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The COVID-19 pandemic presented enormous data challenges in
the United States. Policy makers, epidemiological modelers, and
health researchers all require up-to-date data on the pandemic
and relevant public behavior, ideally at fine spatial and temporal
resolution. The COVIDcast API is our attempt to fill this need:
Operational since April 2020, it provides open access to both
traditional public health surveillance signals (cases, deaths, and
hospitalizations) and many auxiliary indicators of COVID-19 ac-
tivity, such as signals extracted from deidentified medical claims
data, massive online surveys, cell phone mobility data, and in-
ternet search trends. These are available at a fine geographic
resolution (mostly at the county level) and are updated daily. The
COVIDcast API also tracks all revisions to historical data, allowing
modelers to account for the frequent revisions and backfill that are
common for many public health data sources. All of the data are
available in a common format through the API and accompanying
R and Python software packages. This paper describes the data
sources and signals, and provides examples demonstrating that
the auxiliary signals in the COVIDcast API present information
relevant to tracking COVID activity, augmenting traditional public
health reporting and empowering research and decision-making.

open data | digital surveillance | internet surveys | medical insurance claims

Public health decision makers, healthcare providers, epidemi-
ological researchers, employers, institutions, and the general

public benefit from promptly and readily accessible data regard-
ing COVID-19 activity levels, countermeasures, and pandemic
impact. Real-time indicators of COVID-19 activity levels, such
as statistics on cases, deaths, test positivity, and hospitalizations,
enable reports and interactive dashboard applications for situ-
ational awareness (1–3), and are essential for most analyses of
the pandemic. These data are available for locations across the
United States from a number of official sources and independent
aggregators in varied and inconsistent formats. Different data
types and sources vary in timeliness, based on when measured
events occur in the progression of the disease, testing capabilities,
the reporting pipeline, and their publication schedules.

Significance

To study the COVID-19 pandemic, its effects on society, and
measures for reducing its spread, researchers need detailed
data on the course of the pandemic. Standard public health
data streams suffer inconsistent reporting and frequent, unex-
pected revisions. They also miss other aspects of a population’s
behavior that are worthy of consideration. We present an open
database of COVID signals in the United States, measured at
the county level and updated daily. This includes traditionally
reported COVID cases and deaths, and many others: mea-
sures of mobility, social distancing, internet search trends, self-
reported symptoms, and patterns of COVID-related activity in
deidentified medical insurance claims. The database provides
all signals in a common, easy-to-use format, empowering both
public health research and operational decision-making.
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Additional, auxiliary data sources can improve on the time-
liness, scope, and utility of the “topline” indicators (cases, test
positivity, hospitalizations, deaths) coming from the public health
reporting system. For example, in the context of other infec-
tious diseases, syndromic surveillance in ambulatory clinics and
emergency rooms improves the accuracy of outbreak detection
for emerging pathogens such as H1N1 (4), and digital surveil-
lance (based on, e.g., search and social media trends) enables
more accurate “nowcasts” and forecasts of traditional disease
surveillance streams such as the Centers for Disease Control and
Prevention (CDC) Outpatient Influenza-like Illness Surveillance
Network (ILINet) (5, 6), as do publication formats providing
access to historical versions of a given dataset (7, 8). Several other
examples exist that span a wide variety of data platforms and
diseases (9–12). During the COVID-19 pandemic, digital data
streams have permitted faster prediction of case increases (13,
14), while enabling analyses of the impact of public health poli-
cies on public behavior, the economy, and disease spread (15–18).

The Delphi group worked with partner organizations and pub-
lic datasets to build a large-scale database of indicators tracking
COVID-19 activity and other relevant phenomena in the United
States, which has been publicly available and continuously up-
dated since April 2020. Alongside public data on reported cases
and deaths, this database includes several unique data streams,
including indicators extracted from deidentified medical claims
data, antigen test results from a major testing manufacturer,
large-scale public surveys that measure symptoms and public be-
havior, and indicators based on particular Google search queries.
(We use the terms “indicator” and “signal” interchangeably.) We
make aggregate signals publicly available, generally at the county
level, via the COVIDcast API (19). We store and provide access
to all previous (historical) versions of the signals, a key feature
that exposes the effects of data revisions. Moreover, we provide
R (20) and Python (21) packages to facilitate interaction with the
API, and an online dashboard to visualize the data (22).

In a companion paper, we analyze the utility provided by a core
set of the indicators in short-term COVID-19 forecasting and
hotspot prediction models (23). In another companion paper, we
elaborate on our research group’s (Delphi’s) large-scale public
surveys, run in partnership with Facebook and available in aggre-
gate form in the COVIDcast API (24). This paper focuses on the
COVID-19 indicators themselves, describing the data streams,
how they are processed and made publicly available, and insights
that can be gained by combining novel data sources with standard
public health surveillance data .

Methods
Data Collection. We receive data daily from healthcare partners,
technology companies, and from surveys conducted daily by
Delphi in partnership with Facebook. These data sources provide
information not available from standard public health reporting
or other common sources, such as the following.
Health insurance claims. Based on deidentified medical insur-
ance claims from Change Healthcare and other health system
partners, we release indicators on the estimated percentage
of covered outpatient visits and hospitalizations that involved
COVID diagnoses or symptoms.
Internet-based surveys. Conducted in partnership with Face-
book, Delphi’s COVID-19 Trends and Impact Survey receives
an average of 50,000 responses daily, and has received over 25
million responses since April 2020 (24, 25). From the surveys, we
construct indicators on symptoms, social distancing, vaccination,
and other attitudes and behaviors related to COVID. The surveys
are voluntary, and participants are redirected to a platform man-
aged by Carnegie Mellon University to give consent and take the
survey; individual response data are not provided to Facebook,
and the data collection protocol was approved by the Carnegie
Mellon Institutional Review Board (STUDY2020_00000162).

COVID antigen tests. Based on data from Quidel, a manufacturer
of COVID antigen tests in the United States, we calculate and
release (Quidel-specific) test volumes and positivity rates.
Search trends. Based on Google’s COVID-19 Search Trends
dataset (26), we provide indicators reflecting COVID-related
search activity.
Mobility data. SafeGraph, a company that collects geospatial
data from smartphone apps, calculates COVID-related mobility
signals (27, 28) and makes them available to researchers under a
data use agreement; we aggregate (some of) these signals to the
county level and make them publicly available.

We also scrape data accessible from other public sources, such
as cases and deaths data aggregated from public reporting by
Johns Hopkins University Center for Systems Science and En-
gineering (JHU CSSE) (1) and by USAFacts (3), so that we can
track revisions and updates to this data (see Revision Tracking).

Altogether, we produce over 170 signals from 12 distinct
sources, and provide them in a common format for access. This
unifies both unique (unavailable anywhere else) and standard
COVID data streams into a single common format, enabling
efficient comparison and modeling. A summary of the data
sources and signals in the API is provided in Table 1, and
detailed documentation is available online at https://cmu-delphi.
github.io/delphi-epidata/api/covidcast_signals.html.

Signal Processing. Because each data source reports data in dif-
ferent formats, we must convert each source to a common for-
mat. In this format, each record represents an observation of
one quantity at one time point in one location. Locations are
coded consistently using standard identifiers such as Federal
Information Processing System codes; the sample size and SE for
each observation is also reported when applicable. Each signal is
reported at the finest geographic resolution its source supports
(such as county or state) and also aggregated to metropolitan sta-
tistical areas, Health and Human Services regions, and hospital
referral regions. National averages are also provided. Crucially,
each record is tagged with an “issue date” referring to when the
value was first issued, as described below. This allows tracking
of revisions made to individual observations, as each revision is
tagged with its own issue date.

When appropriate, additional postprocessing (often non-
trivial) is applied to the data. For example, data on visits
to doctors’ offices is subject to strong day-of-week effects,
and so regression is used to adjust for these effects. Other
indicators are available in raw versions and versions smoothed
with a 7-d trailing average. All processing is done using open-
source code written primarily in Python and R, and available
publicly at https://github.com/cmu-delphi/covidcast-indicators/.
The processing steps used for each signal are publicly docu-
mented on their respective pages at https://cmu-delphi.github.
io/delphi-epidata/api/covidcast_signals.html.

Revision Tracking. Many data sources that are useful for epidemic
tracking are subject to revision after their initial publication. For
example, aggregated medical claims data may be initially pub-
lished after several days, but additional claims and corrections
may take days to weeks to be discovered, processed, and aggre-
gated. Medical testing data are also often subject to backlogs and
reporting delays, and estimates for any particular date are revised
over time as errors are found or additional data become available.
This revision process is generally referred to as backfill.

For this reason, the COVIDcast API annotates every obser-
vation with two dates: the “time value,” the date the underlying
events (such as tests or doctor’s visits) occurred, and the issue
date when we aggregated and reported the data for that time
value. Importantly, there can be multiple observations for a
single time value with different issue dates, for example, if data
are revised or claims records arrive late. We track revisions to
all data sources included in the API, including external data
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Table 1. Data sources available in the COVIDcast API (19), as of date of publication

Data source Signals available First date Resolution

Change healthcare Percentage of outpatient visits with COVID diagnostic codes or codes
indicating COVID-like symptoms; based on deidentified claims data processed
by Change Healthcare

1 February 2020 County*

Doctor visits Percentage of outpatient visits primarily about COVID-like symptoms, based on
deidentified claims data provided by health system partners

1 February 2020 County*

Hospital admissions Percentage of new hospital admissions with COVID diagnostic codes, based on
deidentified claims data provided by health system partners

1 February 2020 County**

Quidel Test positivity rates for COVID-19 antigen tests produced by Quidel 26 May 2020 County**
SafeGraph Mobility metrics, such as time away from home or visits to bars and restaurants,

based on cell phone mobility data collected by SafeGraph (27, 28)
1 January 2019 County

COVID-19 Trends
and Impact Survey

COVID symptoms, social distancing behaviors, mental health, economic impact,
behavior (e.g., mask wearing, vaccination attitudes), and COVID testing
signals based on daily surveys conducted nationally by Delphi through
Facebook (24, 25)

6 April 2020 County**

Health and Human
Services

Counts of hospital admissions due to confirmed or suspected COVID-19, as
reported by the Department of Health and Human Services

31 December 2019 State

CovidActNow COVID-19 testing results, such as positivity rate and number of tests, compiled
by CovidActNow from CDC reporting

2 March 2020 County*

Google symptoms Trends in Google search volume for terms related to anosmia and ageusia (loss
of smell or taste), which correlate with COVID activity, based on data shared
by Google (26)

13 February 2020 County***

Cases and deaths Confirmed COVID-19 cases and deaths, compiled by JHU CSSE (1) and by
USAFacts (3)

22 January 2020 County

NCHS mortality Weekly totals of deaths broken down by cause, such as COVID, flu, or
pneumonia, compiled by the National Center for Health Statistics (29)

26 January 2020 State

The first group of data sources are produced from data not otherwise available publicly (or only available in limited form); the second group is mirrored
from public sources. Asterisks denote availability: *available at > 60% of counties; **available at 20 to 60% of counties; ***available at < 20% of counties.
For some signals, location availability varies over time, for example, due to variable reporting volume.

sources (such as sources tracking cases and deaths). Many exter-
nal sources do not keep a public or conveniently accessible record
of revisions of their data.

For many purposes, it is sufficient to use the most recently
issued observation at a given time value, and the COVIDcast
API returns the most recent issue as its default. However, for
some applications, it is crucial to know what was known as of a
specific date. For example, an epidemic forecasting model will
be called upon to make its forecasts based on preliminary data
about recent trends, so, when it is trained using historical data,
it should be trained using the initial versions of that data, not
updates that would have been received later. Moreover, these
revision records allow models to be modified to account for noise
and bias in early data versions, or to exclude data that is too
new to be considered stable, and to “rewind” time and simulate
how these revised models would have performed using only the
versions of data available as of those times.

Research on data revisions in the context of influenza-like
illness has shown that backfill can significantly alter forecast
performance (7, 30), and that careful training on preliminary data
can reduce this influence (8). Recent research has shown similar
results for COVID-19 forecasts (31). We also examine this in our
companion paper on forecasting, where we observe that training
and validating models on finalized data yields overly optimistic
estimates of true test-time performance (23).

Public API. The data described above are publicly available
through the Delphi COVIDcast API (19). By making HTTP
requests specifying the data source, signal, geographic level, and
time period desired, users can receive data in JavaScript Object
Notation (JSON) or comma-separated values (CSV) form. For
added convenience, we have written covidcast R (20) and Python
(21) packages with functions to request data, format it as a data
frame, plot and map it, and combine it with data from other
sources.

The R and Python package software is public and open source,
at https://github.com/cmu-delphi/covidcast/. The API server soft-
ware is itself also public and open source, at https://github.
com/cmu-delphi/delphi-epidata/. Lastly, most data sources are
provided under the Creative Commons Attribution license, and
a small number have additional restrictions imposed by the data
source; see https://cmu-delphi.github.io/delphi-epidata/api/covid
cast_licensing.html.

Interactive Visualization. Since April 2020, we have been main-
taining and continually improving various online visualization
tools for the COVIDcast indicators (22). These tools fetch data
directly from the API, and allow for exploration of both temporal
(e.g., time series graphs) and spatial (e.g., choropleth maps)
trends in the signals, as well as many other aspects, such as
correlations, anomalies, and backfill. There is also a dedicated
dashboard for exploring results from the COVID-19 Trends
and Impact Survey. The visualizations have been continually
improved as new sources of data arrive, and in response to
interviews with users and health experts, usage analytics from the
site, and user surveys.

COVID Forecasting. Since July 2020, we have been regularly sub-
mitting short-term forecasts of COVID-19 case and death inci-
dence, at both the state and county levels, to the COVID-19 Fore-
cast Hub (32), with “CMU-TimeSeries” as the team-model name.
The process of building, training, and deploying our forecasting
models leverages much of the infrastructure described in this
paper (such as the COVIDcast API’s “as of” feature), and some
of our forecasting systems rely on auxiliary indicators (such as
survey-based and claims-based COVID-like illness signals, which
are described below).

Results
The indicators that are available in the COVIDcast API have
been used in dashboards produced by COVID Act Now (33),
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Fig. 1. National trends, from April 2020 to April 2021, of four signals
in the COVIDcast API. The auxiliary signals, based on medical claims data
and massive surveys, track changes in officially reported cases quite well.
(They have all been placed on the same range as reported cases per 100,000
people.)

COVID Exit Strategy (34), and others; to inform the Delphi,
DeepCOVID (35), and the Institute for Health Metrics and
Evaluation (36) COVID forecasting models; in various federal
and state government reports and analyses; and in a range of
news stories. Aside from operational use in decision-making and
forecasting, they have also facilitated numerous analyses studying
the impacts of COVID-19 on the public, the effectiveness of
policy interventions, and factors that influenced the spread of the
pandemic (17, 18, 37–40). The API currently serves hundreds of
thousands of requests to thousands of users every day.

In what follows, we present examples of the usefulness of some
of the signals available in the API, beyond standard public health
reporting data. These examples demonstrate that such indicators
are meaningfully related to COVID activity, that they provide
alternate views on pandemic activity that are not subject to the
same reporting glitches and delays as traditional public health
surveillance streams, and that they provide information about
public behavior and attitudes that are not available from any
other source. Code to reproduce all examples (which uses the
covidcast R package and fetches data from the API) has been
deposited at Zenodo (41).

Tracking Trends. Many of the indicators in the COVIDcast API
are intended to track COVID activity. Five indicators in particu-
lar have the closest connections to confirmed cases :

• Change Healthcare COVID-like illness (CHNG-CLI) reports
the percentage of outpatient visits that are primarily about
COVID-related symptoms, based on deidentified Change
Healthcare claims data.

• Change Healthcare COVID (CHNG-COVID) reports the
percentage of outpatient visits with confirmed COVID-19,
based on the same claims data.

• COVID-19 Trends and Impact Survey CLI (CTIS-CLI) es-
timates the percentage of the population with COVID-like
illness based on Delphi’s surveys of Facebook users.

• COVID-19 Trends and Impact Survey CLI in the community
(CTIS-CLI-in-community) estimates the percentage of the
population who know someone in their local community who
is sick, based on the same surveys.

• Quidel test positivity rate (Quidel-TPR) is the percentage of
positive results among Quidel COVID antigen tests.

Fig. 1 compares the first three of these signals to COVID cases
in the United States (from JHU CSSE, smoothed with a 7-d
trailing average) over a year of the pandemic (April 15, 2020 to
April 15, 2021), illustrating how they track national trends quite
well. Importantly, this same relationship persists across multiple

resolutions of the data, down to smaller geographic regions such
as states and counties, as shown in SI Appendix. This will also
be illustrated in a more detailed correlation analysis in the next
subsection.

Besides tracking contemporaneous COVID activity, these and
other indicators can be used to improve forecasts of future
COVID case trends, as investigated in our companion paper (23).

Correlation Analyses. To quantify the ability of the signals de-
scribed above to track trends in COVID cases, we use the Spear-
man (rank) correlation and analyze two key correlation patterns,
between each signal and confirmed COVID case rates (cases per
100,000 people):

1. “Geo-wise correlations” (i.e., on a specific date, do values of
the signal correlate with case rates across locations?): For-
mally, let Xt and Yt be vectors of values of a signal and case
rates, over all locations, on date t. The geo-wise correlation
at time t is defined as cor(Xt ,Yt) (where, here and through-
out, cor(·, ·) denotes Spearman correlation). This examines
whether a signal has the capability to help spot locations with
high case rates at any given time.

2. Time-wise correlations (i.e., at a specific location, do values of
the signal correlate with case rates across time?): Let X� and
Y� be vectors of values of a signal and case rates, over all
times, at location �. The time-wise correlation at location �
is defined as cor(X�,Y�). This examines whether changes in
a signal over time correspond to changes in reported cases at
the same location.

Fig. 2 shows the geo-wise correlations achieved by the five
signals and COVID case rates (from JHU CSSE, smoothed using
a 7-d trailing average), from April 15, 2020 to April 15, 2021.
This calculation is performed over all counties with at least 500
cumulative cases by the end of this period, and at which all
indicators are available (956 counties in total). The large positive
correlations suggest that these signals could be useful in hotspot
detection (identifying counties that have relatively high COVID
activity, at a given time). Somewhat surprisingly, the survey-based
CLI-in-community signal shows the strongest correlations for
much of the time period. This clearly demonstrates the value of a
large-scale survey such as CTIS for tracking symptoms and case
trends, especially when other data are unavailable.

Also notable is the fact that the correlations fluctuate over
time in complex ways; while some of this variation is likely due
to changes in public behavior, reporting and testing practices,
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Fig. 2. Geo-wise correlations with case rates, from April 15, 2020 to April
15, 2021, calculated over all counties for which all signals were available and
which had at least 500 cumulative cases by the end of this period.
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Fig. 3. Time-wise correlations with case rates, from April 15, 2020 to April
15, 2021, calculated over all counties for which all signals were available and
which had at least 500 cumulative cases by the end of this period.

and so on, some is also related to changes in overall COVID-
19 case trends. For example, comparing against Fig. 1, we see
that correlations drop in February 2021 for many of the signals,
roughly matching the point in time when COVID cases also
sharply decline. This decline likely caused the heterogeneity in
case rates by county to decline, making it more difficult for
any signal to achieve a high geo-wise correlation. Correlations
between confirmed cases and cases 1 wk to 3 wk prior (shown in
SI Appendix) show a similar correlation drop in February 2021,
showing that the drop is due to a change in case data and not
problems with the other signals.

Fig. 3 summarizes time-wise correlations from these five sig-
nals over the same time period and for the same set of counties.
For each signal, we display the set of correlations that it achieves
in histogram form (more precisely, using a kernel density esti-
mate). All signals produce positive correlations in the majority
of counties considered (with very little mass in each estimated
density being to the left of zero). The largest correlations, in
bulk, are achieved by the CHNG-COVID signal; the CTIS-CLI-
in-community signal is a close second, and the CHNG-CLI signal
is third. There are two noteworthy points:

• This is different from what is observed in Fig. 2, where the
CTIS-CLI-in-community signal achieves clearly the highest
correlations for most of the time period. However, it is
worth emphasizing that time-wise and geo-wise correlations
are truly measuring different properties of a signal; and the
claims signals (CHNG-COVID and CHNG-CLI) seem more
appropriate for temporal–rather than spatial–comparisons.
We revisit this point in Discussion.

• It is still quite impressive (and surprising) that the CTIS-
CLI-in-community signal, based on people reporting on the
symptoms of others around them, can achieve nearly as strong
time-wise correlations to confirmed cases as can a signal that
is based on picking up the occurrence of a diagnosed case
passing through the outpatient system.

SI Appendix contains additional correlation analyses that com-
pare these COVID-related signals to COVID hospitalizations
reported by the Department of Health and Human Services.
These show similar results, illustrating that the signals are useful
for tracking key health outcomes.

Helping Robustness. Public health reporting of COVID tests,
cases, deaths, and hospitalizations is subject to a number of
possible delays and problems. For example, COVID testing data

are reported inconsistently by different states using different
definitions and inclusion criteria, and differences in reporting
processes mean state data often do not match data reported to
the federal government (42). Case and death data are frequently
backlogged and corrected, resulting in artificial spikes and drops
(43, 44).

As an example, looking back at Fig. 1, we can see clear dips in
the confirmed COVID case curve that occur around the Thanks-
giving and New Year’s holidays. This is artificial, and due to
the fact that public health departments usually close over hol-
iday periods, which delays case and death reporting (for this
reason, the artificial dips persist at the state and county level
as well). This delay denies public health officials timely signals
of current trends for the duration of the holidays. The CLI
signal from the survey, on the other hand, displays no such dips.
The claims signals actually display holiday effects going in the
other direction: they exhibit spikes around Thanksgiving and
New Year’s. This is because they measure the fraction of all
outpatient visits with a certain condition, and the denominator
(total outpatient visits) drops disproportionately during holiday
periods, as people are likely less willing to go to the doctor for
more routine issues. Fortunately, in principle, the holiday effects
in claims signals should be correctable: They are mainly due
to overall changes in medical seeking behavior during holiday
periods, and we can estimate such effects using historical claims
data.

As a further example, Fig. 4 displays data from Bexar County,
Texas (which contains San Antonio), during July 2020. On July
16, 2020, San Antonio reported 4,810 backlogged cases after
reporting that problems prevented them from being reported
over the past 2 wk (45), resulting in a clearly visible spike in
Fig. 4, Left (case data from JHU CSSE, smoothed using a 7-
d trailing average). Meanwhile, Delphi’s COVID Trends and
Impact Survey averaged around 350 responses per day in Bexar
County over the same time period, and was able to estimate
the fraction of the population who know someone in their local
community with COVID-Like Illness (CLI). As we can see in
Fig. 4, Right, this indicator was not affected by Bexar County’s
reporting problems, and, as shown in the last subsection, it is (in
general) highly correlated with case rates, providing an alternate
stream of data about COVID activity unaffected by backlogs. In
general, reporting problems have occurred in many jurisdictions
across the United States, and audits have regularly discovered
misclassified or unreported cases and deaths, making it valuable
to cross-check against external sources not part of the same
reporting systems.

Revisions Matter. The revision tracking feature in the API assists
in model building and evaluation. Fig. 5 illustrates how visits due
to COVID-like illness (DV-CLI), a medical claims signal, evolved
as it was revised across multiple issue dates, in four different
states, between June 1 and August 1, 2020. DV-CLI is similar
to CHNG-CLI and reflects outpatient visits with COVID-related
symptoms (the two signals are based on claims data provided by
different data partners, which cover different hospital systems).
In each panel, the rightmost end of each colored line corresponds
to an estimate for the last day of available data for a given issue
date, which we can see tends to be significantly biased upward in
Arizona in June 2020, and significantly biased downward in New
York throughout June and July 2020.

Claims-based signals typically undergo heavy backfill as addi-
tional claims are processed and errors are corrected; the median
relative error between initial reports and final values is over 10%
for such data, and only after roughly 30 d do estimates typically
match finalized values within 5%. However, the systematic nature
of this backfill, as illustrated in Fig. 5, suggests that statistical
models could be fit (potentially separately for each location) to
estimate the final values from preliminary reports.
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Fig. 4. (Left) Reported cases per day in Bexar County, Texas, during the summer of 2020. On July 16, 4,810 backlogged cases were reported, although they
actually occurred over the preceding 2 wk (this shows up as a prolonged spike due to the 7-d trailing averaging applied to the case counts). (Right) Daily
CTIS estimates of CLI-in-community showed more stable underlying trends.

Fig. 6 shows relative differences between early indicator val-
ues, reported 10 d to 90 d after the underlying events, and later
versions at least 4 mo later. As the distribution of these revision
amounts is highly skewed, the figure plots the 95th percentile
of relative change, showing that reported deaths can incur large
relative error in initial values, comparable to that in claims-based
signals. However, for deaths, as well as cases, these large revisions
are not very systematic, with large corrections typically occurring
at a sparse subset of locations and times (e.g., due to audits or
backlogs being cleared, which can result in thousands of cases
or deaths being added or removed all at once). This backfill is
much more difficult to predict than that of claims data; therefore,
the latter (and other sources) may be useful for nowcasting cases
and deaths while public health reports are being aggregated and
corrected.

To reiterate a previous point, when building forecast models
(on historical data) for retrospective evaluation purposes, users
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Fig. 5. Estimated percentage of outpatient (DV-CLI) displayed across mul-
tiple issue dates, with later issue dates adding additional data and revising
past data from prior issue dates.

will want to use data that were known as of the forecast date,
not revised versions that only became available at a later time.
Note that not only model training but also model assessment
can be affected by the revision process (comparisons of forecasts
to the ground truth may shift when the ground truth is revised
weeks later). Only by systematically tracking revisions can all
these effects be monitored and properly accounted for. The
COVIDcast API makes all historical versions available and easily
accessible for this purpose, and this feature plays a prominent
role in our own analysis of forecasting and hotspot prediction
models appearing in a companion paper (23).

New Perspectives. Auxiliary signals (outside of the standard pub-
lic health reporting streams) can serve as indicators of COVID
activity, but they can also illustrate the effect of mitigating actions
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Fig. 6. The 95th percentiles of relative error of early reported values of key
signals compared to final values reported much later. For each date between
October 15, 2020 and April 15, 2021, the values for each state reported
between 10 and 90 d later are compared to “final” versions recorded as
of August 13, 2021. Even officially reported case and death data can have
large revisions 30 d to 60 d or more after initial reporting; much of this is
driven by individual large revisions affecting specific states and dates, rather
than by systematic changes affecting all states and dates.
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Fig. 7. CTIS estimates of the percentage of people willing to get vaccinated,
back on January 20, 2021, compared to CDC reporting of the percentage of
people vaccinated, on July 20, 2021. Each point is a county (with at least 250
survey responses between January 14–20, 2021), colored by its parent United
States Census region.

(such as shelter-in-place orders) and can guide resource alloca-
tion for fighting the pandemic. For example, medical claims data
reflect healthcare-seeking behavior, measures of mobility reflect
adherence to public health recommendations, and measures of
COVID vaccine acceptance can guide outreach efforts.

As an illustration, Fig. 7 illustrates how CTIS results in January
2021, based on an item asking survey respondents whether they
would accept a COVID-19 vaccine if one were offered today,
predicted actual uptake of COVID-19 vaccines by July 2021 (46).
It also reveals a geographical disparity: In the Northeast, actual
vaccination rates more closely match vaccine willingness rates in
January than they do in the South, where vaccination rates lag
overall. While these results must be interpreted carefully due
to potential sampling biases in the survey, they illustrate the
potential of data in the COVIDcast API to inform public health
decision-making.

Discussion
The COVIDcast API provides open access to real-time and ge-
ographically detailed indicators of COVID activity in the United
States, which supports and enhances standard public health re-
porting streams in several ways.

First, several signals in the API closely track COVID activity
(over both time and space); yet they are derived from different
data streams (such as surveys, medical insurance claims, and
medical devices), and are thus not subject to the same sources of
error as public health reporting streams. This can be important
for both robustness and situational awareness, allowing decision
makers to diagnose potential anomalies in standard surveillance
streams, and for modeling tasks such as forecasting and nowcast-
ing. Our companion paper on forecasting discusses this in more
detail (23).

Second, the API features many other signals that are relevant
to understanding aspects of the pandemic and its effects on the
United States population that are not found in traditional public
health streams, such as data on mobility patterns, internet search
trends, mask wearing, and vaccine hesitancy, to name just a few.
[The latter two signals are derived from the COVID-19 Trends
and Impact Survey; our companion paper on this survey gives a
more detailed view of its features and capabilities (24).] These
signals have already supported pandemic research and policy
making.

Third, the underlying database tracks all revisions made to the
data, allowing us to query the API to learn “what was known
when,” which is critical for understanding the behavior (and
potential pitfalls) of real-time surveillance signals. Such revision
data are rarely available in a standardized format from other
sources.

Finally, we emphasize that unifying many relevant signals into
a single common format, with comprehensive revision tracking,
is an important goal in and of itself. The ability to combine
public health reporting data, syndromic surveillance data, and
digital measures of mobility and behaviors goes beyond provid-
ing traditional situational awareness. Convenient and real-time
access to these data enables continuous telemetry summarizing
how things are, how they are expected to change, which areas
need additional resources to be allocated in response, and how
effective public communication is.

There are a number of open questions and challenges that
remain. Several signals are subject to biases, such as survey
sampling and nonresponse biases, geographic differences in mar-
ket share for medical claims data, or biases in the population
represented in app-based mobility data. Claims data tend also
to be subject to biases during major national holidays and other
events that change healthcare-seeking behavior. Characterizing
these biases will be important for future research and operational
systems that use these signals. Several data sources are also
subject to extensive revision and backfill, which must be studied
and modeled to enable effective real-time use of these sources
in forecasting and nowcasting systems. The breadth and unique
features of the COVIDcast API will help facilitate this and other
related work, which will be vital to advancing pandemic modeling
and preparedness.

Data Availability. All COVIDcast signals described have been deposited in
the publicly available COVIDcast API (https://cmu-delphi.github.io/delphi-
epidata/api/covidcast.html). Code to replicate these results have been de-
posited at Zenodo (41).
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