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Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) can identify

genomic regions that bind proteins involved in various chromosomal functions. Although the

development of next-generation sequencers offers the technology needed to identify these pro-

tein-binding sites, the analysis can be computationally challenging because sequencing data

sometimes consist of >100 million reads/sample. Herein, we describe a cost-effective and

time-efficient protocol that is generally applicable to ChIP-seq analysis; this protocol uses a

novel peak-calling program termed DROMPA to identify peaks and an additional program,

parse2wig, to preprocess read-map files. This two-step procedure drastically reduces computa-

tional time and memory requirements compared with other programs. DROMPA enables the

identification of protein localization sites in repetitive sequences and efficiently identifies both

broad and sharp protein localization peaks. Specifically, DROMPA outputs a protein-binding

profile map in pdf or png format, which can be easily manipulated by users who have a lim-

ited background in bioinformatics.

Introduction

Identification of protein-binding sites in a genome
can be achieved using chromatin immunoprecipita-
tion with high-throughput sequencing (ChIP-seq) to
clarify the biological role(s) of targeted proteins (Park
2009). With advances in high-throughput DNA
sequencing technologies, it has become possible to
perform large-scale ChIP-seq studies that allow com-
parison of a considerable number of samples. For
example, in a recent study, nearly 200 human ChIP
samples were processed in parallel (Ernst et al. 2011).
As one human ChIP-seq sample contains approxi-
mately 20 Gb (gigabases) of short read sequences,
there is a clear demand for a protocol that can effi-
ciently analyze a large amount of ChIP-seq data in a
short period.

ChIP-seq analysis can be divided into three steps
(Fig. 1). (i) Genome mapping: after acquiring the
sequence data, the sequences are mapped onto a ref-
erence genome sequence to generate a map file that
contains information about the location of each
sequence (read). (ii) Peak calling: identification of
regions in which reads are significantly enriched
compared with the read distributions in a control
(input) sample. (iii) Characterization of the protein-
binding sites: identification of DNA sequence motifs
shared among the binding sites of the targeted protein
or correlation of binding sites with other -omics data
(e.g., other protein-binding profiles), DNA methyla-
tion data or gene expression data to find functional
links to biological processes.

For species with small genome sizes (approxi-
mately 20 Mbp), such as Saccharomyces cerevisiae or
Schizosaccharomyces pombe, a greater than 10-fold
sequencing depth in both the input and the ChIP
fraction can be easily obtained with relatively low
sequencing cost. Given enough sequencing depth in
the input fraction and an equivalent number of
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sequence reads in the ChIP fraction, tuning the val-
ues of threshold parameters for peak calling is not
troublesome. As the statistical reliability at every
genomic position is large in each case, the protein-
binding profile map (the ratio of sequence reads from
the ChIP fraction and the input fraction, which is
calculated for a running window of fixed size and
plotted against the genome position on a linear or
log scale) reflects the actual protein-binding probabil-
ity at every position in the genome (Hu et al. 2011;
De Piccoli et al. 2012; Enervald et al. 2013). How-
ever, even with a dramatic increase in the number of
sequence reads per run provided by next-generation
sequencers, it is not realistic to cover the equivalent
of one billion sequence reads or more to get >10-fold
sequencing depth for species with large genome sizes
(i.e. genomes containing more than 3 Gbp). Conse-
quently, when handling human or mouse ChIP-seq
data, threshold parameters for peak calling need to be
set by trial and error, which can be time-consuming
and difficult.

Quick visualization of ChIP-seq results, when pre-
sented as a ChIP read distribution or protein-binding
profile map, is an invaluable means for rapidly assess-
ing data quality and setting threshold parameters for

peak calling. As available visualization protocols
require installation of additional software, which may
require time and effort to manage, it is difficult to
show the whole-genome distribution of the mapped
reads and detected peaks to a user who has little bio-
informatics skill. As an alternative means of visualiza-
tion, the data can be uploaded to the UCSC genome
browser (http://genome.ucsc.edu/) to visualize the
read distributions and to incorporate various genomic
annotations into the data file. However, there are
several disadvantages to using a web-based system
when the data set is large. First, uploading a huge
data set is time-consuming. Second, there is a limita-
tion in showing multiple sets of ChIP-seq data for
different projects separately. Third, the uploaded data
are discarded when the user does not access the site
for a given period (e.g., 48 h for the UCSC genome
browser unless the user creates an account in UCSC).

Herein, we present a time-efficient and cost-effec-
tive computational protocol that incorporates our
novel program DROMPA (DRaw and Observe
Multiple enrichment Profiles and Annotation) for
peak calling and visualization. We also developed a
program named parse2wig for preprocessing map files
into wig files. We validated our programs using 29
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Figure 1 Workflow for ChIP-seq analysis. Immunoprecipitated DNA is sequenced and used to generate a FASTQ- (Illumina) or

csfasta/qual-formatted (SOLiD) read file. The read file is mapped onto the reference genome sequence by a mapping tool. Parse2-

wig converts this map file into a wig file for each chromosome, and DROMPA implements peak calling and visualization using

the wig files. The peak list is outputted in a tab-delimited text file, which can be used as a bed file. The visualization data are out-

putted in pdf or png format with genomic annotation data specified. Compressed wig files generated by parse2wig can be used for

other visualization programs and browsers.
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samples from three human cell lines (HeLa cells, B
cells and fibroblasts) in a study of HDAC8 mutations
in Cornelia de Lange syndrome DNA using antibod-
ies directed against Rad21, Smc3ac and CTCF (Dear-
dorff et al. 2012). DROMPA accurately identified
the binding sites of these proteins with a low false
discovery rate (FDR) of <0.3% for almost all ChIP
samples analyzed. Our workflow has also been
applied to ChIP-seq analyses of the genomes of
S. cerevisiae (Mishra et al. 2010; Hu et al. 2011; Kegel
et al. 2011; Kurze et al. 2011; Tanaka et al. 2011; De
Piccoli et al. 2012; Enervald et al. 2013), S. pombe
(Tazumi et al. 2012), human (Deardorff et al. 2012)
and mouse (Yamaji et al. 2013). Below, we describe
the workflow of our protocol using these programs
and compare its performance with several other avail-
able programs. DROMPA and its associated program
parse2wig require much less computation memory
and time to achieve similar sensitivity and specificity.
We also discuss how best to apply the workflow and
assess data quality.

The software package and several annotation files
for DROMPA are available on the website (http://
www.iam.u-tokyo.ac.jp/chromosomeinformatics/rna-
kato/drompa/, see Appendix S1 in Supporting Infor-
mation).

Results

Overview

Figure 1 shows the workflow for our ChIP-seq pro-
cedure described in the Introduction. Using parse2-
wig, the map file is first converted into a wig file for
each chromosome (Fig. 1, ‘Making wig files’). These
files contain information about how many reads are
mapped to each genomic region (‘bin’) and are used
as input for peak calling and visualization by
DROMPA. Parse2wig also filters out bias introduced
by PCR amplification (Kozarewa et al. 2009) and
normalizes the number of reads in each bin. Taking
the wig file data as input, DROMPA identifies peaks
and outputs bar graphs for the read distributions and/
or ChIP/control enrichment profiles.

DROMPA calls peaks by comparing the read dis-
tribution of the ChIP sample with that of the corre-
sponding input sample (see Experimental Procedures).
The distribution of mapped reads is affected by vari-
ous genomic features (proportion of unique and
repetitive sequence and copy number variation), by
the methods for ChIP and library construction and
by platform-specific sequencing efficiency (Dohm

et al. 2008; Liu et al. 2010; Landt et al. 2012). Conse-
quently, it has been suggested that the input might
have several ‘pseudobinding sites’ that associate with
actively transcribed promoter regions (Auerbach et al.
2009). Filtering out such pseudobinding sites is only
possible by comparing the ChIP sample with an input
sample, and this step is essential for the specificity of
peak calling (Rozowsky et al. 2009). We therefore
strongly recommend that the ChIP data be compared
with the corresponding input data to decrease identi-
fication of false-positive protein-binding sites. There
are also several programs that can detect peaks with-
out the inclusion of an input sample.

DROMPA can accept multiple mapped reads
(reads mapped on multiple loci of the reference gen-
ome), whereas most available peak-calling programs
can only accept uniquely mapped reads (reads
mapped onto the reference genome only once). This
feature is clearly important for identifying peaks in
repetitive sequences. Please refer to Experimental
Procedures and Appendix S1 (Supporting Informa-
tion) for detailed information on algorithm and
experimental design.

Visualization of ChIP-seq data by DROMPA

The ChIP-seq data for Scc1 of S. cerevisiae (Enervald
et al. 2013) visualized by DROMPA are shown in
Fig. 2a. The profile of ChIP/input ratio effectively
identifies the ChIP-enriched regions (red boxes) and
filters out the false-positive peak (blue box) and the
low-coverage region (black arrow). To examine the
effectiveness of using multiple mapped reads, we used
ChIP-seq data of Drosophila melanogaster transcription
factor suppressor of Hairy-wing [Su (Hw)] (Chen
et al. 2012). Chen et al. showed that approximately
1% of ChIP-chip peaks was not detected by ChIP-
seq even with deep sequencing (corresponding to
approximately 327 M reads in humans), due to the
low mappability of uniquely mapped reads in several
genomic regions. By allowing multiple mapped reads,
peaks can be identified from such regions (Fig. 2b).

Examples of visualizations for human HeLa cells
are shown in Fig. 3 [for a typical transcriptional fac-
tor–related binding site with the published enhancer
annotation (Heintzman et al. 2009)], Fig. 4 (for his-
tone modifications, which have broad peak distribu-
tion) and Fig. 5 (for a chromosome-wide read
enrichment distribution). As previously described
(Park 2009), an appropriate parameter set for peak
calling depends on the binding mode of the target
protein. When broader peaks (10–100 kbp) are
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Figure 2 Examples of visualization and analysis by DROMPA. We reanalyzed (a) Saccharomyces cerevisiae Scc1 ChIP-seq data from

Enervald et al. (2013) and (b) D. melanogaster Suppressor of Hairy-wing, Su(Hw), ChIP-seq data from Chen et al. (2012) using

DROMPA. The orange, green and blue histograms represent ChIP/control ratio, ChIP read distributions and input-read distribu-

tions, respectively. The y-axis values of the read distribution histograms are the normalized ChIP read intensities (Rx) for each bin

(see Experimental Procedures). (a) Part of S. cerevisiae chromosome II (nucleotide numbers 230–300 kbp) with Saccharomyces

Genome Database annotation. The red boxes and blue box indicate true and pseudobinding sites, respectively. The black arrow

indicates a region with few mapped reads. (b) Part of Drosophila melanogaster chromosome 2L (build dm3, nucleotide numbers

13.6–13.7 M) with RefSeq gene annotation. In the gene annotation, the thick lines indicate DNA exons and the thin lines indicate

DNA introns. For the top two panels, reads uniquely mapped to the genome were used. For the bottom two panels, both multi-

ply and uniquely mapped reads were used. Regions in which reads were significantly enriched are in red.
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expected, it is necessary to enlarge the bin size and
relax the threshold value for each parameter. When
the binding mode of the protein is unclear, we rec-
ommend trying the parameter sets for sharp and
broad peaks. Even if no peaks are detected, chromo-
some-wide visualization may help to identify prefer-
ential protein localization regions.

Performance comparison

To assess the performance of DROMPA, we used
our previously published ChIP-seq data for human
Rad21, acetylated Smc3 (Smc3-ac) and CTCF (Dear-
dorff et al. 2012). A detailed description of the data
analyses is provided in the Experimental Procedures.
We compared the results provided by our programs
with those of MACS (Zhang et al. 2008), PeakSeq
(Rozowsky et al. 2009) and Quest (Jothi et al. 2008),
the most widely used peak-calling programs and

which use different peak-calling algorithms to that of
DROMPA.

The computation time and memory requirements
of the various programs are summarized Table 1. For
brevity, we show the results for DROMPA and par-
se2wig when binary or compressed wig files are used.
DROMPA in combination with binary wig files pro-
vided the fastest computation time, and memory
requirements were an order of magnitude smaller
than those of the other programs. When multiple
ChIP-control pairs were used, DROMPA was more
memory efficient compared with separate analysis of
each pair (Fig. S1 in Supporting Information).

The disk space required for each data format is
summarized in Table S1 (Supporting Information).
As the sizes of the binary and compressed wig files
are smaller than those of the map file, the disk storage
space required for the ChIP-seq analysis can be
decreased by retaining only the wig files because
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Figure 3 Visualization of the Rad21, Smc3ac and CTCF-binding sites on the MACF1 gene by DROMPA. (a) The regions

including and surrounding the MACF1 gene on HeLa cell chromosome 1 (human genome build hg19, nucleotide numbers 39.5–
40.0 M) with RefSeq gene annotation. In the gene annotation, the thick lines indicate DNA exons and the thin lines indicate

DNA introns. ‘Coding’ or ‘noncoding’ means that the prefix of the accession number is ‘NM’ or other. (b) Rad21 (top), Smc3ac

(middle) and CTCF (lower) read distributions for the MACF1 gene and surrounding regions. The y-axis values are the normalized

ChIP read intensities (Rx) for each bin. The control read distributions and/or the ChIP/control enrichment profiles can also be

plotted if desired. Regions in which reads were significantly enriched are in red. (c) The enhancer regions found by Heintzman

et al. (2009) are shown as purple bars.
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DROMPA requires only wig files as input. Although
PeakSeq also preprocesses a map file, the size of the
preprocessed data was larger than the total size of the
wig files generated by parse2wig. Consequently,
DROMPA efficiently saves disk space compared with
other programs.

Sensitivity and specificity of DROMPA for peak

detection

To assess the sensitivity and specificity of the pro-
grams, we used a list of high-scoring motif sites
extracted from the whole-genome sequence of the
reference binding-motif sequence for CTCF. To
extract this canonical motif sequence, we obtained
reference CTCF-binding site data from Rhee &

Pugh (2011) and used only binding-site sequences
that were identified in all three biological replicates.
We used MEME (Bailey & Elkan 1994), with a
P-value threshold of <10�6, to extract the canonical
motif sequence shown in Fig. 6a. We then searched
for genomic regions that possessed the canonical
motif sequence using MAST (Bailey & Gribskov
1998) with a P-value threshold value of <10�6. In
total, 18,289 motif sites were obtained from the
whole-genome sequence. To compare the sensitivities
and specificities of the programs, we selected the top-
ranked peaks returned by each program and analyzed
the number of peaks that contained the canonical
motif sequence, in a manner similar to that used by.
Boeva et al. (2010). For DROMPA, we used three
mapping parameter options: ‘-m1’ (uniquely mapped
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Figure 4 Detection of broad peaks by DROMPA (a) Part of HeLa cell chromosome 1 (human genome build hg19, nucleotide

numbers 113.1–114.0 M) with RefSeq gene annotation. In the gene annotation, the thick lines indicate DNA exons and the thin

lines indicate DNA introns. (b) The read distributions for H3K27me3 (upper panel) and H3K36me3 (lower panel) using 10-bp

bins and a smoothing width of 500 bp. Regions in which reads were significantly enriched are in red. These parameters are appro-

priate when sharp peaks (approximately 1 kb) are expected (e.g., for transcriptional factor–related peaks). (c) The read distributions

of H3K27me3 and H3K36me3 using 1-kbp bins and a smoothing width of 2 kbp. Regions in which reads were significantly

enriched are in red. These parameters are appropriate when broader peaks (10–100 kbp) are expected. A comparison of panels (b)

and (c) shows that because H3K27me3 and H3K36me3 bind over a broad DNA region, the enriched regions cannot be detected

properly if the parameter set for calling of sharp peaks is applied. However, application of a 1-kbp bin size allows the enriched

regions for each histone modification to be distinguished.
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reads), ‘-m10’ (all mapped loci per read mapped
� 10 times) and ‘-k1’ (best matched locus per all
multiple mapped reads). We used uniquely mapped
reads for the analysis by DROMPA and found that
the number of identified peaks containing the canon-
ical motif of CTCF was similar to the number of
peaks identified by MACS or PeakSeq (Fig. 6b). We
also observed an increase in sensitivity when we used
both multiple and uniquely mapped reads for the

analysis by DROMPA. This is possibly due to
increases in the sequencing depth and in the propor-
tion of accessible regions (Chung et al. 2011).

Sample quality assessment

The total number of mapped reads is an important
issue when evaluating the quality of ChIP-seq data. A
large percentage of unmapped reads (>50%) generally

(A)

(B)

Figure 5 Chromosome-wide visualization. Chromosome-wide visualization offers a macroscopic view of protein-binding profiles.

(a) GC contents with 500-kp windows are plotted. (b) Macroscale protein-binding profiles for the human X chromosome were

generated using DROMPA with the ‘-wg’ option and a 100-kbp bin. In this figure, ‘-scale_ratio’ is set to 1, and bins in which

ChIP/control >1 are highlighted in red and others in black. The region in which the enrichment value is 0 (i.e. 59–61 Mbp) is

one for which no sequence information is available.

Table 1 Computation time and memory required for each program

Time (s) Memory (MB)

Rad21 Smc3ac CTCF Rad21 Smc3ac CTCF

Peak calling

MACS 1161.17 1282.13 944.15 3671 4688 3143

PeakSeq 300.88 439.19 193.71 4218 4999 2899

Quest* 1463.24 1452.58 1953.15 9947 10283 10 000

DROMPA (binary) 94.39 90.34 98.54 382 429 429

DROMPA (compressed) 567.58 585.12 506.17

Preprocessing

PeakSeq preprocess 148.69 237.46 84.52 393 612 280

Parse2wig (binary) 71.74 108.01 44.68 785 1025 749

Parse2wig (compressed) 235.47 296.9 158.1

*We summed the memory used for two ‘QuEST_align_2_b’ program runs, which were executed simultaneously.
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indicates that the sample DNA is of poor quality (e.g.,
ChIP efficiency is low or the DNA sample is contam-
inated by DNA from other species). Even if the num-
ber of sequenced reads is large, the mapping ratio (the
number of mapped reads/the number of sequenced
reads) may be poor if the initial amount of DNA is
insufficient, for example, because of inefficient ChIP.
In this situation, the number of mapped reads will not
be sufficient for statistical analysis: for example, when
20 million reads are sequenced and the mapping ratio
is 15%, only 3 million reads are available for analysis.
The mapping results obtained here for the test data
are summarized in Table 2. The high percentage of
mapped reads is a guarantee of the high quality of the
sequenced samples. The percentage of uniquely
mapped reads was approximately 60% for all samples,
which is empirically considered to be a good result for
a SOLiD sequencer. For an Illumina sequencer, the
average percentage of uniquely mapped reads is gener-
ally >80%. When allowing multiple mapped reads, the
number of available reads increases, which allows the
number of repetitive reads to more greatly influence
the results. If the DNA sample is PCR-amplified >20
times, then although the number of mapped reads will
be sufficient, the number of reads that are filtered out
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as biased may also be large; this may lead to a substan-
tial number of reads that cannot be used further.
Therefore, the PCR bias percentage indicates the
redundancy of the sequenced reads. A similar sugges-
tion was made previously by Landt et al. (2012). Usu-
ally the PCR bias percentage is <20% of the total
reads. However, when micrococcal nuclease is used to
shear DNA, the PCR bias percentage can increase to
approximately 30%. If the PCR bias percentage is
>40%, over-amplification may occur; if it is >80%, it
may be difficult to accurately identify peaks. Ideally,
>30 9 106 unique reads should be mapped with
<20% having to be filtered out as PCR-biased reads.
In our previous work (Deardorff et al. 2012), we used
3–7 9 107 uniquely mapped reads for each human
sample.

Peak assessment

The number of peaks detected and the FDRs for the
Rad21, Smc3-ac and CTCF samples are given in
Table S2 (Supporting Information). A small FDR
indicates that the threshold value for peak calling is
sufficiently stringent. The correlations of number of
peaks detected and FDRs at different peak-intensity
threshold values are shown in Fig. 7. The intensities
of most control peaks were small; thus, as the peak

threshold value became more stringent, the number
of control peaks decreased more rapidly than did the
number of ChIP peaks, which improved the FDR
value. For Smc3-ac, however, when the number of
ChIP peaks was too small, the FDR value increased.
This result indicates that FDR does not work well
under some circumstances, such as when the number
of ChIP peaks is too small. It is important to check
mapped read distributions and identified peaks by
validating positive and negative binding sites by
ChIP-qPCR.

Discussion

In conclusion, the programs we have developed,
DROMPA and parse2wig, offer the following advan-
tages over other ChIP-seq analysis programs:
� Our programs require much less memory and

time than other available peak-calling programs
(reviewed by Laajala et al. 2009), making it possi-
ble to analyze large-scale ChIP-seq data (e.g.,
more than 10 human samples and/or multiple
executions of each sample with trial-and-error
determination of threshold levels) on a conven-
tional desktop computer.

� DROMPA outputs protein-binding profiles and
identifies peaks as bar graphs in a pdf or png for-
mat, both of which are compatible with many
computer platforms and can be handled without
installation of an additional visualization program.
If the user wants to quickly access the ChIP-seq
results to judge whether the experiment was suc-
cessful or to share the results with collaborators
elsewhere, DROMPA output is an efficient way
to do so. Furthermore, pdf files are accepted by
many scientific journals and easily processed by all
available graphic software.

� DROMPA identifies protein-binding sites when
the peaks are sharp (approximately 1 kbp, e.g.,
transcriptional factor binding sites) and when they
are broad (approximately 1 Mbp, e.g., modified
histone binding sites, such as H3K27me3 and
H3K36me3), as a consequence of the simple
peak-calling strategy used.

� DROMPA accepts multiple mapped reads,
whereas most available peak-calling programs can
only use uniquely mapped reads as input. Incor-
poration of multiple mapped reads into the calcu-
lation improves sequencing depth (up to 25%)
(Chung et al. 2011) and helps identify binding
sites in regions containing repetitive sequences.
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� Our programs can be used for any species for
which a genome sequence is available, that is,
S. cerevisiae, S. pombe, D. melanogaster, chicken,
mouse and human, among many others.

As shown in the performance comparison,
DROMPA is the fastest program and is an order of
magnitude more memory efficient than other pro-
grams. Preprocessing a map file and storing chromo-
some-separated wig files allows DROMPA to reduce
the computation time for parsing a map file and to
require memory for only one chromosome, which
reduces the consumed memory for peak calling.
PeakSeq also uses a preprocessing strategy, but also
uses whole-genome data simultaneously on peak call-
ing, which results in heavy consumption of memory.
We also showed that DROMPA has similar sensitiv-
ity and specificity with other available programs using
human ChIP-seq data. When allowing multiple
mapped reads in addition to uniquely mapped reads,
the sensitivity improved because of the expansion of
accessible regions in the genome (Fig. 2b).

It is extremely difficult to evaluate the accuracy of
peak calling because of the lack of ‘true’ binding-site
data. As the optimal parameter set depends on the
characteristics of the samples and there is no consistent
threshold across different conditions for peak calling,
then investigation of a protein whose binding mode is
unknown necessitates the setting of threshold parame-
ters for peak calling by trial and error. Another assess-
ment for peak quality, the irreproducible discovery
rate (IDR) methodology (Li et al. 2011), has been
developed to assess replicate agreement and set thresh-
olds. However, when the quality of one replicate is
poor, possible true peaks in higher-quality replicates
will be filtered (Landt et al. 2012). In this study, we
focused on a canonical motif analysis of CTCF and
showed a characteristic region for Drosophila. In future,
we intend to improve DROMPA so that it can be
applied to even relatively low-quality data with no
biological replicates, without trial and error.

Experimental procedures

Data sets

The source codes for DROMPA and parse2wig are available

on the DROMPA website (http://www.iam.u-tokyo.ac.jp/

chromosomeinformatics/rnakato/drompa/). In this study, we

used DROMPA version 1.1.1. Check the website for the lat-

est version.

The ChIP-seq data were downloaded from The Sequence

Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) under

accession number SRA062112 (S. cerevisiae Gal-Scc1-HA),

SRP005957 (D. melanogaster Suppressor of Hairy-wing),

SRP006944 (HeLa cell H3K27me3 and H3K36me3) and

SRP011927 (HeLa cell Rad21, Smc3-ac and CTCF).

Parse2wig: Converting mapped reads into wig

data

Parse2wig sums the number of mapped reads in a bin (default

value 10 bp) sequentially along a chromosome and outputs a

wig-formatted file for each chromosome. Each mapped read is

extended to an average, predetermined fragment length

(default value 150 bp) as previously described (Chung et al.

2011; Rozowsky et al. 2009). Parse2wig can also be used with

multiple mapped reads, which are divided equally among all

locations (each mapped locus is weighted equally). Thus, the

total number of reads mapped into bin x is rx ¼
Pk

k2R
1=nk

where nk is the number of times that read k is mapped onto

the reference genome and R is the full set of reads mapped in

bin x.

Obviously, over-amplified templates reduce the accuracy of

the statistical analysis, and the sequence reads derived from

those templates must be filtered out as PCR bias before statis-

tical analyses. To achieve this, redundantly mapped reads

(reads starting exactly at the same 5’-sequence ends) over Tb

times are filtered out as PCR bias. A similar strategy was pro-

posed previously as a ‘nonredundant fraction’ (Landt et al.

2012), which simply set Tb > 1. For DROMPA, Tb is set as

the larger of >1 and >E(r) 9 10, where E(r) is the expected

value of a mapped read for each base in the strand s, that is, E

(s) = Ns/L where Ns is the number of reads mapped on the

strand s of the genome and L is the genome length. A similar

strategy has been used for programs developed for genome map-

ping and repeat masking (Gotoh 2008; Morgulis et al. 2006).

To compare the results of multiple ChIP experiments, par-

se2wig uses a modified RPKM (reads per kilobase of exon

model per million mapped reads) normalization (Mortazavi

et al. 2008), that is also used in ChIPseeqer (Giannopoulou &

Elemento 2011). The modified RPKM normalizes the number

of mapped reads per 100 Mb of each chromosome per 106

mapped reads. Thus, the normalized read number for bin x is

Rx = 106 9 (rx/Ni) 9 (Li/10
8) where Ni is the total number

of reads mapped onto chromosome i and Li is the length of

chromosome i. The number for each bin is then smoothed

with a fixed width (default value 500 bp), which provides a

good approximation of the real read distribution. At this stage,

the wig files can be uploaded to the UCSC genome browser

if the user so desires.

DROMPA: Detecting enriched regions as

potential binding sites

DROMPA scans the reference genome with a sliding window

that includes contiguous bins (default value 30 bins) to identify

peak regions that satisfy simultaneously the default threshold

values listed below (Fig. S2 in Supporting Information):
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• The enrichment p-value defined by a one-sided Wilcoxon

rank-sum test between the ChIP and control is <10�4.
• The fold enrichment (ChIP reads per window/control

reads per window) is >3.0.
• The maximum read intensity (Rx) of ChIP bins in a win-

dow/the average read depth of the ChIP for the chromo-

some is >3.0.
• The average number of control reads per window/the

average read depth of the control for the chromosome is

<10.0.
• The maximum read intensity of ChIP bins in a window is

>6.0.

Thresholds (i) and (ii) evaluate the significance of ChIP read

enrichments against the number of control reads for each win-

dow. TheWilcoxon rank-sum test evaluates whether ChIP reads

are enriched in the overall region (most of the bins) in a window.

Threshold (iii) determines whether the ChIP reads mapped in a

window are enriched compared with the average depth of the

whole genome. When the number of control reads mapped in a

window is quite large compared with the average depth of the

control reads, the region is considered as a highly repetitive

region, which may lead to the identification of false-positive

peaks; threshold (iv) effectively filters out such peaks. Threshold

(v) is useful for comparing multiple ChIP samples. The default

values for these five thresholds were defined empirically.

Contiguous, significantly enriched windows are then

merged, and a peak list is produced. This list can be saved as a

tab-delimited text file that can be handled by a text editor or

Microsoft Excel. This peak file can also be used as a bed file.

DROMPA can also be used to identify broad peaks by enlarg-

ing the bin size.

Visualization

DROMPA draws bar graphs of the mapped reads with chro-

mosome-separated and/or whole-genome files in a pdf or png

format (default, pdf format) using Cairo graphics library

(http://www.cairographics.org/). These figures can display

ChIP and control read distributions and ChIP/control enrich-

ment ratios at different scales and can include genomic annota-

tions. Because DROMPA can call peaks and visualize multiple

ChIP samples simultaneously, it is a powerful tool for large-

scale ChIP-seq analysis.

Processing memory requirements

The memory required by DROMPA mainly depends on the

size of the largest chromosome and the specified bin size and

does not depend on the map file size. Thus, DROMPA can

analyze sequence data of >100 million reads while using lim-

ited computation memory. The memory required by parse2-

wig depends on the map file size, but it is smaller than that

used by other peak-calling programs. The total sizes of the

binary and compressed wig files are much smaller than the

map file.

False discovery rate

In our published study (Deardorff et al. 2012), the empirical

FDR was calculated as the number of control peaks/number

of ChIP peaks. The same calculation is used for MACS

(Zhang et al. 2008) and CCAT (Xu et al. 2010). Note that

an FDR calculation would not be appropriate in the follow-

ing cases: when another ChIP sample is used as a control;

when the quality of the control sample is poor (e.g., many

pseudobinding sites are identified); and when the ChIP sam-

ple has few peaks (e.g., <100 peaks) as shown in Peak

assessment by DROMPA. To increase the universality of

DROMPA, we did not use a value for the FDR as a

threshold determinant.

Performance comparison between DROMPA and

other methods

MACS (Zhang et al. 2008), PeakSeq (Rozowsky et al. 2009)

and Quest (Jothi et al. 2008) programs were executed with the

default or recommended parameter settings. We supplied the

‘-optype3’ option (output peak list only) for DROMPA. For

calculating memory, we used VmHWM in/proc/<PID>/sta-
tus.

PeakSeq preprocesses a map file before performing peak

calling, as does the combination of parse2wig and

DROMPA; we therefore considered the performance of

each preprocessing step separately. For Quest, we supplied a

genome-table file for the peak identification process because

the process took less time than when the complete genome

sequence was supplied. For comparison, we used SAM-for-

matted map files as input for DROMPA, MACS and Peak-

Seq and Bowtie-formatted files for Quest, as Quest cannot

handle SAM-formatted files and PeakSeq cannot handle

Bowtie-formatted files.

Analysis by DROMPA

DROMPA can include several annotation data (genes, repeats,

GC contents and other BED-formatted annotation) and

implement several downstream analyses. Further information

of experimental design and an example workflow can be

found in the Appendix S1 (Supporting Information).

Author contributions

R.N. wrote the programs and carried out the ChIP-seq exper-

iments. R.N., T.I. and K.S. outlined the program. R.N. and

K.S. drafted the manuscript.

Acknowledgements

We are grateful to T. Sutani, M. Bando, Y. Katou, M. Ko-

mata, C. Renard, H. Tanaka and Y. Nakagawa for discussions,

help and advice. R.N. was supported by a Grant-in-Aid for

© 2013 The Authors

Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd

Genes to Cells (2013) 18, 589–601

Computational analysis and validation of ChIP-seq data

599



Young Scientists (B). T.I. was supported by Grant-in-Aid for

Scientific Research on Innovative Areas. K.S. was supported

by CREST, a Research Program of Innovative Cell Biology

by Innovative Technology and Grant-in-Aid for Scientific

Research (S).

Competing financial interests

The authors declare that they have no competing financial

interests.

References

Auerbach, R.K., Euskirchen, G., Rozowsky, J., Lamarre-

Vincent, N., Moqtaderi, Z., Lefranc�ois, P., Struhl, K.,

Gerstein, M. & Snyder, M. (2009) Mapping accessible

chromatin regions using Sono-Seq. Proc. Natl Acad. Sci.

USA 106, 14926–14931.
Bailey, T.L. & Elkan, C. (1994) Fitting a mixture model by

expectation maximization to discover motifs in biopolymers.

Proceedings/. International Conference on Intelligent Sys-

tems for Molecular Biology; ISMB. Proc. Int. Conf. Intell.

Syst. Mol. Biol. 2, 28–36.
Bailey, T.L. & Gribskov, M. (1998) Combining evidence

using p-values: application to sequence homology searches.

Bioinformatics 14, 48–54.
Boeva, V., Surdez, D., Guillon, N., Tirode, F., Fejes, A.P.,

Delattre, O. & Barillot, E. (2010) De novo motif identifica-

tion improves the accuracy of predicting transcription factor

binding sites in ChIP-Seq data analysis. Nucleic Acids Res.

38, e126.

Chen, Y., Negre, N., Li, Q., et al. (2012) Systematic evalua-

tion of factors influencing ChIP-seq fidelity. Nat. Methods 9,

609–614.
Chung, D., Kuan, P.F., Li, B., Sanalkumar, R., Liang, K.,

Bresnick, E.H., Dewey, C. & Keles�, S. (2011) Discovering

transcription factor binding sites in highly repetitive regions

of genomes with multi-read analysis of ChIP-Seq data.

PLoS Comput. Biol. 7, e1002111.

De Piccoli, G., Katou, Y., Itoh, T., Nakato, R., Shirahige, K.

& Labib, K. (2012) Replisome stability at defective DNA

replication forks is independent of S phase checkpoint kin-

ases. Mol. Cell 45, 696–704.
Deardorff, M.A., Bando, M., Nakato, R., et al. (2012)

HDAC8 mutations in Cornelia de Lange syndrome affect

the cohesin acetylation cycle. Nature 489, 313–317.
Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H.

(2008) Substantial biases in ultra-short read data sets from

high-throughput DNA sequencing. Nucleic Acids Res. 36,

e105.

Enervald, E., Lindgren, E., Katou, Y., Shirahige, K. & Strom,

L. (2013) Importance of poleta for damage-induced cohesion

reveals differential regulation of cohesion establishment at

the break site and genome-wide. PLoS Genet. 9, e1003158.

Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward,

L.D., Epstein, C.B., Zhang, X., Wang, L., Issner, R., Coyne,

M., Ku, M., Durham, T., Kellis, M. & Bernstein, B.E. (2011)

Mapping and analysis of chromatin state dynamics in nine

human cell types. Nature 473, 43–49.
Giannopoulou, E.G. & Elemento, O. (2011) An integrated

ChIP-seq analysis platform with customizable workflows.

BMC Bioinformatics 12, 277.

Gotoh, O. (2008) A space-efficient and accurate method for

mapping and aligning cDNA sequences onto genomic

sequence. Nucleic Acids Res. 36, 2630–2638.
Heintzman, N.D., Hon, G.C., Hawkins, R.D., et al.

(2009) Histone modifications at human enhancers reflect

global cell-type-specific gene expression. Nature 459,

108–112.
Hu, B., Itoh, T., Mishra, A., Katoh, Y., Chan, K.L., Upcher,

W., Godlee, C., Roig, M.B., Shirahige, K. & Nasmyth, K.

(2011) ATP hydrolysis is required for relocating cohesin

from sites occupied by its Scc2/4 loading complex. Curr.

Biol. 21, 12–24.
Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K.

(2008) Genome-wide identification of in vivo protein-

DNA binding sites from ChIP-Seq data. Nucleic Acids Res.

36, 5221–5231.
Kegel, A., Betts-Lindroos, H., Kanno, T., Jeppsson, K.,

Str€om, L., Katou, Y., Itoh, T., Shirahige, K. & Sj€ogren, C.
(2011) Chromosome length influences replication-induced

topological stress. Nature 471, 392–396.
Kozarewa, I., Ning, Z., Quail, M.A., Sanders, M.J., Berriman,

M. & Turner, D.J. (2009) Amplification-free Illumina

sequencing-library preparation facilitates improved mapping

and assembly of (G+C)-biased genomes. Nat. Methods 6,

291–295.
Kurze, A., Michie, K.A., Dixon, S.E., Mishra, A., Itoh, T.,

Khalid, S., Strmecki, L., Shirahige, K., Haering, C.H.,

L€owe, J. & Nasmyth, K. (2011) A positively charged chan-

nel within the Smc1/Smc3 hinge required for sister chro-

matid cohesion. EMBO J. 30, 364–378.
Laajala, T.D., Raghav, S., Tuomela, S., Lahesmaa, R., Aitto-

kallio, T. & Elo, L.L. (2009) A practical comparison of

methods for detecting transcription factor binding sites in

ChIP-seq experiments. BMC Genomics 10, 618.

Landt, S.G., Marinov, G.K., Kundaje, A., et al. (2012) ChIP-

seq guidelines and practices of the ENCODE and modEN-

CODE consortia. Genome Res. 22, 1813–1883.
Li, Q., Brown, J., Huang, H. & Bickel, P. (2011) Measuring

reproducibility of high-throughput experiments. Ann. Appl.

Stat. 5, 1752–1779.
Liu, E.T., Pott, S. & Huss, M. (2010) Q&A: ChIP-seq tech-

nologies and the study of gene regulation. BMC Biol. 8, 56.

Mishra, A., Hu, B., Kurze, A., Beckou€et, F., Farcas, A.M.,

Dixon, S.E., Katou, Y., Khalid, S., Shirahige, K. & Nas-

myth, K. (2010) Both interaction surfaces within cohesin’s

hinge domain are essential for its stable chromosomal associ-

ation. Curr. Biol. 20, 279–289.
Morgulis, A., Gertz, E.M., Schaffer, A.A. & Agarwala, R.

(2006) WindowMasker: window-based masker for

sequenced genomes. Bioinformatics 22, 134–141.

Genes to Cells (2013) 18, 589–601 © 2013 The Authors

Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd

R Nakato et al.

600



Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. &

Wold, B. (2008) Mapping and quantifying mammalian tran-

scriptomes by RNA-Seq. Nat. Methods 5, 621–628.
Park, P.J. (2009) ChIP-seq: advantages and challenges of a

maturing technology. Nat. Rev. Genet. 10, 669–680.
Rhee, H.S. & Pugh, B.F. (2011) Comprehensive genome-

wide protein-DNA interactions detected at single-nucleo-

tide resolution. Cell 147, 1408–1419.
Rozowsky, J., Euskirchen, G., Auerbach, R.K., Zhang, Z.D.,

Gibson, T., Bjornson, R., Carriero, N., Snyder, M. & Ger-

stein, M.B. (2009) PeakSeq enables systematic scoring of

ChIP-seq experiments relative to controls. Nat. Biotechnol.

27, 66–75.
Tanaka, S., Nakato, R., Katou, Y., Shirahige, K. & Araki, H.

(2011) Origin association of Sld3, Sld7, and Cdc45 proteins

is a key step for determination of origin-firing timing. Curr.

Biol. 21, 2055–2063.
Tazumi, A., Fukuura, M., Nakato, R., Kishimoto, A.,

Takenaka, T., Ogawa, S., Song, J.H., Takahashi, T.S.,

Nakagawa, T., Shirahige, K. & Masukata, H. (2012)

Telomere-binding protein Taz1 controls global replication

timing through its localization near late replication origins

in fission yeast. Genes Dev. 26, 2050–2062.
Xu, H., Handoko, L., Wei, X., Ye, C., Sheng, J., Wei, C.L.,

Lin, F. & Sung, W.K. (2010) A signal–noise model for sig-

nificance analysis of ChIP-seq with negative control. Bioin-

formatics 26, 1199–1204.
Yamaji, M., Ueda, J., Hayashi, K., Ohta, H., Yabuta, Y.,

Kurimoto, K., Nakato, R., Yamada, Y., Shirahige, K. &

Saitou, M. (2013) PRDM14 Ensures Naive Pluripotency

through Dual Regulation of Signaling and Epigenetic Path-

ways in Mouse Embryonic Stem Cells. Cell Stem Cell 12,

368–382.
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson,

D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown,

M., Li, W. & Liu, X.S. (2008) Model-based analysis of

ChIP-Seq (MACS). Genome Biol. 9, R137.

Received: 22 February 2013

Accepted: 26 March 2013

Supporting Information

Additional Supporting Information may be found in the

online version of this article at the publisher’s web site:

Figure S1 Memory consumption for parallel handling of mul-

tiple ChIP-control pairs.

Figure S2 Creating wig files by parse2wig and peak calling

by DROMPA.

Figure S3 Visualization by DROMPA of the average read

intensity profiles for each ChIP sample across the specified

regions.

Appendix S1 Experimental design and Procedures.

Table S1 Disk space (GB) required for each program

Table S2 Peak-calling results for the test data

© 2013 The Authors

Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd

Genes to Cells (2013) 18, 589–601

Computational analysis and validation of ChIP-seq data

601


