) and by 41.1 per cent during its implementation (from 66.3 minutes to 39.0 minutes) 

Table 7. Average Waiting Times and Cycle Times Before and After Implementation of the Predictive Resource 
Planning in the OPC

Patient 
Demand

Number of Resources Waiting Time in Minutes Cycle Time in Minutes

Before

After Before  After 

p-value

Before After

p-valueMin Max Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Low 28 12 30 48.6 ± 12.5 34.3 ± 7.1 0.03 96.0 ± 14.3 85.8 ± 7.7 0.04

Medium 28 12 32 68.2 ± 18.6 39.3 ± 8.4 0.01 118.3 ± 17.8 92.4 ± 8.9 0.02

High 28 12 34 82.1 ± 25.0 43.4 ± 9.1 0.01 136.0 ± 27.1 99.1 ± 10.6 0.02

Source:	 Derived from AEH data before and after implementation from IHMS and CMS.
Note:	 SD—Standard deviation.
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in the OPC. Also, standard deviations of waiting times were reduced significantly. The study demonstrates 
the effect of patient demand, planning and scheduling rules, control of operations and reaction times on wait-
ing times and cycle times (Table 5). It is found that organization-wide control of operations in departments 
for planning and scheduling resources improves waiting times compared to the local control of operations.

Besides scheduling rules and control of operations, the reaction time, an exogenous variable also 
influences waiting time to some extent. ANOVA was used to determine the main and interaction effects 
of predictive planning and reaction time. Effects of predictive planning are significant in all departments 
on performance measures. Improvement in reaction times alone does not influence waiting times greatly, 
but along with predictive planning, has a significant effect on waiting times as well as cycle times (Table 6). 
The reaction time varies between departments and the reaction times of the departments that have longer 
service times have a significant influence on waiting times and cycle times (Figure 4). During high 
patient demand, the influence of reaction time on performance measures is of greater importance and 
being prepared for variability improves waiting times.

Waiting times have increased in some departments like vision by a few minutes. This is because of 
constraint (7) that balances the patient flow within the available resources. The number of resources 
required to achieve a particular Takt time may be high, but due to resource and flow balance constraints 
(a spread of work equally), the scheduling model reduces the number of resources in few departments in 
the patient flow. Because of this, waiting times in few of these departments are increased (see Figure 4).

The resource schedule obtained by the proposed model shows that a different number of resources are 
scheduled during different times of the day (Table 2). When patient demand is varying, why should 
the service rate be constant? So OPCs need to plan their resources according to demand and for that OPC 
should have resource flexibility. This predictive planning model takes into account the variability in 
demand in short term (hour by hour) and makes planning better, near to real time. The current planning 
model estimates the total amount of work within a day and adapts resources accordingly. Planning is a 
decision taken much ahead of time and when the reality is different from planning, departments optimize 
locally leading to sub-optimization. The predictive resource planning considers real-time operational 
problems that occur due to variability and uncertainty, during planning itself. Additionally, this planning 
model helps the management to identify resource requirements: types of resources and number of 
resources, for the future demand growth and expansion.

Takt time management synchronizes total amount of work and spread of work. It has been observed 
that it is applied to systems with even and stable demand, for longer time horizon and with an organization-
wide perspective. But in this study, TTM has been applied to uneven and unstable demand (all walk-in 
patients), in a shorter time horizon. There is no control on patient demand that is much higher than the 
maximum WIP the OPC can manage and patient demand cannot be blocked as done in a manufacturing 
system. Therefore, setting the Takt over a shorter period captured variability in short-term (one hour) and 
resources were scheduled every hour. The variability and uncertainty are inherent to OPC systems and 
cannot be eliminated. But they can be better handled than by attempts to eliminate them. Using Takt time 
in resource planning brings predictability into the design effort and eliminates the unplanned overtimes of 
the resources. This implies that variability needs to be accounted for during planning for real-time work-
flow optimization. It balances patient flow by matching the supply in accordance with the patient demand. 
The study demonstrates that TTM can also be applied to open loop systems where variability is high.

The literature shows that patient demand has been matched with resources, but planning often consid-
ered forecasting only over a long period. Planning often failed to incorporate variability in the short term 
and this increased the gap between planning and reality. In this study, the predictive RPM integrates 
stochasticity in patient demand throughout the day and matches the resources accordingly in short term. 
It also incorporates the interdependencies between departments and generates a plan that optimizes 
resources in OPC perspective (organization-wide).
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There were some factors that caused the implementation results to be different from what could be 
expected on the basis of the simulation study. Though the resources were scheduled based on predictive 
planning model, sometimes they arrived late to the departments as they were shared between other clin-
ics in AEH. The predictive planning was implemented in only two units of the OPC but other clinics 
followed their regular scheduling rules. The planning model considered the constraints on resources and 
space/layout but did not consider resource sharing. The late arrival of resources affects the waiting times. 
The non-uniform patient arrivals or patient distribution within the time slots affects the waiting times. 
Sometimes, more patients arrive at the end of a time slot and this increase the waiting time.

Healthcare settings like OPCs or hospitals vary as they differ in their complexity, patient groups and 
processes. Therefore, requirements for planning might vary. Many processes and arrivals are not deter-
ministic and need optimization in the short term through advanced planning systems. But, how we use 
this planning system might depend not only on the algorithms but also on factors such as the organization 
of the hospital/OPC, cross-skills of the staff so that they can be transferred between departments and the 
layout of the building. As future work, we intend to analyse how TTM could influence resource utiliza-
tion and how to extend this planning model incorporating resource sharing.

Conclusion

This study shows how predictive resource planning (near to real time) improves waiting times and cycle 
times in OPCs. This study integrates two facets of planning: demand-driven and an organization-wide 
perspective. The resource planning is based on actual (near to real time) demand. Short-term variability 
in demand should be incorporated to make planning better and near to reality. The planning with 
organization-wide perspective overcomes the problem of unregulated waiting times, that is departments 
work neither too fast not too slow. Predictive RPM utilized TTM to set pace between demand and 
service, and balance patient flow by organization-wide optimization.

Resource planning in open loop systems like OPC systems is especially important in operations man-
agement as waiting times are a major concern of quality care. The variability and uncertainty in OPC 
systems can be minimized (nearly closed loop) by incorporating patient volume, patient types, resources 
and reaction times in real time optimization, thus improving the waiting times and cycle times. Although, 
this reaction time is an exogenous variable the predictive resource planning helps OPCs to avoid longer 
reaction times as the demand-driven resource schedule is known in advance. It was seen from this study 
that the model made a positive impact with some of the drawbacks mentioned above and even with reac-
tion times as long as 30 minutes. With shorter reaction times, the model performs better. As the model 
was robust, small drawbacks in the implementation did not alter outcomes. This planning model has 
been implemented to eye care OPC and can probably be extended to general hospitals by considering 
their demand forecast, precedence constraints and workflow complexities.
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