
DNA Repair–Related Gene Signature
in Predicting Prognosis of Colorectal
Cancer Patients
Min-Yi Lv1,2†, Wei Wang3†, Min-Er Zhong1,2, Du Cai1,2, Dejun Fan1,2,4, Cheng-Hang Li1,2,
Wei-Bin Kou5, Ze-Ping Huang1,2, Xin Duan1,2, Chuling Hu1,2, Qiqi Zhu1,2, Xiaosheng He1,2*
and Feng Gao1,2*

1Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 2Department of
Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 3Biomedical Big Data
Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, China, 4Guangdong Provincial Key Laboratory of Colorectal and
Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangzhou,
China, 5The University of Hong Kong, Hong Kong, Hong Kong SAR, China

Background: Increasing evidence have depicted that DNA repair–related genes
(DRGs) are associated with the prognosis of colorectal cancer (CRC) patients.
Thus, the aim of this study was to evaluate the impact of DNA repair–related gene
signature (DRGS) in predicting the prognosis of CRC patients.

Method: In this study, we retrospectively analyzed the gene expression profiles from
six CRC cohorts. A total of 1,768 CRC patients with complete prognostic information
were divided into the training cohort (n = 566) and two validation cohorts (n = 624 and
578, respectively). The LASSO Cox model was applied to construct a prediction model.
To further validate the clinical significance of the model, we also validated the model
with Genomics of Drug Sensitivity in Cancer (GDSC) and an advanced clear cell renal
cell carcinoma (ccRCC) immunotherapy data set.

Results: We constructed a prognostic DRGS consisting of 11 different genes to stratify
patients into high- and low-risk groups. Patients in the high-risk groups had significantly
worse disease-free survival (DFS) than those in the low-risk groups in all cohorts [training
cohort: hazard ratio (HR) = 2.40, p < 0.001, 95% confidence interval (CI) = 1.67–3.44;
validation-1: HR = 2.20, p < 0.001, 95% CI = 1.38–3.49 and validation-2 cohort: HR =
2.12, p < 0.001, 95% CI = 1.40–3.21). By validating the model with GDSC, we could see
that among the chemotherapeutic drugs such as oxaliplatin, 5-fluorouracil, and irinotecan,
the IC50 of the cell line in the low-risk group was lower. By validating the model with the
ccRCC immunotherapy data set, we can clearly see that the overall survival (OS) of the
objective response rate (ORR) with complete response (CR) and partial response (PR) in
the low-risk group was the best.
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Conclusions:DRGS is a favorable prediction model for patients with CRC, and our model
can predict the response of cell lines to chemotherapeutic agents and potentially predict
the response of patients to immunotherapy.
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BACKGROUND

With the third highest incidence rate in the world, colorectal cancer
(CRC) is a serious threat to human health (Bray et al., 2018).
Nowadays, due to lifestyle changes, there is an increasingly high
incidence of mortality from CRC (Zheng et al., 2014). As one of the
most common gastrointestinal tumors in general surgery, CRC is a
multifactorial disease with extremely complex pathogenesis
(Migliore et al., 2011). At present, the early diagnosis of CRC has
involved epigenetics, genomics, and so on (Marcuello et al., 2019).
DNA repair is a series of processes by which a cell recognizes and
corrects damage to the DNA molecules that encode its genome
(Zinovkina, 2018; Burdak-Rothkamm and Rothkamm, 2021), and it
is extremely important for maintaining the stability of the genome
and protecting the genome from damage by endogenous and
environmental agents (Friedberg, 2001). It is estimated that
human cells suffer more than 2 × 104 DNA damage events per
day (Lindahl and Wood, 1999), but generally speaking, cells can
respond to this damage through efficient and highly regulated DNA
repair mechanisms (Lindahl and Wood, 1999; Iyama and Wilson,
2013). Repair mechanisms include nuclear excision repair, base
excision repair, mismatch repair (MMR), and double-strand
break repair (Iyama and Wilson, 2013). As we all know, genomic
instability caused by the destruction of DNA damage and repair
mechanism can lead to cancer progression, and DNA repair genes
are often found to mutate in cancer (Knijnenburg et al., 2018).
Recently, Knijnenburg et al. (2018) discovered mutations related to
DNA damage response genes by analyzing the TCGA data and
found that several mutations in DNA damage response and repair
genes occur in the colon adenocarcinoma and rectal
adenocarcinoma data sets.

Due to the limited options for capturing the molecular
heterogeneity of the disease and the lack of consideration and
sufficient validation of other gene expressions, few of the
prognostic models of early stage CRC have been applied in clinical
practice (Guinney et al., 2015; Phipps et al., 2015). Thus, an accurate
method is needed to identify effective prognostic models to assess the
disease-free survival (DFS) of patients with CRC. The aim of the
present study is to examine the interrelationships between DNA
repair–related genes (DRGs) and CRC, to determine an effective
prognostic model to evaluate the DFS of patients with CRC and
provide guidance for clinicians in early diagnosis and treatment.

MATERIALS AND METHODS

Patients
We retrospectively analyzed the gene expression profiles of CRC
samples from six public cohorts. Totally, 1,768 samples were available
for analysis in the current study. The CIT/GSE39582 (n = 566) was

used for training themodel, andTheCancerGenomeAtlas colorectal
cancer (TCGA,n= 624)was selected to serve as a validation-1 cohort.
The remaining four microarray data sets (GSE14333, GSE33113,
GSE37892, and GSE39084) were merged into a validation-2 cohort
(n = 578) (Table 1). The transcriptome RNA-sequencing data of the
CRC samples were from the TCGAdata portal, and othermicroarray
data sets were acquired directly from the GEO database. The
institutional review board of our hospital approved this study, and
data were collected from 12 May to 10 October 2020.

Construction and Validation of DNA
Repair–Related Gene Signature
Firstly, a complete list of DRGs was available online from MSigDB
(version 6.2, https://www.gsea-msigdb.org/gsea/msigdb). We
identified a list of candidate genes differentially expressed between
relapsed samples and non-relapsed samples by using the “limma” R
package (Diboun et al., 2006). The genes with an absolute log2-fold
change of more than 1 and an adjusted p < 0.05 were considered for
subsequent analysis. In order tominimize over-fitting risk, we applied
a Cox proportional hazards regression model on CRC samples
combined with the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1997). The penalty parameter was estimated by
10-fold cross-validation in the training data set at the minimum
partial likelihood deviance.

We divided patients into high-risk and low-risk groups by
determining the optimal threshold through the time-dependent
receiver operating characteristic (ROC) curve (survivalroc, version
1.0.3) at 5 y in the training data set. The ROC curve was estimated by
the Kaplan–Meier estimationmethod.We performed univariate and
multivariate Cox regression analyses of the cohort to verify that the
11-DRG signature was independent of other clinical features.

Functional Annotation Analysis
To evaluate the biological functions of the DNA repair–related gene
signature (DRGS), enrichment analysis for differentially expressed
genes in different groups was applied using the R package
“gProfileR.” We used the Bioconductor package “HTSanalyzeR”
to perform Gene Set Enrichment Analysis (GSEA) to predict
significant dysregulated pathways (Subramanian et al., 2005;
Wang et al., 2011). Gene sets of cancer hallmarks from MSigDB
(Liberzon et al., 2015) were examined.

Validation of Genomics of Drug Sensitivity in
Cancer Database, Immunotherapy
Database, and Tumor Immune Dysfunction
and Exclusion
To further explore the clinical application of our model, we used
Genomics of Drug Sensitivity in Cancer (GDSC) to analyze the
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differences of chemotherapeutic drugs between the high-risk
group and the low-risk group.

As known, immunotherapy is a hot topic, and we want to
know whether this model can predict immunotherapy. We
verified our model by using the data provided in the article
“Interplay of somatic alterations and immune infiltration
modulates response to PD-1 blockade in advanced clear cell
renal cell carcinoma (ccRCC)” published in Nature Medicine
(Braun et al., 2020). We constructed the DRGS in the data set of
advanced clear cell renal cell carcinoma and divided it into the
high-risk and low-risk groups according to the cutoff of our
original model. The overall survival (OS) curve was drawn using
the Kaplan–Meier method. In addition, we selected some
immune-related indicators in the data set and compared the
differences of these indicators between the high- and low-risk
groups by t-test. Besides, we also analyzed the OS curve of the
objective response rate (ORR) of immunotherapy.

The tumor immune dysfunction and exclusion (TIDE)
algorithm can be used to predict the tumor response to
immune checkpoint inhibition treatment and the function of
genes regulating tumor immunity, so as to effectively predict the
effect of immune checkpoint inhibition treatment.

Statistical Analysis
All the statistical analyses were performed on R (version 3.4.3,
www.r-project.org). The hazard ratios were calculated using
the “survcomp” package28 (version: 1.28.4) (Schröder et al.,
2011). The LASSO regression was implemented using
“glmnet” R package (version: 2.0.16). Cox regression
analysis was used for single-factor and multifactor analyses
of the results, and the receiver operating characteristic (ROC)
curve and C-index were used to evaluate the model. A p-value
of less than 0.05 was defined as statistical significance in
all tests.

TABLE 1 | Characteristics of cohorts included in this study.

Characteristics Training cohort GSE39582 Validation-1 TCGA Validation-2 (combination of
GSE14333, GSE33113, GSE37892,

and GSE39084)

Number of patients 566 624 578
Mean age 66.85 66.27 66.37
Gender
Male 256 (45.23%) 292 (46.79%) 270 (46.71%)
Female 310 (54.77%) 332 (53.21%) 308 (53.29%)

TNM stage
Stage I 37 (6.54%) 105 (16.83%) 53 (9.17%)
Stage II 264 (46.64%) 230 (36.86%) 280 (48.44%)
Stage III 205 (6.22%) 180 (28.85%) 164 (28.37%)
Stage IV 60 (10.60%) 88 (14.10%) 81 (14.01%)
NA - 21 (3.37%) -

Tumor location
Left 342 (60.42%) 354 (56.73%) 269 (46.54%)
Right 224 (39.58%) 270 (43.27%) 216 (37.73%)
NA - - 93 (16.09%)

RFS event
Yes 177 (30.62%) 100 (16.03%) 130 (22.50%)
No 380 (65.74%) 416 (66.67%) 382 (66.09%)
NA 9 (1.56%) 108 (17.31%) 66 (11.42%)

MMR status
MSI 75 (13.25%) 189 (30.29%) 44 (7.61%)
MSS 444 (78.45%) 431 (69.07%) 114 (19.72%)
NA 47 (8.30%) 4 (0.64%) 420 (72.66%)

CIMP status
Positive 91 (16.07%) NA 39 (6.75%)
Negative 405 (71.56%) NA 118 (20.42%)
NA 70 (12.37%) 624 (100%) 421 (72.84%)

TP53 status
Wide-type 161 (28.45%) - 39 (6.75%)
Mutation 190 (33.57%) - 29 (5.02%)
NA 215 (37.99%) - 510 (88.24%)

KRAS status
Wide-type 328 (57.95%) 34 (5.45%) 110 (19.03%)
Mutation 217 (38.34%) 30 (4.81%) 48 (8.30%)
NA 21 (3.71%) 560 (89.74%) 420 (72.66%)

BRAF status
Wide-type 461 (81.45%) 32 (5.13%) 133 (23.01%)
Mutation 51 (9.01%) 3 (0.48%) 25 (4.33%)
NA 54 (9.54%) 589 (94.39%) 420 (72.66%)
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RESULTS

Construction and Definition of the DNA
Repair-Related Gene Signature
A total of 1,768 CRC patients were included in the analysis.
The CIT data set (GSE39582, n = 566) was used as the training
cohort and genes with relatively high variation were
maintained as candidates (Table 1, Figure 1). With median
absolute deviation >0.5 and excluding the genes expressed less
in the median expression level, 1,286 genes were screened out
of 1,376 DRGs measured on all platforms from the data sets.
In addition, in order to improve the robustness of the
identification for the limited sample size, we further
selected DRGs by using the Cox proportional hazards
regression against 1,000 randomized trials (80% portion of
samples each time) to assess the correlation between each
candidate gene and patients’ DFS in the training cohort. A
total of 46 DRGs were robustly associated with individual
patients’ DFS. In order to minimize the over-fitting risk, we
applied a Cox proportional hazards regression model to the
CRC samples combined with the LASSO. By using LASSO Cox
regression, 11 prognostic DRGs were selected and combined
for the construction of DRGS (Figures 2A,B). The risk scores
were calculated by the formula designed by the Cox regression

model. The total risk score was imputed as follows (−0.1145 ×
POLR2B) + (−0.0653 × RAD1) + (0.0370 × CDA) + (0.1711 ×
NPR2) + (−0.0328 × UBE2D2) + (−0.0992 × BCL2) + (−0.0473
× PLD6) + (0.0896 × ERBB2) + (0.1220 ×ARPC1B) + (−0.1086
× FUT4) + (−0.0765 × PSME2). The time-dependent ROC
curve analysis showed that the optimal cutoff to stratify high-
and low-risk groups was −0.147 (Figure 2C).

Prognostic Evaluation of the DNA
Repair-Related Gene Signature
Six colorectal cancer transcription data sets containing
prognostic data were selected to assess the prognostic ability
of the DRGS. The GSE39582 data set (n = 566) was used as a
training data set (Figure 2D). The TCGA CRC dataset was
enrolled as validation-1 cohort (n = 624), and additional data
sets from the GEO were combined as validation-2 cohort (n =
578). Among the patients in the training and validation
cohorts, more recurrences were found in the high-risk
group than in the low-risk group (Figures 3A,D,G). When
applied to a follow-up duration, the promising prognostic
values of 2-, 3-, and 5-year AUC were 0.640, 0.664, and
0.653, respectively, in the training cohort. In the validation-
1 cohort, the values of 2-, 3-, and 5-year AUC were 0.620,

FIGURE 1 | Schematic flow chart of the study.
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0.628, and 0.606, respectively. Furthermore, in the validation-2
cohort, the values of 2-, 3-, and 5-year AUC were 0.645, 0.631,
and 0.638, respectively (Figures 3B,E,H). The DRGS
significantly stratified patients into the high- and low-risk
groups in the training cohort (HR = 2.40, 95% CI =
1.67–3.44, p < 0.001), validation-1 cohort (HR = 2.20, p <
0.001, 95% CI = 1.38–3.49), and validation-2 cohort (HR =
2.12, p < 0.001, 95% CI = 1.40–3.21) (Figures 3C,F,I). Besides,
the OS in the low-risk group was better than in the high-risk
group (Supplementary Figure 1).

Compared to the risk scores calculated using the FDA-
approved assay Oncotype DX colon algorithm, we found that
the DRGS achieved better survival correlation in the training
cohort (C-index, 0.78 vs 0.60), validation-1 cohort (C-index, 0.65
vs 0.51), and validation-2 cohort (C-index, 0.66 vs 0.62)
(Table 2).

To further investigate whether the DRGS could serve as an
independent predictor of prognosis, univariate and multivariate
Cox proportional hazards regression analyses were performed.
As expected, age, sex, tumor stage, tumor location, and
pathologic gene status were associated with outcomes for
CRC patients (Table 3). In the univariate analysis, DRGS,
MMR status, and KRAS mutation status were significantly

correlated with worse prognosis in the training cohort. After
adjusting for clinical features such as age, gender, tumor
location, and molecular types, the DRGS remained an
independent prognostic factor in the multivariate analyses in
both validation cohorts.

Functional Annotation of Genomics of Drug
Sensitivity in Cancer
Gene Ontology (GO) analysis revealed that some biological
process pathways (extracellular region, cell proliferation, and
cell adhesion) were the main enriched pathways in the high-risk
group (Figure 4A). In addition, the GSEA in the high-risk group
when compared with the low-risk groups shown that the
metastasis-related pathways (i.e., angiogenesis, KRAS
signaling, epithelial mesenchymal transit, and myogenesis
pathways) were enriched in the high-risk group (Figure 4B,
Supplementary Table S1). Similarly, we obtained consistent
results in the TCGA and validation-2 cohorts (Supplementary
Figure 2). These findings suggest that the enrichment of
pathways provided evidence of molecular mechanisms
affected by the DRGS and thus can predict the prognosis
of CRC.

FIGURE 2 | (A) Identification and selection of prognostic genes by LASSOCox proportional hazards regression. (B) Establishment of 11 DNA repair–related genes
signature from the LASSO COX regression. (C) Optimal cutoff point of the prognostic gene signature at 5-y OS endpoint from the ROC curve. (D) Heat map of the 11
DNA repair–related genes in two risk groups.
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Validation of Genomics of Drug Sensitivity in
Cancer Database and Immunotherapy
Database
As known, MSI/MMR-deficient (dMMR) is widely considered
as a promising biomarker, suggesting greater efficacy for
immune checkpoint inhibitor (ICB) (Zhao et al., 2019). In
order to further investigate the clinical application of our

FIGURE 3 | (A,D,G) Distribution of the DRGS risk score and its correlation to recurrence in the training, validation-1, and validation-2 cohort. (B,E,H) Time-
dependent ROC analysis of disease-free survival for CRC patients in the training, validation-1, and validation-2 cohorts at the time points of 2, 3, and 5 y. (C,F,I)
Kaplan–Meier curves comparing survival of patients within the low- and high-risk groups in the training cohort, validation-1, and validation-2 cohorts. p-values were
calculated using log-rank tests.

TABLE 2 | C-index for DRGS risk compared with Oncotype DX.

Cohorts DNA repair risk Oncotype DX colon

C-index 95% CI C-index 95% CI

Training cohort 0.78 0.69–0.86 0.60 0.52–0.68
Validation-1 cohort 0.65 0.51–0.79 0.51 0.37–0.65
Validation-2 cohort 0.66 0.55–0.76 0.62 0.53–0.70
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model, we used GDSC to analyze the differences of
chemotherapeutic drugs between the high-risk and low-risk
groups. We selected 48 kinds of cell lines related to CRC.
After dividing the cell lines into the high-risk and low-risk
groups according to the cutoff of our model, we selected the
chemotherapeutic drugs commonly used in clinics to see the
IC50 of the cell lines in the high-risk and low-risk groups. We
can see that among the chemotherapeutic drugs such as
oxaliplatin, 5-fluorouracil, and irinotecan, the IC50 of the cell
line in the low-risk group was lower (Figure 5). It showed that
the cell lines in the low-risk group were more sensitive to these
three drugs.

To examine whether the DRGS could predict the survival for
ccRCC patients, the patients were divided into the high-risk and
the low-risk groups according to the cutoff of our original model.
The cutoff was still −0.147, and the prognosis data of these
patients were analyzed. The OS of the high-risk group was
worse than that of the low-risk group in ccRCC patients (HR
= 1.45, 95% CI = 1.09–1.92, p = 0.0103) (Figure 6A). When it
comes to the ORR of immunotherapy, we can clearly see the ORR
with complete response (CR) and partial response (PR) that had
better OS for both the high-risk and low-risk groups (p < 0.001).
Notably, the OS of the low-risk group with the CR + PR was the
best (Figure 6B).

Validation of Tumor Immune Dysfunction
and Exclusion Database
We applied the TIDE algorithmwhich can predict the response to
immunotherapy. The low-risk group had a lower TIDE score in
GSE39582 and TCGA data sets, indicating that this subgroup was
most likely to benefit from immunotherapy. Besides, the low-risk
group had higher interferon gamma (IFNG), higher
microsatellite instability (MSI) score, and lower cancer-
associated fibroblasts (CAFs) amount, which confirmed the
more activated immune landscape in this subgroup (Figure 7).

DISCUSSION

Colorectal cancer is the leading cause of death among
gastrointestinal cancers. The incidence and mortality from
colorectal cancer are increasing year by year, and its prognosis
is closely related to early diagnosis (Siegel et al., 2016; Siegel
et al., 2017). Numerous studies have highlighted the
biomarkers that are associated with the pathogenesis and
biology of CRC (Shah et al., 2014; De Rosa et al., 2016;
Lech et al., 2016; Das et al., 2017), and many multigene
prognostic signatures have been developed for CRC (Shah
et al., 2014; Kandimalla et al., 2018; Ozawa et al., 2018; Gao
et al., 2019; Kandimalla et al., 2019). Unfortunately, the
accuracy of their prognosis predictions remains uncertain
(Fung et al., 2014). We still need much more effort to
achieve good prognostic CRC prediction, which is still
considered a challenge.

In recent years, some studies have found some new results in
DNA pathway repair and DRGs research. DRGs inactivation mayT
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disrupt genomic integrity, which may increase the risk of
accumulation of gene mutations associated with cancer
development (Bouwman and Jonkers, 2012). MSI/dMMR is

widely considered as a promising biomarker, suggesting
greater efficacy for ICB despite some limitations (Zhao et al.,
2019). In this study, our purpose was to identify and validate a

FIGURE 4 | (A) Gene ontology of the differentially expressed genes between the two risk groups. “GeneRatio” is the percentage of total differential genes in the
given GO term. (B)GSEA showed several metastasis-related processes enriched in the high-risk group, including angiogenesis, KRAS signaling, epithelial mesenchymal
transit (EMT), and myogenesis signal pathways.
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reliable DRGS and improve the accuracy of survival prediction
for CRC patients.

A total of 1,768 CRC patients from one training cohort and
two validation cohorts were included in this study. Our
prognostic DRGS can stratify CRC patients into two groups
with different survival outcomes. A multivariate analysis
suggested that the DRGS remained an independent prognostic

factor and was significantly associated with poor prognosis in
CRC. Furthermore, the C-index results of the DRGS showed its
clinical superiority to Oncotype DX. Thus, it offers a significantly
promising prognostic biomarker potential compared to the
clinicopathological risk factors that are currently in use. The
GSEA revealed that the metastasis-related pathways
(i.e., angiogenesis, KRAS signaling, epithelial mesenchymal

FIGURE 5 | CRC cell lines in the GDSC database were divided into the high-risk and low-risk groups based on DNA repair–related signature and the differences in
response to chemotherapies between the two groups were analyzed. (A) Relationship between the cell line of the high-risk and low-risk groups and IC50 of oxaliplatin.
(B) Relationship between the cell line of the high-risk and low-risk groups and IC50 of fluorouracil. (C) Relationship between the cell line of the high-risk and low-risk
groups and IC50 of irinotecan.

FIGURE 6 | Patients in the advanced clear cell renal cell carcinoma (ccRCC) database were divided into the high-risk and low-risk groups based on the DNA
repair–related signature. (A) Kaplan–Meier curves comparing the survival of patients within the low- and high-risk groups in the ccRCC database. (B) OS curve of the
objective response rate (ORR) of immunotherapy in ccRCC database.
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transit, and myogenesis pathways) were enriched in the high-risk
group, all of which were well known to play a crucial role in the
progression and proliferation of CRC in numerous studies
(Cooks et al., 2013; De Simone et al., 2015; Lu et al., 2016).
Further studies are required to clarify the effects of DNA repair in
order to identify more targets and improve the prognosis of CRC
patients.

In order to further investigate the clinical application of our
model, we divided the CRC cell lines in the GDSC database into
the high-risk group and low-risk group according to the DRGS
and analyzed the differences in chemotherapy response between
the two groups. We can see that among the chemotherapeutic
drugs such as oxaliplatin, 5-fluorouracil, and irinotecan, the IC50
of the cell line in the low-risk group was lower. It showed that the
cell lines in the low-risk group were more sensitive to these three
drugs. On the contrary, the cell lines in the high-risk group were
more insensitive to these three chemotherapeutic drugs. This

indicated that our model could predict the response of cell lines to
chemotherapeutic agents. This may provide some guidance for
clinical medication.

We knew that MSI/dMMRwas widely considered as a potential
biomarker for predicting ICB (Zhao et al., 2019). We wanted to
know whether our model can predict immunotherapy, so we
verified our model by using the data provided in the article that
“Interplay of somatic alterations and immune infiltration
modulates response to PD-1 blockade in advanced clear cell
renal cell carcinoma (ccRCC)” published in Nature Medicine
(Braun et al., 2020). From the OS curve of the high- and low-
risk groups, we could see that the OS of the high-risk group was
worse in the ccRCC patients, and it suggested that our model can
also well predict the OS of patients with ccRCC. When it comes to
the ORR of immunotherapy, we can clearly see the ORR with CR +
PR that had better OS in both the high-risk and low-risk groups.
Notably, the OS of the low-risk group with CR + PR was the best.

FIGURE 7 | Tumor immune dysfunction and exclusion (TIDE) algorithm was validated in the training set GSE39582 (A,B,C,D) and the validation set TCGA
(E,F,G,H).
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This indicated that our model can potentially predict the response
of patients to immunotherapy. Our model can be used to further
identify cancer patients who aremore suitable for immunotherapy.

To further demonstrate that our model can predict the
response to immunotherapy, we used the TIDE algorithm for
validation in the training and validation data sets. From the
results, we can see that the TIDE score of the high-risk group was
higher than that of the low-risk group, indicating that the high-
risk group was less sensitive to immunotherapy than the low-risk
group. That is to say, the low-risk group was more effective for
immunotherapy. IFNG, produced by T cells in the immune
system and natural killer cells, is a potent viral inhibitor
(Jorgovanovic et al., 2020). MSI, caused by defects in MMR
genes, is an important molecular marker for prognosis and the
development of adjuvant treatment regimens in colorectal and
other solid tumors (Boland and Goel, 2010). CAFs are a group of
activated fibroblasts with significant heterogeneity and plasticity
in the tumor microenvironment, which have significant tumor-
promoting functions (Chen and Song, 2019). The low-risk group
had higher IFNG, higher MSI score, and lower cancer CAFs
amount, which showed that the immune landscape of the low-
risk group was more active. The consistent results of the training
and validation data sets not only proved the reliability and
robustness of our model but also proved that our model can
predict the response to immunotherapy, which may bring some
clinical benefits to CRC patients.

As for how to apply the model to the clinic, we can detect
these 11 genes for patients. Because it is a small panel of genes,
it can avoid the waste of large medical resources and reduce
the problem of high diagnostic cost for patients as much as
possible. By detecting the 11 small panel genes, we calculated
the risk score of patients and grouped them. With the help of
the prediction model, not only patients can make more
favorable choices for themselves but also doctors can make
better clinical decisions according to the patient’s risk score.

There are some limitations to our study. First, this is a
retrospective study, although we validated the signature in
independent data sets. In addition, the samples from primary
tumor or metastatic disease may have inconsistent genetic
heterogeneity, which could lead to sampling bias (NEJM
Group, 2012; Mimori et al., 2018). In addition, systematic
errors result from analyzing samples of disparate databases or
the influence of measuring instruments, and not all batch
effects can be eliminated based on their complexity. In
verifying whether the model could predict immunotherapy
response to CRC, we used immunotherapy data sets from
ccRCC as there is currently a lack of data sets for public
immunotherapy response to CRC. However, we also used the
TIDE algorithm to further verify that our model can predict
the immunotherapy benefit of patients. Therefore, we have
sufficient evidence to prove that our model can predict the
benefit of immunotherapy for patients. Although we
investigated as many genes as possible, further clinical and
pharmacological tests are needed to validate our results.

CONCLUSION

In summary, our work provides an accurate prognostic approach
for estimating the survival outcomes of CRC patients. Further
prospective studies are needed to evaluate the clinical application
of this signature for the prognosis of CRC.
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