
����������
�������

Citation: Lyu, S.; Li, R.; Zhao, Y.; Li,

Z.; Fan, R.; Liu, S. Green Citrus

Detection and Counting in Orchards

Based on YOLOv5-CS and AI Edge

System. Sensors 2022, 22, 576.

https://doi.org/10.3390/s22020576

Academic Editor: Benoit Vozel

Received: 30 November 2021

Accepted: 10 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Green Citrus Detection and Counting in Orchards Based on
YOLOv5-CS and AI Edge System
Shilei Lyu 1,2,3,4, Ruiyao Li 1,3, Yawen Zhao 1,3, Zhen Li 1,2,3,4,*, Renjie Fan 1,3 and Siying Liu 1

1 College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University,
Guangzhou 510642, China; lvshilei@scau.edu.cn (S.L.); 20203162097@stu.scau.edu.cn (R.L.);
w844718456@163.com (Y.Z.); richard.fan@stu.scau.edu.cn (R.F.); 201934910820@stu.scau.edu.cn (S.L.)

2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
3 Pazhou Lab, Guangzhou 510330, China
4 Division of Citrus Machinery, China Agriculture Research System of MOF and MARA,

Guangzhou 510642, China
* Correspondence: lizhen@scau.edu.cn; Tel.: +86-1361-018-9829

Abstract: Green citrus detection in citrus orchards provides reliable support for production man-
agement chains, such as fruit thinning, sunburn prevention and yield estimation. In this paper, we
proposed a lightweight object detection YOLOv5-CS (Citrus Sort) model to realize object detection
and the accurate counting of green citrus in the natural environment. First, we employ image rotation
codes to improve the generalization ability of the model. Second, in the backbone, a convolutional
layer is replaced by a convolutional block attention module, and a detection layer is embedded to
improve the detection accuracy of the little citrus. Third, both the loss function CIoU (Complete
Intersection over Union) and cosine annealing algorithm are used to get the better training effect
of the model. Finally, our model is migrated and deployed to the AI (Artificial Intelligence) edge
system. Furthermore, we apply the scene segmentation method using the “virtual region” to achieve
accurate counting of the green citrus, thereby forming an embedded system of green citrus counting
by edge computing. The results show that the mAP@.5 of the YOLOv5-CS model for green citrus
was 98.23%, and the recall is 97.66%. The inference speed of YOLOv5-CS detecting a picture on the
server is 0.017 s, and the inference speed on Nvidia Jetson Xavier NX is 0.037 s. The detection and
counting frame rate of the AI edge system-side counting system is 28 FPS, which meets the counting
requirements of green citrus.

Keywords: green citrus; object detection; virtual region; YOLOv5-CS; AI edge system

1. Introduction

The collection and monitoring of information throughout the fruit growth cycle es-
sentially play a guiding role in the delicacy management of the fruit industry and has
become the critical technical basis for constructing an intelligent orchard [1–3]. Recently,
the application of computer vision technology for fruit detection has become a research
hotspot. Especially, the detecting, tracking, and counting of green citrus are essential for
predicting the yield of orchards during harvest. Research could provide reliable data
support for orchard production management such as fruit thinning, sunburn prevention,
and unmanned picking [4,5]. To realize the intelligent detection of fruits in the natural
environment, researchers worldwide have successively explored and studied several so-
lutions. Li et al. proposed an improved YOLOv3 lightweight model combined with the
Mobile Net method for ripe fruit detection and applied it to dragon fruit detection in
the actual environment [6]. Bi et al. used multiple segmentation methods to recognize
citrus targets in the natural environment and improved multi-scale image detection and
real-time performance of the citrus object detection model [7]. Xiong et al. applied the
multi-scale convolutional neural network, the Des-YOLOv3 model, to realize the detection
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of citrus in the night environment [8]. Li et al. proposed the SSD-ResNet18 improved model
to realize the real-time detection and classification of normal citrus, epidermal lesions,
and mechanically damaged citrus [9]. Lyu et al. proposed the YOLOv3-LITE lightweight
network model to realize real-time detection of mature citrus [10]. The colors of green
fruits are similar to those of fruit tree leaves in tropical and subtropical evergreen orchards.
Thus, Zheng et al. proposed the YOLO BP network to detect green citrus in the natural
environment, and the results showed that the accuracy, recall, mean average precision
(mAP), and detection speed of YOLO BP were 86%, 91% and 91.55% and 18 frames per
second (FPS), respectively [11]. Kuznetsova et al. used YOLOv3 and YOLOv5 in general
and close-up images. The average apple detection time was 19ms with FPR at 7.8% and
FNR at 9.2% using YOLOv3 and with FPR at 3.5% and FNR at 2.8% using YOLOv5 [12].
Parico and Ahamed proposed a real-time pear fruit counter using YOLOv4 and DeepSORT,
with an AP@0.50 of 98% [13]. Yan et al. proposed a light-weight fruit target real-time
detection method for the apple picking robot based on improved YOLOv5, with an mAP
of 86.75% [14]. Chen et al. proposed an improved YOLOv4 network structure to detect
small citrus against a complex background, with an average increase in accuracy of 3.15%
(from 92.89% to 96.04%) [15]. Xue et al. applied an improved YOLOv2 object detection
model to accurately identify immature mangoes in an orchard environment [16]. Shi et al.
also proposed a generalized attribution pruning detection method, which strips the sub-
networks from large-scale networks for the real-time detection of mangoes [17]. Mu et al.
performed transfer learning using a convolutional neural network, the R-CNN network,
and Resnet-101 to detect immature tomatoes [18]. Wang et al. proposed an improved
YOLOv5 model to detect small apples using the channel pruning method, with an average
detection time of 8 ms per image. However, it was not applied to the mobile terminal for
identification [19].

Presently, the majority of researchers focus on improving the static detection effect
of different fruit targets [20–22]. However, related studies on the dynamic tracking and
accurate counting of green citrus have seen less attention. Most citrus orchards in China
are situated in hills and mountains, and the working environment of the orchards is
complicated and changeable. Green citrus detection in orchards in the natural environment,
tracking counting, and yield prediction of green citrus targets are more in line with the
production needs of citrus orchards in China. In this paper, we adopted software and
hardware co-design. We proposed an improved YOLOv5-CS (Citrus Sort) lightweight
object detection model and migrated to the AI edge system platform to realize the intelligent
detection of green citrus. Besides, using “virtual region”, scene segmentation was proposed
to count the green citrus accurately. Thus, an embedded system for the intelligent detection
of citrus orchards using edge computing was designed and realized.

2. Related Works
2.1. YOLO Models

Object detection, tracking and counting are vital techniques for realizing citrus fruit
quantity statistics. According to the candidate region, object detection can be divided
into two: single-stage object detector and two-stage object detector [23]. The single-stage
object detector is an object detection model based on regression analysis, which omits
the candidate region generation stage and directly obtains object classification and loca-
tion information. The classic networks include YOLO, SSD, SqueezeDet and DetectNet.
The first-level network of the two-stage object detector is used for the candidate region
extraction. Candidate regions containing detection targets are selected from the input
image, mainly through selective search or edge box model. The second-level network
classifies the extracted candidate region and performs precise coordinate regression. The
typical networks include a series of R-CNN models. Since the efficiency of the two-stage
detection method using the candidate region does not meet real-time requirements and its
computational cost is high, we proposed a YOLOv5-based single-stage detection model,
theYOLOv5-CS model. In 2015, Redmon et al. proposed the YOLO model [24], which
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divided an image into S*S grids and by the center of the object in the grid on the prediction.
However, its recall rate and detection accuracy are relatively low. Figure 1 shows a diagram
of the YOLO object detection.

Figure 1. YOLO object detection.

In 2017, Redmon et al. proposed the YOLOv2 model [25], which uses the K-means
clustering method to automatically select the best initial box, thereby improving the de-
tection effect and speed compared to the previous version. Furthermore, in 2018, they
proposed YOLOv3 and used the new Darknet-53 residual network for feature extraction,
and three feature maps of different scales to predict [26]. In 2020, Bochkovskiy et al. pro-
posed YOLOv4, which greatly improves the detection accuracy of the model [27]. Jocher
proposed the YOLOv5 model in the same year, which is a lightweight network with a size
of 27MB [28]. Here, we focus on the YOLOv5 model for detecting green citrus and other
related research on quantitative statistics. The YOLOv5 model consists of four parts: the
input layer, backbone network, neck network, and output detection layer. Figure 2 shows
its network structure diagram.

2.1.1. Input

YOLOv5 applied the Mosaic data augmentation method in the input layer. Then, it
added a function to adjust the anchor box and the picture adaptively. In each training
process, whether to adopt the adaptive adjustment of the anchor box and the image or not
can be set for actual purposes. In this paper, we used different lengths and widths of the
dataset pictures, so the size of the input pictures in the YOLOv5 network was uniformly
modified to 416*416, thereby improving the inference and detection speeds.

2.1.2. Backbone

The focus module was applied to the backbone network of YOLOv5 to slice the input
image. Take the unified image as an example, the image of 416*416*3 was put into the
focus module to produce a picture of 208*208*12 after the slicing operation. After that, the
image undergoes the convolution operation of 32 convolution kernels, and finally becomes
a feature map of 208*208*32. Figure 3 shows the slicing operator of the focus module.
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Figure 2. YOLOv5 Architecture.

Figure 3. Slicing operation for subimage 1–4.

Additionally, the backbone network also includes the BCSP and SPP modules [29,30].
From Figure 2, blue BCSPn represents a module with a residual structure, and red BCSP1
represents a module without a residual structure. The BCSP module is used for improving
the learning ability of the convolutional neural network, by making the model smaller
while ensuring accuracy. This is conducive for the subsequent migration and deployment
of the model on the AI (Artificial Intelligence) edge system. The SPP module is the spatial
pyramid pooling module. The three pooling cores are 13*13, 5*5, and 9*9, respectively.
The last one has no pooling operation but directly joins the Concat module with the other
three channels and, finally, passes through Conv layer output. This module is beneficial for
increasing the receptive field and the calculation speed does not decrease.

2.1.3. Neck

The Yolov5 neck network adopts an FPN structure [31], which is mainly used to
generate feature pyramids and enhance the model’s ability to detect objects of different
scales. Furthermore, it is used to recognize different sizes and standards of the same body.
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Figure 4 shows that after a couple of downsamples, the detected module outputs 52*52,
26*26, 13*13 respectively.

Figure 4. Neck module.

2.1.4. Output

Yolov5 used GIoU as the loss function of the bounding box. In the post-processing of
target detection, Yolov5 used weighted NMS to filter target boxes.

2.2. Object Tracking and Counting

DeepSORT had been proven to be one of the fastest and most robust methods for
object tracking and counting [32]. It was originally developed by SORT and used object
detection for tracking and effectively correlates the object detection of each frame [33].
When the position of an object changed in different frames, DeepSORT used the Hungarian
algorithm to associate with the object in the previous frame [34], allowing the Kalman filter
to predict the current position using the last location of the object [35]. Due to the similar
size and color of citrus individuals, when the prediction box jumps, the ID of the prediction
box represents citrus target changes, causing errors in quantitative statistics. Therefore, we
introduced “virtual line” and “virtual region” to accurately predict the number of fruits of
citrus fruit trees. Figure 5 shows the flowchart of green citrus counting.

Figure 5. Green citrus counting.
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To count the number of green citrus, we set a virtual line in the video. This divides the
scene and detects the center point of the citrus fruit prediction box. If the center point of
the citrus prediction box crosses the virtual line, the number is increased by one. Therefore,
we only need to walk around the tree so that the number of citrus can be counted. This
method provides an efficient and accurate reference for citrus orchard yield estimation.
Figure 6 shows the diagram of the virtual line for counting.

Figure 6. Virtual line for counting.

3. Materials and Methods
3.1. Dataset Preprocessing
3.1.1. Data Acquisition

In this paper, we collected citrus images from citrus orchards in South China Agricul-
tural University, Guangzhou Conghua and Hunan Yizhang, using DJI MAVIC Air2 drones,
SLR cameras (Panasonic DMC-G7) and Honor 20 mobile phone for data collection. The
shooting time was from 9:00 a.m. to 6:00 p.m. The shooting environment includes natural
scenes, such as forward light, backlight, clear and blurred shots under sunny, cloudy, and
rainy conditions. The shooting angles are forward, upward, overhead, and multiple angles.
We collected more than 3000 original images.

3.1.2. Data Augmentation and Labeling

The data were cleaned and filtered from more than 3000 original images and were
augmented using data augmentation methods, such as vertical and horizontal mirroring,
displacement, blur, rotation 270◦, and salt and pepper noise, respectively. Figure 7 provides
a view of these data enhancement methods. Finally, the original and augmented images
are used as the dataset, containing 2831 images, such that the training and test sets are
2211 and 620, respectively, as shown in Table 1. Figure 8 shows the labeling process of the
dataset using labeling software.

3.2. YOLOv5-CS Model Design and Edge-Computing System Migration & Deployment
3.2.1. Model Design

Due to the difficulty of detecting green fruits in the natural environment and the
time-consumption of manually taking statistics of citrus yields, this paper proposed a
lightweight feasible detection and counting model using the improved YOLOv5-CS model
and edge-computing platform. From Figure 9, the model used YOLOv5 as the main model,
combined with the improved Conv_CBAM module to replace the original Conv module,
which increased the model’s attention and feature extraction capabilities for different
channels and spaces of the picture without increasing the calculation. Furthermore, it
helped to improve the detection accuracy of green citrus. Additionally, Figure 10 shows a
small target detection layer. It not only outputs the feature maps of 52*52, 26*26, and 13*13,
but the output with a size of 104*104 strengthens the model to recognize small citrus fruits.
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Figure 7. Data augmentation methods. (a) origin, (b) blur, (c) horizontal mirroring, (d) move,
(e) rotate 270◦, (f) noise, (g) vertical mirroring.

Table 1. Green citrus dataset.

Dataset Label Training Set Test Set Total

green citrus unripe citrus 2211 620 2831

Figure 8. Data labeling.
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Figure 9. YOLOv5-CS Architecture.



Sensors 2022, 22, 576 9 of 20

Figure 10. Image rotation.

3.2.2. Model Optimization

Because the green citrus is small with a color similar to the leaves, it is difficult for the
YOLOv5 model to detect individual small citrus fruits. Thus, we improved the YOLOv5 by
adding image rotation codes, a small object detection layer and an attention mechanism to
improve the accuracy of the model for green citrus detection.

• Image Rotation

The YOLOv5 model provided many data augmentation methods. To improve the algo-
rithm’s detection accuracy of green citrus from different angles, we added codes for vertical
rotation at 90◦ and 180◦ to the model, effectively enhancing the model’s generalization
ability. Figure 10 shows the image rotation.

• Small Object Detection Layer

Due to the size of the green citrus being relatively small, its pixel characteristics are
similar to those of leaves under natural light. Therefore, adding modules to improve the
detection accuracy and speed of the model is necessary. Thus, we added a small target
detection layer and one more up-sampling and down-sampling process to the feature map
of the YOLOv5 model. Simultaneously, the acquired feature map is Concat fused with
that obtained in the second layer of the backbone network and so the obtained feature
map with a larger size is used for small target detection. Table 2 shows the improved
YOLOv5-CS network structure, where serial numbers 1 and 17–23 represent the replaced
attention mechanism and additional small target detection module, respectively.
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Table 2. YOLOv5-CS network structure.

Serial Number From Params Module Arguments

0 −1 3520 Focus [3, 32, 3]
1 −1 19,170 Conv_CBAM [32, 64, 3, 2]
2 −1 19,904 BottleneckCSP [64, 64, 1]
3 −1 73,984 Conv [64, 128, 3, 2]
4 −1 161,152 BottleneckCSP [128, 128, 3]
5 −1 295,424 Conv [128, 256, 3, 2]
6 −1 641,792 BottleneckCSP [256, 256, 3]
7 −1 1,180,672 Conv [256, 512, 3, 2]
8 −1 656,896 SPP [512, 512, [5, 9, 13]]
9 −1 1,248,768 BottleneckCSP [512, 512, 1, False]

10 −1 131,584 Conv [512, 256, 1, 1]
11 −1 0 Upsample [None, 2, ‘nearest’]
12 [−1, 6] 0 Concat [1]
13 −1 378,624 BottleneckCSP [512,256, 1, False]
14 −1 66,048 Conv [256, 128, 1, 1]
15 −1 0 Upsample [None, 2, ‘nearest’]
16 [−1, 4] 0 Concat [1]
17 −1 345,856 BottleneckCSP [384, 256, 1, False]
18 −1 33,024 Conv [256, 128, 1, 1]
19 −1 0 Upsample [None, 2, ‘nearest’]
20 −1 0 Concat [1]
21 −1 86,912 BottleneckCSP [192, 128, 1, False]
22 −1 147,712 Conv [128, 128, 3, 2]
23 −1 0 Concat [1]
24 −1 95,104 BottleneckCSP [256, 128, 1, False]
25 −1 147,712 Conv [128, 128, 3, 2]
26 [−1, 14] 0 Concat [1]
27 −1 313,088 BottleneckCSP [256,256, 1, False]
28 −1 590,336 Conv [256, 256, 3, 2]
29 [−1, 10] 0 Concat [1]
30 −1 1,248,768 BottleneckCSP [512,512, 1, False]

• CBAM

To detect the green citrus from the green leaves in Table 2, after the backbone network
focus module, the attention mechanism CONV_CBAM module replaces the original CONV
module to obtain more detailed information about the citrus and reduce interference from
leaves and complex backgrounds. There are two attention mechanisms: squeeze-and-
excitation (SE) and convolutional block attention module (CBAM). The SE module pays
attention to the channel information, which mainly solves the loss problem caused by the
different weights of different channels in the feature graph. The CBAM module includes
both channel and spatial attention modules. The module takes the output of the channel
attention module as input for the spatial attention module. After two pooling operations
and a convolution operation with a convolution kernel of 7*7, the feature graph with
the size of H*W*2 is obtained. Spatial attention features are also outputted through the
Sigmoid function. The main innovation of the network is that the model can learn the
spatial attention features of the output through the relationship between the channel and
the space.

• Loss function

The loss function IoU is a commonly used evaluation indicator in target detection. It
evaluates the distance between the predicted box B of the model and the ground truth of
the model. The characteristic of IoU is that it is insensitive to scale. However, when both
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boxes B and Bgt do not overlap, the IoU value is zero. Here, there is no gradient return, and
no learning or training can be performed.

IoU =

∣∣B∩ Bgt∣∣∣∣B∪ Bgt∣∣ , (1)

LIoU = 1−
∣∣B∩ Bgt∣∣∣∣B∪ Bgt∣∣ , (2)

where B denotes the predicted box and Bgt represents ground truth.
To solve this problem, Rezatofighi et al. proposed GIoU (generalized IoU) in 2019 [36].

GIoU focuses on areas where the predicted box overlaps the real box and other non-
overlapping areas. When the prediction and real box do not overlap, the prediction box
can be prompted to move toward the real box.

GIoU = IoU −

∣∣∣ C
B∪Bgt

∣∣∣
|C| , (3)

LGIoU = 1− IoU +

∣∣C− B∪ Bgt∣∣
|C| , (4)

where C represents the smallest rectangular box in which B and Bgt can be contained.
However, the method still has problems, such as an unstable prediction box and divergence
of the training process. To directly minimize the distance between the two boxes for a better
convergence, Zheng et al. proposed DIoU (Distance-IoU) and CIoU (Complete IoU) [37]. In
contrast, DIoU introduces the distancing mechanism between the center points of the real
and predicted boxes. For the horizontal and vertical directions, the DIoU loss converges
quickly, and the GIoU loss remains almost the same as the IoU loss. However, the DIoU
calculation does not consider the loss of width and height but only finds the overlapping
area of the two boxes and the distance between both center points of the predicted and real
boxes. However, if the center points of both boxes overlap but the width and height are
different, the loss value is unchanged.

DIoU = IoU −
ρ2(B, Bgt)

c2 , (5)

LDIoU = 1− IoU +
ρ2(B, Bgt)

c2 , (6)

where represents the Euclidean distance between B and Bgt, and c represents the length of
the diagonal line containing the smallest box. On this basis, they proposed CloU. CIoU adds
an impact factor, which considers the aspect ratio of the predicted box to fit the real box.

LCIoU = 1− IoU +
ρ2(B, Bgt)

c2 + αν, (7)

ν =
4
π2

(
tan−1 wgt

hgt − tan−1 w
h

)2

, (8)

α =
ν

(1− IoU) + ν
, (9)

where α is a positive tradeoff parameter, and ν measures the consistency of the aspect ratio.

3.2.3. Edge-Computing System Migration & Deployment

The Jetson Xavier NX edge-computing platform based on ARM architecture and
produced by NVIDIA was applied in this paper. The platform is small, approximately 70
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× 45 mm in size, and brings the performance of supercomputers to the edge through the
system of modules. The platform includes a 6-core Carmel ARM CPU, 384 NVIDIA CUDA®

Cores, 48 Tensor Cores, and two NVIDIA deep learning accelerator (NVDLA) engines,
which can provide up to 21 TOPS of computing power. Camera, displayer, and portable
power devices were added to form an edge-computing system platform based on the
edge-computing platform. Figure 11 shows the edge-computing system platform diagram.

Figure 11. Edge-computing system platform.

To facilitate the deployment of the YOLOv5-CS model, it is necessary to deploy
the operating environment on Jetson Xavier NX and call the hardware performance of
the platform, especially the deep learning accelerator engine. To achieve production
statistics, USB and HDMI interfaces and expansion pins of the platform were used. The
flowchart of counting the number of green citrus is shown in Figure 12. The edge-computing
platform obtained the video stream in a short time by calling the high-definition camera
and transmitting the video stream information into the RAM. The CPU control modules,
such as CUDA cores, Tensor cores, and NVDLA, use heterogeneous parallel computing to
accelerate the model by hardware. The detection result, as well as the number of citrus,
were displayed using the visualization module.

Figure 12. Green citrus counting.
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3.3. Learning Rate

The learning rate affects the convergence speed of the YOLOv5-CS model. Here we
used the cosine annealing algorithm to dynamically change the learning rate. In the warm-
up stage, one-dimensional linear interpolation was used to update the learning rate of each
iteration, after which the cosine annealing algorithm was used to update the learning rate.
The cosine annealing mechanism uses a cosine function to reduce the learning rate. This
descent mode is matched with the learning rate. Increasing the learning rate can effectively
prevent the model from falling into the local minimum and then train in the direction of
the global minimum.

ηt = ηi
min +

1
2
(ηi

max − ηi
min)

(
1 + cos(

Tcur

Ti
π

)
), (10)

where ηi
min and ηi

max, respectively, represent the minimum and maximum of the learning
rate, and define the learning rate range. Tcur denotes the number of epochs executed since
the last training restart, although it is updated after each batch is run. When an epoch has
not been executed, the value of Tcur can be a decimal. Ti denotes the total number of epochs
in the i-th training session.

3.4. Experiment Platform

Server-side: Windows 10, Core i9-11900@5.20 GHz CPU, 32 GB RAM, NVIDIA GeForce
RTX 3080(10 GB) GPU. AI edge system side: 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU.
The model framework is Pytorch, with related software CUDA 11.1, cudnn 11.1, and Python
3.8.10. The original YOLOv5 model and the improved YOLOv5-CS model use YOLOv5s.pt
for pretraining and retraining based on the pretraining results. The parameters are set as
follows: image input size: 416*416, epoch: 50, initial learning rate: 0.01, bbox_iou: CIoU.

3.5. Evaluation Index

Since the background environment can be identified as citrus or missed during the
detection, the accuracy and recall ratios are used to describe the citrus detection. The
accuracy and recall rates are given as follows:

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

where TP and FP denote positive and negative samples, respectively, predicted to be true,
and FN represents a positive sample predicted to be false. By setting the accuracy and
recall rate to the vertical and horizontal axes, respectively, gives the accuracy–recall rate
curve, referred to as the P-R curve.

To better evaluate the effect of the model, the AP (average precision) of a single
category was proposed as the sum of the AP values of each category, which is used to
obtain mAP (mean average precision). The definitions of AP and mAP are as follows:

AP =
∫ 1

0
P(R)dR, (13)

mAP =
∑Q

q=1 AP(q)

Q
, (14)

where Q is the number of categories.
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4. Experiment and Results
4.1. Ablation Experiment

To prove the effectiveness of our model in this paper, we conducted the ablation
experiment on both data augmentation processing methods and improved architecture, as
shown in Table 3.

√
represents using the methods or module.

Table 3. Model ablation experiment.

Data
Augmentation

Small Object
Detection Layer CBAM mAP@.5 Recall Epochs

96.66% 92.74%

100
√

97.51% 96.16%√ √
97.59% 96.09%√ √ √
98.05% 97.38%

From the table above, it can be seen that the detection accuracy was improved from
96.66% to 97.51% by using data augmentation methods, and the recall was improved by
3.42%. After adding the small object detection layer, the detection accuracy reached 97.59%.
The detection accuracy of the model finally achieved 98.05% after adding CBAM.

4.2. Training Result

The performance of the detection model is evaluated using the loss function curve
and the mAP@.5. The loss function curve shows the network model’s convergence speed
and degree of convergence during the training process. Figure 13 shows the loss function
curve of the YOLOv5 and improved YOLOv5-CS models.

Figure 13. Loss curve.

From the figure above, the improved YOLOv5-CS model curve converged with a faster
degree of convergence and a smaller loss value in the training process of 100 epochs. When
it finished, the loss value of the improved YOLOv5-CS model was 21.74% lower than that
of the YOLOv5 model, which proves that the former has better convergence. Although the
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loss value has achieved good results, there are still some pictures in the test set that are
missed or encountered errors due to excessive occlusion and light, as shown in Figure 14.

Figure 14. Leakage detection of citrus.

mAP@.5 was used to measure the detection effect of the model. The higher its value,
the better the detection effect of the model. Figure 15 shows that, after 100 epochs, the
mAP@.5 value of the improved YOLOv5-CS model gradually stabilized, reaching 98.05%,
and the highest during the period reached 98.5%. This shows that the improved YOLOv5-
CS model has a better result for detecting green citrus and has reached the expectation of
accurate recognition.

Figure 15. mAP@.5 curve.
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The improved YOLOv5-CS model and the YOLOv5 model were trained for the first
time with 100 epochs, respectively, and the improved YOLOv5-CS model was then re-
training with 50 epochs; the parameters obtained are shown in Table 4. Although the
precision value of the improved YOLOv5-CS model decreased, the final values of mAP@.5
and recall were 98.23% and 97.66%, respectively, and the detection time for 620 images in
the validation set was 1.61 s less than that of the YOLOv5 model.

Table 4. Training result.

Neural Network Epochs mAP@.5 Image-Size Precision Recall

First training
YOLOv5 100 97.51% 416 89.81% 96.16%

YOLOv5-CS 100 98.05% 416 84.49% 97.38%
Retraining

YOLOv5 50 97.79% 416 93.03% 95.27%
YOLOv5-CS 50 98.23% 416 86.97% 97.66%

4.3. Counting Result

By setting a virtual line on the image screen, the citrus tracked and identified will
be detected and counted when passing the line. However, the citrus prediction box may
flicker when passing through the line; therefore, to accurately count the number of citrus,
we expand the virtual line into a virtual region to ensure citrus detection through this area
and improve the accuracy of citrus yield statistics. The diagram of the virtual region in the
orchard environment is shown in Figure 16.

Figure 16. Counting the number of citrus in the orchard.

We conducted experiments on the simulated citrus trees and the real citrus trees.
Standing at a distance of 1.5 m from the citrus trees, the camera was located at half the
height of each citrus tree. The counting results of citrus are shown in Tables 5 and 6.
The average relative error of the count of the simulated citrus tree was 4.25%, and the
average relative error of the count of the real citrus tree was 8.75%. The main reason of
the different errors mainly came from the complexity of the orchard environment, which
caused false detection.
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Table 5. Counting results of simulated citrus tree.

Number of
Experiments

Actual
Number

Number of
Tests

Relative
Error

Average Relative
Error of Ten Times FPS

1

40

40 0%

4.25% 28

2 37 7.5%
3 36 10%
4 38 5%
5 38 5%
6 39 2.5%
7 37 7.5%
8 39 2.5%
9 40 0%

10 39 2.5%

Table 6. Counting results of real citrus tree.

Number of
Experiments

Actual
Number

Number of
Tests

Relative
Error

Average Relative
Error of Ten Times FPS

1

24

22 8.33%

8.75% 28

2 21 12.5%
3 23 4.17%
4 25 4.17%
5 21 12.5%
6 20 16.67%
7 26 8.33%
8 22 8.33%
9 23 4.17%

10 22 8.33%

5. Discussion

In this paper, we proposed the YOLOv5-CS model with improved robustness and
stability in a complex natural orchard environment using the data augmentation method.
Additionally, we applied the CBAM module to make the model focus on important feature
information and ignore unimportant information. Furthermore, a detection layer was
embedded to improve the model’s detection accuracy for little citruses. Additionally,
using the CIoU as the loss function, it achieved the fastest convergence speed and best
convergence effect function. The cosine annealing algorithm was applied to change the
learning rate when the model fell into the local optimal solution, thereby training it towards
the global optimal solution. Furthermore, the retraining method was used to improve
the mAP@.5 and recall values of the model, thereby improving the convergence speed
of the model. These improvement methods produced excellent detection results. The
inference speeds of YOLOv5s and YOLOv5-CS detecting a picture on the server were
0.018 s and 0.017 s respectively, and the inference speeds of those on the Nvidia Jetson
Xavier NX were 0.04 s and 0.037 s respectively. Next, we used DeepSORT for citrus object
tracking and counting. This involved tracking the location of citrus targets by combining
the Kalman filtering with the Hungarian algorithm for frame-by-frame analysis of the video.
Additionally, we introduced “virtual line” and “virtual region” to improve the accuracy
of the citrus target count of the model and avoid duplicate counts. We also migrated the
model to the Jetson Xavier NX edge-computing platform to help farmers count the number
of green citrus. High-definition cameras were used to capture videos and showed the
counting result on a visualization module. Finally, we realized the feasible detection of
green citrus and counting on the mobile platform.

If the green citrus detection and counting model could apply to the entire orchard,
the rich dataset will help identify citrus at different growth stages and collect several
fruits, which can construct various fruits detection and counting systems for detecting and
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counting different fruits simultaneously. Hence, our system will have more functional
applications in the intelligent orchard.

6. Conclusions and Future Works

Recently, there has been rapid development in object detection and multi-object track-
ing with great interest in their applications in agriculture. Briefly, the contributions of this
paper are as follows. Here, an improved YOLOv5-CS model was proposed as an extension
of the YOLOv5 model. Our model adopted object detection and multi-object tracking
technology, to achieve feasible detection and counting of green citrus in orchards. Codes for
image rotation were added to data augmentation. The CBAM module and the small-object
detection layer were embedded in the backbone network. The CIoU loss function and
cosine annealing algorithm were introduced in the training. We migrated the improved
YOLOv5-CS model to the edge-computing platform to help farmers use mobile devices
to detect and count green citrus, which is of great reference significance for citrus yield
estimation. Until now, this is the first time in the computer field that the object detection and
counting of citrus were applied to the edge-computing platform and the “virtual region”
was introduced to realize the counting of green citrus in the orchard. Compared with the
original YOLOv5 model, the mAP@.5 and recall values of the improved model improved by
0.72% and 1.50%, respectively. The inference speeds of YOLOv5s and YOLOv5-CS detecting
a picture on the server were 0.018 s and 0.017 s respectively, and the inference speeds of
those on Nvidia Jetson Xavier NX were 0.04 s and 0.037 s respectively. The detection and
counting frame rate of the video on the edge-computing platform was 28 FPS. It also had
strong robustness in the complex orchard environment, providing farmers with portable
and intelligent citrus counting equipment, thus reducing planting costs caused by manual
counting. In the future, we will continue to improve the prediction accuracy and speed,
especially that of citrus at different growth stages. Nowadays, yield estimation of fruits
and automated picking have become important development directions for orchard man-
agement and production. We will also study the deployment of citrus counting equipment
on drones, study autonomous navigation and synchronized positioning using SLAM and
visual navigation technologies, and contribute to the development of intelligent orchards.
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