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Purpose of review

Although checkpoint inhibitor blockade is now widely used clinically for cancer immunotherapy, the
reverse process, (i.e. induction of checkpoints to slow autoimmunity) has not been extensively explored.
CD8 T-cell exhaustion is a state of immune hyporesponsiveness that may be harnessed to treat
autoimmunity.

Recent findings

We focus on the potential role of CD8 T-cell exhaustion as a mechanism of peripheral tolerance in T1D
and its therapeutic implications.

Summary

CD8 T-cell exhaustion is a continuum in which cells change from precursor to terminally exhausted cells.
Current thinking based on studies in cancer and chronic viral infection invokes a three-signal model for
development of T-cell exhaustion, with persistent antigen, negative costimulatory signals and chronic
inflammation comprising signals 1–3, respectively. Transcriptional signatures of CD8 T-cell exhaustion were
associated with better prognosis across several autoimmune diseases, most profoundly in systemic diseases. In
T1D, CD8 exhaustion was promoted by treatment with anti-CD3 therapy (teplizumab) and was more evident
in islet-specific CD8 T cells of slow progressors, suggesting a beneficial role in T1D also. Thus, we apply this
three-step process of exhaustion to discuss potential treatments to augment CD8 T-cell exhaustion in T1D.
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Autoimmunity is a complex and chronic disease
setting involving immune-mediated destruction of
cells expressing self-proteins. Self-reactive cells are
regulated by immune tolerance mechanisms includ-
ing deletion, inactivation (or hyporesponsiveness)
and active regulation. Type 1 diabetes (T1D) is a
prototypic autoimmune disease in which insulin
secreting islet beta cells are destroyed by immune
cells when tolerance mechanisms fail. Thus, it is
important to identify therapies that deplete or inac-
tivate harmful autoreactive cells in addition to
enhancing immune tolerance that will prevent
the resurgence of autoimmunity [1]. However, to
date, no single treatment modality has been shown
to persistently prevent progression of T1D in the
majority of treated patients [2], most likely because
of the failure to maintain enhanced peripheral
tolerance.

Susceptibility to T1D is linked to both host genes
and environment, and these linkages are thought to
modulate immune responses including tolerance
mechanisms. For example, active regulation by
uthor(s). Published by Wolters Kluwe
been shown to play a role in controlling T1D-asso-
ciated autoimmunity [3,4], and these mechanisms
are associated with host genetics (HLA and other
T1D-associated risk alleles) [5]. Less is known about
the role of the induction of immune hyporespon-
siveness in controlling T1D susceptibility or patho-
genesis. One mechanism for regulating T-cell
responsiveness is induction of a hyporesponsive
state, known as T-cell exhaustion, which
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KEY POINTS

� CD8 T-cell exhaustion is associated with beneficial
outcome in autoimmunity.

� To date, one therapy (anti-CD3, teplizumab) has been
shown to promote expansion of exhausted CD8 T cells
in responders.

� The three-step model to CD8 T-cell exhaustion (1:
persistent antigen, 2: negative costimulation, 3: chronic
inflammation), provides a road map for development of
potential therapies that augment exhaustion.

Diabetes and endochrine pancreas II
contributes to immune dysfunction in cancer and
limits natural antitumor immunity [6]. Blockade of
inhibitory receptors contributing to T-cell exhaus-
tion enables tumor-reactive T cells to overcome
regulatory mechanisms (immune checkpoints)
and mount an effective antitumor response [7–9].
Although checkpoint inhibitor blockade is now
widely used clinically for cancer immunotherapy
[10], the reverse process, (i.e. induction of check-
points to slow autoimmunity) has not been exten-
sively explored. Here, we focus on the potential role
of CD8 T-cell exhaustion as a mechanism of periph-
eral tolerance in T1D and its therapeutic implica-
tions. As CD8 T-cell exhaustion has been extensively
reviewed [6,11,12

&&

,13–15], we first provide high-
lights of the field that are relevant to the therapeutic
application in autoimmunity, and then specifically
discuss examples of CD8 T-cell exhaustion in T1D.
Finally, we propose potential therapeutic strategies
that may harness CD8 T-cell exhaustion.
CHARACTERISTICS OF CD8 T-CELL
EXHAUSTION

Much of what we know about T-cell exhaustion
comes from studies using lymphocytic choriome-
ningitis virus (LCMV) in mice, a widely used experi-
mental system in immunology. Initial studies by
Moskophidis et al. [16] first demonstrated impaired
cytotoxic functions during viral persistence in
murine models. Although acute infection of adult
mice with the noncytopathic LCMV normally indu-
ces a protective cytotoxic T-cell response that also
causes immunopathology, some LCMV strains tend
to persist chronically after acute infection of adult
mice without causing lethal immunopathological
disease. LCMV strains that persist induce a large
antiviral CD8 cytotoxic T-cell response that nearly
disappears within a few days, and thus neither elim-
inates the virus nor causes the lethal immunopa-
thology seen during acute infection. Subsequent
214 www.co-endocrinology.com
tetramer-staining studies [17,18] showed that CD8
T cells responding to chronic LCMV infection were
not deleted and remained detectable throughout
infection, but were unable to efficiently perform
effector functions. Since these early studies, it has
become apparent that exhausted CD8 T (Tex) cells
are found in humans as well as mice, and play a role
in many chronic viral infections, including HIV,
hepatitis C virus (HCV), hepatitis B virus (HBV)
and others [6,19–21]. Furthermore, the extent of
exhaustion has been linked to the amount of anti-
gen present irrespective of the type of antigen-pre-
senting cell utilized [22,23]. More recently, T-cell
exhaustion has been associated with immune dys-
function in multiple human cancers [6,20–22], and
reversal of T-cell exhaustion with checkpoint inhib-
itor therapy can be therapeutically beneficial [24–
29]. Finally, T-cell exhaustion has been associated
with autoimmunity, with favorable prognosis or
response to therapy linked to increased T-cell
exhaustion [30–32,33

&&

]. Taken together, these early
data established the role of T-cell exhaustion in
regulation of T-cell responsiveness during chronic
diseases and cancer. Current thinking invokes a
three-signal model for development of T-cell
exhaustion, with persistent antigen, negative costi-
mulatory signals and chronic inflammation com-
prising signals 1–3, respectively [12

&&

].
Although multiple cell types may undergo

exhaustion [34–38], CD8 Tex have been more thor-
oughly studied. CD8 Tex are characterized by several
cellular and molecular features including:
(1)
 Sequential loss of T-cell effector functions: T-cell
dysfunction during exhaustion proceeds in a
hierarchical manner and involves progressive
reduction in the capacity to produce IL-2, and
other cytokines [18,38].
(2)
 Altered cytokine responses: In addition to the
loss of ability to produce IL2, other cytokine
responses are also altered, as illustrated by an
inverse correlation between IL-7 receptor
expression and CD8 T-cell exhaustion [39].
(3)
 Altered metabolic programs: Another alteration
during development of CD8 exhaustion during
chronic LCMV expression is altered T-cell bio-
energetics. The initial observation supporting
altered bioenergetics was from gene-expression
studies of dysfunctional LCMV-specific CD8 T
cells, which revealed expression changes in
genes involved in metabolism, including the
citric acid cycle [40]. Subsequent studies showed
that Tex cells display metabolic derangements,
including restricted glucose uptake and use [41].
(4)
 Altered gene expression programs: Comparison
of the gene-expression profiles of dysfunctional
Volume 26 � Number 4 � August 2019
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LCMV-specific CD8 T cells from chronic infec-
tion to functional LCMV-specific effector and
memory CD8 T cells generated distinct tran-
scriptome signatures [40]. These and other stud-
ies showed [12

&&

,42] that a hallmark of CD8 Tex
cells is overexpression of multiple inhibitory
receptors, including PDCD1, KLRG1, TIGIT,
HAVCR2 (TIM3), LAG3, CTLA4, CD160, and
CD244. Combined RNA and protein expression
studies at the single cell led to identification of a
module of co-inhibitory receptors that are co-
expressed in both CD4þ and CD8þ T cells
[43

&&

]. This module is part of a larger co-inhibi-
tory gene program shared by nonresponsive T
cells and driven by the immunoregulatory cyto-
kine IL-27 and specific transcription factors
[43

&&

]. Other Tex alterations identified by tran-
scriptome profiling include: alterations in T-cell
receptor and cytokine-signaling pathways;
differential expression of genes involved in che-
motaxis, adhesion, and migration; and expres-
sion of a distinct set of transcription factors.
Subsequent network studies identified further
differences between exhausted and memory
CD8 T cells including differential connectivity
for transcription factors TBX21 and EOMES [44].
(5)
 Altered epigenetic landscape: The epigenetic
landscape directly influences transcriptional
regulation during cellular development, differ-
entiation and therapeutic intervention. Consid-
erable effort has gone into defining the
epigenetic landscape of Tex, including studies
of methylation [45–47], histone modification
[48], accessible chromatin regions [20,49,50]
and epigenetic-guided mass cytometry [51

&

].
Together, these studies demonstrate that Tex
represent a distinct T-cell lineage, exhibiting
approximately as many differences (�6000) in
chromatin accessibility with memory (Tmem)
or effector (Teff) CD8 T cells as monocytes have
with B cells [12

&&

].
T-CELL EXHAUSTION AND CANCER
THERAPY

Tumor-infiltrating lymphocytes (TILs) are often dys-
functional, limiting antitumor immunity despite
the neoantigen-rich environment. Studies of CD8
T-cell dysfunction in tumors have shown that these
cells share features with Tex, including overexpres-
sion of inhibitory receptors [6,27]. Although mech-
anisms underlying dysfunction of TILs are not well
understood, treatment of tumors with monoclonal
antibodies targeting inhibitory receptors leads to
tumor regression in animal models [52–54] and in
humans [20,55–57]. These findings have triggered
-296X Copyright � 2019 The Author(s). Published by Wolters Kluwe
investigations into the role of Tex in regulating
antitumor immunity. Barber et al. [58] showed that
blockade of the PD-1/PD-L1 inhibitory pathway
restored the ability of Tex to undergo proliferation,
secrete cytokines, kill infected cells and decrease
viral load (Tex reinvigoration). Further studies in
humans demonstrated that an imbalance between
T-cell reinvigoration and tumour burden was linked
to clinical response to an anti-PD-1 monoclonal
antibody (pembrolizumab) [24]. More recent studies
by Miller et al. [59

&&

] demonstrated the existence of
two classes of dysfunctional CD8 TILs, ‘progenitor
exhausted‘‘ and ‘‘terminally exhausted’ Tex. Pro-
genitor Tex retain polyfunctionality, persist long-
term, respond to anti-PD-1 therapy, and may also
differentiate into ‘terminally exhausted’ Tex. In
contrast, terminally Tex cells are unable to respond
to anti-PD-1 therapy. These and other studies [12

&&

]
establish the PD-1 pathway as a specific target for
manipulating T-cell exhaustion for therapeutic ben-
efit in cancer, and, perhaps, chronic infections.

Despite the clinical successes of immune check-
point inhibitors (ICI) like anti-PD1, they are only
effective in some patients, with a significant fraction
of patients that show no objective response [60].
In addition, serious immune-related adverse
events (irAE) have been associated with ICI therapy,
including colitis, pneumonitis, neuropathies, endo-
crinopathies, nephritis, dermatitis and arthritis
[61,62

&

,63,64]. More specifically, there are reports
linking ICI therapy to development of T1D [65,66].
Multiple reports have suggested that irAE are asso-
ciated with favorable clinical responses of tumor
shrinkage upon ICI [67–73]. When taken together,
these findings support a relationship between rein-
vigorating Tex, development of irAE and ultimately,
the efficacy of ICI therapy.
T-CELL EXHAUSTION IN AUTOIMMUNITY

Given that autoimmune inflammation is driven by
recognition of self-antigen and CD8 T-cell exhaus-
tion dependent on chronic antigen stimulation, one
may hypothesize that CD8 T-cell exhaustion may
play a pivotal role in controlling CD8 immune
responses towards islet beta cells in T1D. In fact,
multiple lines of evidence suggest a relationship
between Tex and T1D progression, including: the
general association between higher levels of Tex and
better prognosis in autoimmune disease [30–
32,33

&&

]; the link between favorable treatment
response to anti-CD3 monoclonal antibody (mAb)
and Tex induction [33

&&

,74]; and, conversely,
the induction of T1D in cancer patients upon
Tex invigoration following IR blockade [65,66].
More specifically, in antineutrophil cytoplasmic
r Health, Inc. www.co-endocrinology.com 215
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antibody-associated vasculitis (ANCA) and systemic
lupus erythematosus (SLE), good prognosis was asso-
ciated with a CD8 exhaustion and poor CD4 help
signature [30,31,33

&&

]. The same poor CD4 help
signature was also observed in a smaller cohort of
autoantibody positive pre-T1D and T1D subjects.
However, the CD8 exhaustion transcription signa-
ture was not significantly enhanced in cases of slow
T1D progression; this may be because of increased
variability across T1D subjects, differences in the
localization of disease (ANCA and SLE are systemic,
whereas CD8 immune effects in T1D can be local-
ized to the pancreas [75]), or incomplete CD8 Tex
transcriptional signature in T1D. Importantly, in
unpublished data, we found that the phenotype
of islet-specific CD8 T cells typically includes more
than one distinct phenotype (as shown by others
[76,77]), and subjects with a greater proportion of
exhausted islet-specific CD8 T cells demonstrated
slower progression of T1D. Although this same Tex
signature could also be detected in cells not identi-
fied as islet-specific with tetramer reagents, the T1D
polyclonal exhausted population was smaller than
that seen in systemic autoimmune diseases [30–32]
and bystander cells in robust mouse models of dia-
betes [78] and TILs [79]. Importantly, the exhausted
phenotype of islet-specific cells in slow progressors
resembled that of TIGITþKLRG1þPD-1þ cells with
high EOMES expression that expand with teplizu-
mab (anti-CD3) therapy in responders [33

&&

].
Whether islet-specific cells in teplizumab-treated
responders are also exhausted is currently being
investigated. Together, these findings suggest
that CD8 Tex do restrain autoimmunity, and their
therapeutic augmentation and maintenance is clin-
ically beneficial.
T

Signal 1: Persistent antigen load
Therapeutic option: increase TCR signaling 

(anti-CD3 mAb or peptide antigens)

Signal 2: Negat
Therapeutic option

(soluble IR agonists,

FIGURE 1. Therapeutic options for Tex in type 1 diabetes. Th
induction can be therapeutic for T1D. Black, signals constituting th
red, broad therapeutic options for triggering Tex and blocking T1
diabetes.

216 www.co-endocrinology.com
To date, these examples of CD8 Tex association
with T1Dprogression havebeen theexception, not the
rule. We offer several reasons why this may be the case.
First, the exhausted state is a complex phenotype,
which requires multidimensional analyses to precisely
define. However, in T1D, this phenotype is most evi-
dent in antigen-specific T cells, which are rare and
difficult to study. Technologies have only now
advancedsufficiently to identifyphenotype-rare, auto-
antigen-specific T cells in a multidimensional manner.
Inaddition,a three-stepprocess is requiredfor terminal
development of Tex, any one of which may be lacking
in autoimmunity. For example, it is possible that
epitope-spreading,episodicasopposedtochronicanti-
gen exposure, a pro-inflammatory cytokine environ-
ment, or enhanced co-stimulation may result in
incomplete or unstable CD8 T-cell exhaustion in auto-
immune and autoimmune prone subjects.
CONCLUSION

Together, these observations suggest that enhanc-
ing Tex would be of therapeutic benefit in autoim-
mune disease, in general and in T1D, specifically.
The three-signal model of Tex induction offers a
useful way of thinking about how to approach this
possibility clinically (Fig. 1). One of the most obvi-
ous approaches would be to enhance signal 1 by TCR
triggering in the absence of costimulation, as has
been reported for anti-TCR monoclonal antibodies
[33

&&

]. Another option may be to use islet antigen
peptides to trigger TCRs more specifically in islet
antigen-reactive T cells. Given the clinical tractabil-
ity of blockade of inhibitory receptor–ligand inter-
actions for ICI therapy, it may be worth considering
whether soluble inhibitory receptor agonists or
ex

Signal 3: Chronic inflammation
Therapeutic option: increase 

immunosuppressive cytokines
(IL-10 supplementation)

ive costimulation
: trigger IR signaling
 block CD28 signaling)

erapeutic options for T1D based on the hypothesis that Tex
e three-signal model of Tex induction adapted from [12&&];
D; and blue, more specific therapeutic options. T1D, type 1
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mAbs could be used to enhance signal 2. Another
approach to enhancing signal 2, perhaps in combina-
tion with TCR agonists that trigger signal 1, would be
toblock positive costimulation through CD28. CD8 T-
cell rescue via ICI therapy is CD28-dependant [80,81],
suggesting an important role for the CD28/B7 path-
way in PD-1 therapy of cancer patents. Importantly,
abatacept, a blocker of CD28 costimulation, has
shown some success in treating new-onset T1D sub-
jects [82]. Finally, cytokine agonists or antagonists
that promote an immunosuppressive environment
might be used to trigger signal 3. Such effects are
complex, but in general, could be selected to act in
the opposite direction from agents that reverse T-cell
exhaustion (i.e. select cytokine agonists to trigger
exhaustion in cases where antagonists reverse exhaus-
tion, and vice versa) [12

&&

]. Thus, although anti-IL10
has been reported to enhance checkpoint inhibitor
blockade [83], IL-10 supplementation may be effective
at enhancing Tex, perhaps in combination with signal
1 or 2 agonists. Within the framework of this three-
signal model, some pathways may be implicated
because of their association with both Tex and auto-
immunity. For example, some cytokines that mediate
amplification or resolution of chronic inflammation
and exhaustion are also associated with some T1D
subjects (e.g. IFN signature [84], reduced IL-2 pathway
[85], enhanced IL-6 pathway [86]). Likewise, there are
T1D-associated SNPs in some inhibitory receptors (e.g.
PDCD1, CTLA4). Thus, T1D and other autoimmune
diseases may result, in part, from impaired CD8 T-cell
exhaustion, and therapeutic benefit may result from
restoration of faulty checkpoints. Overall, augmenta-
tion and expansion of Tex may benefit T1D, and
ultimately all autoimmune subjects.
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