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Construction of a potential 
microRNA and messenger RNA 
regulatory network of acute lung 
injury in mice
Yufeng Zhang1,3, Weilong Jiang1,3, Qingqing Xia1, Jinfeng Lin2, Junxian Xu2, Suyan Zhang2, 
Lijun Tian2* & Xudong Han2*

Acute lung injury (ALI) is a life-threatening clinical condition associated with critically ill patients, and 
the construction of potential microRNA (miRNA) and messenger RNA (mRNA) regulatory networks 
will help to fully elucidate its underlying molecular mechanisms. First, we screened fifteen upregulated 
differentially expressed miRNAs (DE-miRNAs) and six downregulated DE-miRNAs from the Gene 
Expression Omnibus (GEO) database. Then, the predicted target genes of the upregulated and 
downregulated DE-miRNAs were identified from the miRNet database. Subsequently, differentially 
expressed mRNAs (DE-mRNAs) were identified from the GEO database and subjected to combined 
analysis with the predicted DE-miRNA target genes. Eleven target genes of the upregulated 
DE-miRNAs and one target gene of the downregulated DE-miRNAs were screened out. To further 
validate the prediction results, we randomly selected a dataset for subsequent analysis and found 
some accurate potential miRNA-mRNA regulatory axes, including mmu-mir-7b-5p-Gria1, mmu-mir-
486a-5p-Shc4 and mmu-mir-486b-5p-Shc4 pairs. Finally, mir-7b and its target gene Gria1 and mir-
486b and its target gene Shc4 were further validated in a bleomycin-induced ALI mouse model. We 
established a potential miRNA-mRNA regulatory network of ALI in mice, which may provide a basis 
for basic and clinical research on ALI and advance the available treatment options.

Acute lung injury (ALI) and its more severe form acute respiratory distress syndrome (ARDS) are life-threatening 
clinical conditions associated with critically ill patients and have high morbidity and mortality rates  worldwide1. 
ALI/ARDS is characterized by lung epithelial and endothelial cell injury, with increased permeability of the 
alveolar-capillary membrane, leading to pulmonary edema, severe hypoxia, and difficulty with  ventilation2. The 
common causes of ALI/ARDS are sepsis, severe trauma, massive blood transfusion, pneumonia, aspiration of 
gastric contents, and toxicity from certain types of drugs. The complex pathophysiology of ALI/ARDS seems to 
provide a wide range of targets that offer numerous therapeutic  options1,2. However, despite extensive studies on 
ALI/ARDS pathophysiology and treatment, no effective pharmacotherapies are  available3.

A range of microRNAs (miRNAs), recently determined by high-throughput screening studies in human 
and animal models, play a pivotal role in the pathophysiology of ALI/ARDS4,5. MiRNAs are small noncoding 
RNAs ranging in size from 18 to 24 nucleotides that can regulate the expression of specific genes by inhibiting 
the translation of target messenger RNAs (mRNAs) or by targeting complementary mRNAs for  degradation6,7. 
In addition, circulatory miRNAs are beneficial biomarkers and some pharmacotherapeutic  targets8. This is 
revolutionary for syndromes that have neither measurable disease indicators nor targeted treatment. Currently, 
no miRNA-based therapies are available for ALI/ARDS, but therapies targeting miRNAs have reached phase 
II clinical trials for the treatment of some cancers 5,9,10. Further studies may reveal some unique miRNA profile 
patterns that can serve as biomarkers or targets for ALI/ARDS.

Because of the complex and heterogeneous mechanisms of human ARDS, a rat model of ARDS induced by 
saline lavage and mechanical ventilation was used to construct a miRNA and mRNA microarray and thereby 
identify miRNA-mRNA  interactions11. The bleomycin-induced ALI mouse model is widely applied because it 
is characterized by an inflammatory response and alveolar epithelia leading to excessive matrix  deposition12–14. 
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However, no miRNA and mRNA regulatory network of bleomycin-induced ALI in mice has been constructed. 
In this study, we searched datasets of bleomycin-induced ALI in mice by accessing the network database. We 
first screened differentially expressed miRNAs (DE-miRNAs) in bleomycin-treated lung tissues compared with 
normal lung tissues in mice. Then, we predicted the potential target genes of the DE-miRNAs using network 
database resources. Next, differentially expressed mRNAs (DE-mRNAs) between bleomycin-treated lung tissues 
and normal lung tissues were obtained by analyzing the mRNA dataset. Subsequently, candidate target genes 
were identified, a protein–protein interaction (PPI) network was constructed, and Gene Ontology (GO) func-
tional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were 
performed. Finally, a potential miRNA-mRNA regulatory network was established, another dataset was used 
to detect the candidate target gene expression levels, and two relatively meaningful miRNA-mRNA pairs were 
experimentally verified. In summary, our findings reveal the potential comprehensive mechanisms of miRNA-
mRNA regulatory axes in the pathogenesis of bleomycin-induced ALI and a potential ALI-related miRNA-mRNA 
regulatory network. The flowchart of our study is depicted in Fig. 1.

Results
Searching miRNA datasets to identify DE-miRNAs. A dataset (GSE147138) from the Gene Expres-
sion Omnibus (GEO) was selected to screen DE-miRNAs between bleomycin-treated samples and control sam-
ples. After variance analysis and setting |log2-fold change (FC)|> 2 and P < 0.05 as the thresholds for identifying 
DE-miRNAs, 15 upregulated DE-miRNAs (mmu-miR-298-5p, mmu-miR-196a-5p, mmu-miR-21a-3p, mmu-
miR-96-3p, mmu-miR-7b-5p, mmu-miR-470-5p, mmu-miR-302d-3p, mmu-miR-743b-3p, mmu-miR-871-5p, 
mmu-miR-871-3p, mmu-miR-881-3p, mmu-miR-465b-5p, mmu-miR-465c-5p, mmu-miR-3092-3p, mmu-
miR-344e-3p) and 6 downregulated DE-miRNAs (mmu-miR-448-5p, mmu-miR-451a, mmu-miR-486a-5p, 
mmu-miR-486a-3p, mmu-miR-486b-5p, mmu-miR-486b-3p) were identified. The volcano plot of the DE-miR-
NAs is shown in Fig. 2.

Prediction of potential DE-miRNA target genes. We used the miRNet database to predict the poten-
tial target genes of the DE-miRNAs, as miRNAs exert their biological effects mainly by directly targeting the 3’ 
untranslated regions of mRNAs. The potential target genes for the upregulated DE-miRNAs included 1068 genes 
associated with 13 miRNAs (see Supplementary File 1A), and the potential target genes for the downregulated 
DE-miRNAs included 76 genes associated with 4 miRNAs (see Supplementary File 1B). The upregulated DE-
miRNA-target gene network was established and is presented in Fig. 3A, and the downregulated DE-miRNA-
target gene network was established and is presented in Fig. 3B. Additionally, the degrees of target genes for the 
DE-miRNAs are listed in Table 1.

Searching mRNA datasets to identify DE-mRNAs. To improve the reliability of our subsequent anal-
ysis of the target genes of the screened DE-miRNAs, we searched GEO datasets focusing on mRNA expression. 
One dataset (GSE123808) was selected to screen DE-mRNAs between bleomycin-treated samples and control 

Figure 1.  The flowchart of our study.
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samples. Series matrix files were downloaded from the GEO dataset (see Supplementary File 2A). Applying the 
RGUI and limma packages for analysis of variance, different mRNAs were identified (see Supplementary File 
2B). The |log2FC|> 2 and P < 0.05 parameters were set as the thresholds for identifying DE-mRNAs. Finally, 261 
downregulated DE-mRNAs (see Supplementary File 2C) and 287 upregulated DE-mRNAs (see Supplementary 
File 2D) were identified. The volcano plot of the DE-mRNAs is shown in Fig. 4.

Figure 2.  The DE-miRNAs between bleomycin-treated samples and control samples. A |log2FC|> 2 and P < 0.05 
were set as the thresholds for identifying DE-miRNAs. The red and green dots represent the upregulated and 
downregulated miRNAs in bleomycin-treated samples, respectively; the black dots represent miRNAs that were 
not differentially expressed between the bleomycin-treated samples and control samples.

Figure 3.  Predicted target genes of the DE-miRNAs. (A) Upregulated DE-miRNA-target gene network 
constructed using miRNet. The red rectangles represent the upregulated DE-miRNAs, and the blue ellipses 
represent the target genes. (B) Downregulated DE-miRNA-target gene network constructed using miRNet. The 
green rectangles represent the downregulated DE-miRNAs, and the blue ellipses represent the target genes.
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Identification of candidate target genes. It is widely acknowledged an inverse relationship exists 
between miRNAs and mRNA target genes. We conducted a combined analysis of 261 downregulated DE-
mRNAs and 1068 predicted target genes of the upregulated DE-miRNAs, and 11 candidate target genes of the 
upregulated DE-miRNAs were further screened out (Fig. 5A, Table 2). We conducted a combined analysis of 
287 upregulated DE-mRNAs and 76 predicted target genes of the downregulated DE-miRNAs, and 1 candidate 
target gene was further screened out (Fig. 5B, Table 3).

Construction of the PPI network. We mapped these candidate target genes into the STRING database, 
setting the research species as "Mus musculus", to construct the PPI network. When the lowest interaction score 
was set to 0.15, 7 candidate target genes of the DE-miRNAs in the network were predicted to have protein inter-

Table 1.  Degrees of the target genes of the DE-miRNAs.

miRNA ID Degree

Upregulated DE-miRNAs

mmu-mir-7b-5p 468

mmu-mir-298-5p 300

mmu-mir-344e-3p 157

mmu-mir-743b-3p 124

mmu-mir-302d-3p 77

mmu-mir-881-3p 28

mmu-mir-470-5p 28

mmu-mir-465b-5p 25

mmu-mir-465c-5p 25

mmu-mir-871-5p 23

mmu-mir-3092-3p 20

mmu-mir-196a-5p 10

mmu-mir-871-3p 5

Downregulated DE-miRNAs

mmu-mir-451a 50

mmu-mir-486a-5p 18

mmu-mir-448-5p 14

mmu-mir-486b-5p 14

Figure 4.  The DE-mRNAs between bleomycin-treated samples and control samples. A |log2FC|> 2 and P < 0.05 
were set as the thresholds for identifying DE-mRNAs. The red and green dots represent the upregulated and 
downregulated mRNAs in the bleomycin-treated samples, respectively; the black dots represent mRNAs that 
were not differentially expressed between the two groups.
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actions (five disconnected nodes in the network), and 5 edges represented the interactions between proteins 
(Supplementary Figure S1).

GO function and KEGG pathway enrichment analyses. GO biological process (BP) functional 
enrichment analysis showed that the candidate target genes were significantly enriched for membranous sep-
tum morphogenesis, synaptic vesicle fusion to the presynaptic active zone membrane, planar cell polarity path-
way involved in neural tube closure, stem cell differentiation, regulation of the establishment of planar polarity 
involved in neural tube closure, vesicle fusion to the plasma membrane, regulation of the postsynaptic cytosolic 
calcium ion concentration, establishment of vesicle localization, establishment of the planar polarity involved in 
neural tube closure, and the Wnt signaling pathway involved in midbrain dopaminergic neuron differentiation, 
among others (See Supplementary File 3A). The top 20 GO BP enrichment terms ranked by their adjusted (adj) 
P values are shown in Supplementary Figure S2A.

GO molecular function (MF) function enrichment analysis showed that the candidate target genes were 
significantly enriched for PDZ domain binding, Wnt-activated receptor activity, ionotropic glutamate receptor 
activity, syntaxin-1 binding, frizzled binding, glutamate receptor activity, Wnt protein binding, transmitter-gated 
ion channel activity involved in the regulation of postsynaptic membrane potential, neurotransmitter recep-
tor activity involved in the regulation of postsynaptic membrane potential, and postsynaptic neurotransmitter 

Figure 5.  Identification of candidate target genes. (A) The intersection of the predicted target genes of the 
upregulated DE-miRNAs and downregulated DE-mRNAs. (B) The intersection of the predicted target genes of 
the downregulated DE-miRNAs and upregulated DE-mRNAs.

Table 2.  Candidate target genes of the upregulated DE-miRNAs.

Candidate target genes Upregulated DE-miRNAs

Ugt2b35 mmu-mir-344e-3p

Stk11ip mmu-mir-7b-5p

Gria1 mmu-mir-7b-5p

Cplx1 mmu-mir-7b-5p

Necab1 mmu-mir-7b-5p

Ces1g mmu-mir-298-5p

Fzd1 mmu-mir-344e-3p

Senp5
mmu-mir-881-3p

mmu-mir-298-5p

Ddx3y mmu-mir-871-5p

Sema4g mmu-mir-7b-5p

Cadm2 mmu-mir-3092-3p

Table 3.  Candidate target genes of the downregulated DE-miRNAs.

Candidate target genes Downregulated DE-miRNAs

Shc4
mmu-mir-486a-5p

mmu-mir-486b-5p
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receptor activity, among others (see Supplementary File 3B). The top 20 GO MF enrichment terms ranked by 
their adj P values are shown in Supplementary Figure S2B.

GO cellular component (CC) function enrichment analysis showed that the candidate target genes were 
significantly enriched for the dendritic spine membrane, Wnt signalosome, postsynaptic membrane, AMPA 
glutamate receptor complex, dendrite membrane, calyx of Held, glutamatergic synapse, axon part, SNARE com-
plex, and synaptic membrane, among others (see Supplementary File 3C). The top 20 GO CC enrichment terms 
ranked by their adj P values are shown in Supplementary Figure S2C.

KEGG pathway enrichment analysis of the candidate target genes was then conducted. The candidate target 
genes were significantly enriched for the breast cancer, gastric cancer, hepatocellular carcinoma, nicotine addic-
tion, neurodegeneration-multiple diseases, long-term depression, basal cell carcinoma, long-term potentiation, 
amphetamine addiction, and prolactin signaling pathways (see Supplementary File 3D). The top 20 KEGG 
pathways enriched ranked by their adj P values are shown in Supplementary Figure S2D.

Identification of a potential miRNA-mRNA regulatory network. According to the miRNA and 
candidate target gene pairs analyzed above (Tables 2, and 3), we found a link between miRNAs and target genes, 
and the potential miRNA-mRNA (target gene) regulatory network related to the development of bleomycin-
induced ALI in mice was constructed as shown more intuitively in Fig. 6.

Searching the datasets and validating the candidate target gene expression levels. To make 
the validation more credible, we randomly selected a dataset that met the inclusion criteria. Finally, GSE109913 
was selected for subsequent analysis. The expression levels of five candidate target genes from the GSE109913 
dataset were determined and are shown in Fig. 7. In the GSE109913 dataset, the expression level of Gria1 was 
significantly lower in bleomycin-treated ALI samples than in normal control samples (P < 0.05), and the expres-
sion level of Shc4 was significantly higher in bleomycin-treated ALI samples than in normal control samples 
(P < 0.05).

Analysis of target gene expression demonstrated the inhibitory effect of Gria1 and the promotional effect 
of Shc4 on ALI. Based on this preliminary validation, more accurate potential miRNA-mRNA regulatory axes 
contributing to ALI were established, including the mmu-mir-7b-5p-Gria1, mmu-mir-486a-5p-Shc4 and mmu-
mir-486b-5p-Shc4 regulatory pathways, which could first be further studied in clinical and basic experiments.

Experimental validation of a bleomycin-induced ALI model. To further validate the prediction 
results, we constructed a bleomycin-induced ALI mouse model by intratracheally administering 5 mg/kg bleo-
mycin. Hematoxylin and eosin (HE) staining of lung sections from the bleomycin-treated groups showed com-
prehensive features of morphological damage, such as congestion, hemorrhaging, thickening of the alveolar 
walls and infiltration of inflammatory cells, especially neutrophils, while no histological defects were observed 
in the phosphate-buffered saline (PBS) treated lungs (Fig. 8A). Compared with that of the control group, the lung 
injury score of the bleomycin-treated group was higher (Fig. 8B).

Figure 6.  The potential miRNA-mRNA regulatory network of ALI. Upregulated miRNA and downregulated 
mRNA regulatory network axes included mir-344e-3p-Ugt2b35/Fzd1, mir-7b-5p-Stk11ip/Gria1/Cplx1/Necab1/
Sema4g, mir-298-5p-Ces1g/Senp5, mir-881-3p-Senp5, mir-871-5p-Ddx3y and mir-3092-3p-Cadm2; the 
downregulated miRNA and upregulated mRNA regulatory network axes included mir-486a-5p-Shc4 and mir-
486b-5p-Shc4.
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Then, we explored the expression of miR-7b and its target gene Gria1 and miR-486b and its target gene Shc4 
in lung tissues using real-time polymerase chain reaction (PCR) (Fig. 9). Consistent with the predicted results, 
the experimental validation showed that the expression of miR-7b was significantly upregulated and that of 
the Gria1 gene was downregulated in the ALI groups (P < 0.05). In addition, the expression of miR-486b was 
significantly downregulated and that of Shc4 was upregulated in the ALI groups (P < 0.05).

Discussion
ALI/ARDS is a life-threatening clinical condition associated with multiple symptoms and influenced by numerous 
 factors1,2. Functional genomics approaches have provided novel insights into ALI/ARDS, a complex trait that 
requires both a severe environmental insult and an individual  predisposition15. To date, the only study showing 
a link between the miRNA-mRNA regulatory network and ARDS was a study that induced ARDS in rats by 
using saline lavage and mechanical  ventilation11.

As an antitumor antibiotic, bleomycin can form complexes with oxygen and iron to break DNA strands, 
resulting in the secretion of oxygen free radicals and cell  apoptosis16. During the process of cell damage and 
apoptosis, a number of cytotoxic factors, such as reactive oxygen species (ROS) and nitrogen (NO) inflammatory 
factors, are generated in the lungs and can directly damage cells through lipid and protein  oxidation17. There-
fore, bleomycin has been widely used in animal studies to model pulmonary fibrosis and ALI/ARDS13,14,18. The 
bleomycin-induced ALI mouse model is widely applied because it is characterized by an inflammatory response 
and alveolar epithelia leading to excessive matrix  deposition12–14. However, no microRNA-mRNA regulatory 
network of bleomycin-induced ALI in mice has been constructed.

In this study, we searched the GEO database and conducted differential expression analysis using miRNA 
and mRNA datasets. Finally, six upregulated DE-miRNAs and two downregulated DE-miRNAs were identi-
fied. Some of the screened DE-miRNAs were consistent with previous results. MiR-344 was also identified as 

Figure 7.  Expression levels of target genes from the GSE109913 dataset. The expression levels of Gria1 were 
significantly lower in bleomycin-treated ALI samples than in normal control samples, and the expression levels 
of Shc4 were significantly higher in bleomycin-treated ALI samples than in normal control samples. ns: no 
significance, *P < 0.05.

Figure 8.  Hematoxylin and eosin (HE) staining and acute lung injury scores of lung samples. (A) 
Representative HE staining images of lung tissues. Scale bar, 100 × magnification in the left panels and 
400 × magnification in the right panels. (B) The lung injury scores were calculated based on HE staining. n = 6 
per group. *P < 0.05.
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an upregulated miRNA in a rat model of ARDS that inversely correlated with the expression of their predicted 
targets, such as Aco2, Mdh1 and  Eif2ak111. MiR-7b was previously shown to be upregulated in the ALI/ARDS 
 model19,20. Silencing the lncRNA MEG3 augments the binding of miR-7b to NLRP3 and downregulates NLRP3 
expression, which ultimately improves endotoxin-induced  ALI21. Although there are no direct reports of miR-
298 in ALI/ARDS, miR-298 was predicted to bind with high affinity to the 5’UTR of the SARS-CoV-2 genome, 
and SARS-CoV-2 can cause  ARDS22. MiR-298 was also identified as a potential regulator of the NOD-dependent 
Tnf-α and Il-6 mRNA levels in pulmonary endothelial cells, which represents the vital pathogenesis of  ARDS23. 
In an LPS-induced ALI mouse model, the miR-486-5p level was significantly higher than that in the  controls24. 
However, in bleomycin-induced ALI, miR-486-5p was shown to be  downregulated25. Hence, our findings provide 
a basis for the use of miRNAs as biomarkers or targets for miRNA-based pharmacological therapies for ALI.

After integrating the DE-mRNAs and target genes of the DE-miRNAs, multiple candidate genes were 
screened, including 11 candidate target genes of the upregulated DE-miRNAs and 1 candidate target gene of the 
downregulated DE-miRNAs. Then, a PPI network was constructed to analyze the protein interactions of these 
target genes. In STRING, each PPI is annotated with one or more ’scores’. These scores are indicators of confi-
dence. All scores rank from 0 to 1, with 1 being the highest possible confidence. There are two types of scores: 
the “normal” score, and the “transferred” score. The latter is computed from data that is not originally observed 
in the organism of interest, but instead in some other organism and then transferred via homology/orthology. In 
this study, we mainly studied miRNA-mRNA interaction. There is indeed little evidence for interactions between 
potentially related target genes (proteins). Our PPI network results show interactions between possible target 
genes (proteins) for future in-depth studies. We selected with different thresholds to establish confidence of PPI. 
When we chose a higher threshold, there were fewer confidence of PPI. For a more comprehensive analysis, we 
chose a lower threshold score value 0.15.

GO BP functional enrichment analysis showed that the candidate target genes were significantly enriched for 
membranous septum morphogenesis, synaptic vesicle fusion to the presynaptic active zone membrane, planar cell 
polarity involved in neural tube closure, stem cell differentiation, and regulation of the establishment of planar 
polarity involved in neural tube closure. GO MF functional enrichment analysis showed that the candidate target 
genes were significantly enriched for PDZ domain binding, Wnt-activated receptor activity, ionotropic glutamate 
receptor activity, syntaxin-1 binding, and frizzled binding. GO CC functional enrichment analysis showed that 
the candidate target genes were significantly enriched for the dendritic spine membrane, Wnt signalosome, post-
synaptic membrane, AMPA glutamate receptor complex, and dendrite membrane. KEGG pathway enrichment 
analysis showed that candidate target genes were significantly enriched for pathways related to breast cancer, 
gastric cancer, hepatocellular carcinoma, nicotine addiction and multiple neurodegeneration diseases. Some of 
these functional enrichment and pathways are closely related to ALI/ARDS, and some of these genes have been 
identified to act as pivotal modulators. For example, Fzd1 expression was decreased in the lungs of rats with 
endotoxic shock, and decreased Fzd1 expression may hinder the sensitivity of Wnt3a/β-catenin signaling to 
regulate inflammatory  responses26. Shc4 was shown to enhance intracellular antioxidant defense via the nuclear 

Figure 9.  Experimental validation of a bleomycin-induced ALI model by real-time PCR. The expression of 
miR-7b was significantly upregulated and that of the Gria1 gene was downregulated in the ALI groups. The 
expression of miR-486b was significantly downregulated and that of the Shc4 gene was upregulated in the ALI 
groups. n = 6 per group. *P < 0.05.
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factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway, which was associated 
with the oxidative stress response in  ALI27.

The upregulated miRNA and downregulated mRNA regulatory network constructed herein included mir-
344e-3p-Ugt2b35/Fzd1, mir-7b-5p-Stk11ip/Gria1/Cplx1/Necab1/Sema4g, mir-298-5p-Ces1g/Senp5, mir-881-
3p-Senp5, mir-871-5p-Ddx3y and mir-3092-3p-Cadm2, and the downregulated miRNA and upregulated mRNA 
regulatory network included mir-486a-5p-Shc4 and mir-486b-5p-Shc4. There are still relatively few reports on 
these regulatory networks, and ALI-related research has been particularly limited. As a result, these miRNAs 
and target genes can be combined to perform in-depth studies and thereby identify potential targets for the 
treatment of related diseases. Thus, further research on this potential ALI-related miRNA-mRNA regulatory 
network is warranted to verify the relevant mechanism. Almost none of these miRNA-mRNA pairs in the network 
potentially contributing to the pathogenesis of ALI have been studied, which is of importance for exploring and 
developing novel mechanisms and therapeutic targets.

To enhance the applicability of our data, we first used datasets including bleomycin-treated samples and con-
trol samples to further select suitable pathways to study. In the GSE109913 dataset, the expression levels of Gria1 
were significantly lower in bleomycin-induced ALI tissues than in normal tissues, and the expression levels of 
Shc4 were significantly higher in bleomycin-induced ALI tissues than in normal tissues. Then, we constructed a 
bleomycin-induced ALI mouse model, which was confirmed by the HE staining of lung sections. Furthermore, 
we explored the expression levels of miR-7b and its target gene Gria1 and of miR-486b and its target gene Shc4 
in lung tissues by real-time PCR. Fortunately, the experimental validation showed that the expression of miR-7b 
was significantly upregulated while that of the Gria1 gene was downregulated in the ALI groups; the expression 
of miR-486b was significantly downregulated and that of the Shc4 gene upregulated was in the ALI groups. 
Although miR-7b was upregulated in the ALI/ARDS  model19,20, the predicted target genes of miR-7b are IRS2, 
OXR1, GSK3B, and NFAT5. Here, we identified a new miRNA-mRNA regulatory pathway (miR-7b/Gria1), which 
was preliminarily verified in a bleomycin-induced ALI mouse model. miR-486b and Shc4 have been shown to be 
related to oxidative stress, but the miR-486b/Shc4 pathway has not yet been confirmed. Therefore, these gene-
related miRNA-mRNA regulatory pathways should be further studied in basic experiments.

Although a potential miRNA-mRNA regulatory network was constructed in this study, there are still some 
limitations. First, we utilized only one miRNA dataset and one mRNA dataset, and the number and sample sizes 
of the datasets included in this study were small. Second, we screened out DE-miRNAs and DE-mRNAs from a 
web database with data from multiple sources to avoid the limitations of a single-center study as much as possible, 
but a single study to validate and screen the constructed regulatory network is still needed. It is best to verify 
both miRNAs and mRNAs in the same set of samples. We used only the GSE109913 dataset to preliminarily 
validate gene expression. On this basis, our next studies will further validate and further explore the underlying 
mechanisms to find effective interventions to target the established regulatory network. Finally, as we further 
validated the gene expression and regulatory network, we explored the expression of miR-7b and its target gene 
Gria1 and miR-486b and its target gene Shc4 in lung tissues using real-time PCR. Further studies on the other 
miRNAs and target genes are needed in the future.

In conclusion, we herein reveal a potential comprehensive mechanism of miRNA-mRNA regulatory axes in 
the pathogenesis of bleomycin-induced ALI and establish a potential ALI-related miRNA-mRNA regulatory 
network, which may provide a basis for basic and clinical research on ALI and advance its treatment.

Materials and methods
Searching and screening of datasets. We searched datasets focusing on miRNAs, mRNAs and genes 
in the GEO dataset (https:// www. ncbi. nlm. nih. gov/ gds/). Taking miRNA expression as an example, the retrieval 
strategy was as follows: (("micrornas"[MeSH Terms] OR microRNA [All Fields]) AND ("bleomycin"[MeSH 
Terms] OR bleomycin [All Fields])) AND "Mus musculus"[porgn]. We included datasets based on bleomycin-
induced mice and datasets containing bleomycin-treated lung tissue samples and control lung tissue samples. 
One dataset (GSE147138) met the inclusion criteria mentioned above and was selected for subsequent analysis. 
The dataset contained bleomycin-treated samples (C57Bl/6 mice received one intratracheal administration of 
bleomycin in PBS) and control samples (C57Bl/6 mice received one intratracheal administration of PBS alone). 
Dataset GSE147138 was based on the GPL21103 Illumina HiSeq 4000 platform (Mus musculus). Basic informa-
tion about the dataset is provided in Supplementary File 4.

Identification of DE-miRNAs. The miRNA expression data (GSE147138) were downloaded from the 
National Center for Biotechnology Information (NCBI) GEO (see Supplementary File 5). By comparing bleomy-
cin-treated samples and control samples, DE-miRNAs were identified using the RGUI 4.0.3 and limma packages 
based on |log2FC|> 2 and P value < 0.05 as the  thresholds28.

Prediction of potential target genes of DE-miRNAs. An integrated platform linking miRNAs, their 
targets and their functions named miRNet (https:// www. mirnet. ca/) was used to predict the downstream target 
genes of the screened DE-miRNAs29–31. The screened upregulated and downregulated DE-miRNAs were entered 
into the web platform, and the data of the potential target genes of the upregulated and downregulated DE-
miRNAs were downloaded. Then, these data were input into Cytoscape 3.6.0 software to access the DE-miRNA-
target gene  network32. Using the "Network Analyzer" tools of the software, the data were subjected to topology 
analysis, and the degrees of target genes for the DE-miRNAs were finally identified.

Identification of DE-mRNAs and candidate target genes. GSE123808 was based on the GPL23479 
BGISEQ-500 platform (Mus musculus), and basic information about this dataset is provided in Supplementary 

https://www.ncbi.nlm.nih.gov/gds/
https://www.mirnet.ca/
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File 4. Setting |log2FC|> 2 and P value < 0.05 as the thresholds, DE-mRNAs were identified using the RGUI and 
limma  packages28. Then, we analyzed the DE-mRNAs and predicted target genes of DE-miRNAs in combina-
tion, and candidate target genes were further screened.

Construction of the PPI network. The candidate target genes were introduced into the STRING data-
base (https:// string- db. org/). STRING is an ELIXIR Core Data web server that retrieves and displays repeatedly 
occurring gene  neighborhoods33–35. After adding the candidate target genes into the database, a PPI network was 
constructed. The research species was defined as "Mus musculus", the lowest interaction score was set to 0.15, and 
the remaining parameters were set to the default settings. Nodes represented target genes, and edges represented 
the interactions between the target genes in the PPI network.

GO function and KEGG pathway enrichment analyses. The RGUI 4.0.3 and org.Hs.eg.db packages 
were applied to obtain the entrezIDs of the candidate target genes. RGUI and the clusterProfiler package were 
used to perform GO function enrichment analysis, which included BP, MF and CC, as well as KEGG pathway 
enrichment  analysis36,37.

Identification of a potential miRNA-mRNA regulatory network and validation of target gene 
expression levels. According to the miRNA and candidate target gene pairs analyzed, we established a 
link between miRNAs and candidate target genes to identify a potential miRNA-mRNA regulatory network. 
Subsequently, the GEO dataset was used to detect the candidate target gene expression levels. We searched GEO 
datasets focusing on gene expression and included those based on bleomycin-treated samples and control sam-
ples. To make the validation more credible, we randomly selected a dataset that met the inclusion criteria, and 
GSE109913, which was based on the GPL21103 Illumina HiSeq 4000 platform (Mus musculus), was selected for 
subsequent analysis. Basic information about GSE109913 is provided in Supplementary File 4. We downloaded 
gene expression data from the GEO dataset and accessed candidate target gene expression data to perform 
statistical analysis (Supplementary File 6). The expression levels of target genes in the regulatory network were 
further validated by analyzing the gene expression data downloaded from the GEO dataset. P < 0.05 was consid-
ered statistically significant.

Animal experiments. Six- to eight-week-old male C57BL/6 wild-type mice (Shanghai Laboratory Animal 
Center, Chinese Academy of Sciences, Shanghai, China) were maintained in a controlled environment and pro-
vided water and standard rodent food. The mice were anesthetized with sodium pentobarbital (60 mg/kg) and 
then administered bleomycin (BLM, Sigma–Aldrich Co. LLC., USA) dissolved in PBS via a single intratracheal 
instillation at a dose of 5 mg/kg body weight in a volume of 50 μl to induce ALI; mice in the control group 
received an equal volume of PBS. The mice were anesthetized and sacrificed on day 7 after the bleomycin or PBS 
injection. The animal experiments were approved by the Animal Ethics Committee of Nantong University on the 
Use and Care of Animals and were performed in accordance with the committee’s guidelines (ethical approval 
number, S20210304-019). This study also adhered to the ARRIVE guidelines (https:// arriv eguid elines. org).

Histopathological examination. Histological analysis of the left lung was performed. Briefly, immedi-
ately after euthanasia, the left lung tissues were collected and fixed in 10% formalin for 24 h, embedded in paraf-
fin, sliced into 5-μm thick sections, and stained with hematoxylin and eosin (HE) for the detection of pathologi-
cal changes in the lung tissues. Lung injury scores were utilized to evaluate BLM-induced lung injury based on 
HE images and Matute-Bello’s published criteria in a blinded  manner38.

RNA extraction, reverse transcription and real-time quantitative PCR. Total RNA was extracted 
from the lung tissues of mice using RNAiso Plus (Takara) and reverse-transcribed into complementary DNA 
using PrimeScript™ RT Master Mix (Takara). mRNA expression levels were quantified using TB Green® Pre-
mix Ex Taq™ II (Takara), with GAPDH expression serving as an internal control. Primers with the following 
sequences were used for real-time PCR: Shc4: forward: 5′-AGC CCA TAC TGG TGC CAT TGA-3′; reverse: 
5′-GTT GAA CCA TTG TCC GGT GTG TAG-3′; Gria1: forward: 5′-AGC GGA CAA CCA CCA TCT CTG-3′; 
reverse: 5′-AAG GGT CGA TTC TGG GAT GTT TC -3′; and GAPDH: forward: 5′-TGC ACC ACC AAC TGC 
TTA G-3′; reverse: 5′-GGA TGC AGG GAT GAT GTT C-3′. The mir-7b and mir-486b primers and U6 snRNA 
(internal control) were purchased from RiboBio (Guangzhou, China). miRNA real-time PCR was performed by 
using the Bulge-loop™ miRNA qRT–PCR Starter Kit (RiboBio, Guangzhou, China) according to the manufac-
turer’s protocol. Data were quantified using the comparative 2 − ΔΔCt method.

Statistical analysis. Some statistical analyses were automatically performed by the bioinformatic tools on 
the web platforms mentioned above. We used a series of matrix files downloaded from the GEO dataset ana-
lyzed with the RGUI 4.0.3 and the limma packages to identify DE-miRNAs and DE-mRNAs. Only miRNAs 
and mRNAs with a |log2FC|> 2 and P < 0.05 were considered statistically significant. We used the RGUI 4.0.3 
and the org.Hs.eg.db packages to obtain the entrezIDs of the candidate target genes. We used the RGUI and 
clusterProfiler packages to perform GO functional enrichment analysis, and adjusted P < 0.05 was considered 
statistically significant. The data of target gene expression levels in GSE109913 dataset, the lung injury scores and 
miRNA-mRNA pairs expression levels in mouse models were analyzed using IBM SPSS Statistics 25 software 
and GraphPad Prism 8.0.2 software. Student’s t test or Welch’s t test was used to compare two groups. If the data 
were not normally distributed, the Mann–Whitney U test was used. P < 0.05 was considered significant.

https://string-db.org/
https://arriveguidelines.org
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request. All data generated or analyzed during this study are included in this published article 
(and its Supplementary Information files).
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