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Abstract 

The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed 
directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome 
of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell 
transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 
272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 
discriminative transcripts using advanced machine learning methods. The most discriminative 
transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 
and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts 
in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic 
reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated 
transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone- 
regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of 
the discriminative transcripts revealed the possible mechanism of colorectal cancer. 

Key words: colorectal cancer, single-cell sequencing, transcriptome, support vector machine, minimal 
redundancy maximal relevance, incremental feature selection  

Introduction 
Colorectal cancer (CRC) is a major human 

digestive tract tumor throughout the world and the 
incidence increases with increasing age [1]. According 
to the latest world health organization (WHO) 
statistics, colorectal cancer is the third most common 
malignancy, second only to lung cancer and gastric 
cancer [2]. The occurrence of colorectal cancer is 
caused by many factors, such as heredity and 
environment, which is a complicated process 
involving multiple transcripts and stages.  

Pathogenic mechanisms of CRC are clinically 
important because they are associated with the 
patient's prognosis and response to treatment [1]. The 
pathogenesis leading to colorectal cancer can be 
included in following types: chromosomal instability 
(CIN), microsatellite instability (MSI)/mismatch 

repair (MMR) and CpG island methylator phenotype 
(CIMP) [3].  

Sufficient evidence has been shown that 
abnormal signal transduction exists in the initiation 
and progression of tumor. Cell signal transduction 
pathways associated with colorectal cancer mainly 
include Wnt-β-catenin, PI3K/Akt and TGF-β 
signaling pathway [4-6]. On the other hand, 
transcripts like c-MYC, KRAS, BRAF, PIK3CA, 
SMAD2 and SMAD4 can also be considered as 
predictive biomarkers for patient's prognosis [7].  

The single-cell transcriptome sequencing is a 
newly developed technology and measures the sum 
of all the RNA in a particular cell [8]. Through high 
throughput sequencing, it is possible to obtain almost 
all transcriptional sequence information of a specific 
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tissue or organ comprehensively and rapidly. This 
technology has been widely used in the fields of basic 
research, clinical diagnosis and drug development [9]. 
Moreover, it can also be used for tumor heterogeneity 
research and the discovery of aberrant proliferative 
cell types to look for new pathogenesis and 
mechanisms [10].  

Intestinal epithelial cells act as an important 
barrier to prevent bacterial endotoxin and other toxin 
into human body. The intestinal epithelium is 
composed of at least seven different cell types [11], the 
main function of which is the absorption of nutrients, 
toxins and drugs. Recent studies suggest that 
intestinal epithelial cells play an important role in 
maintaining the intestinal immune homeostasis [12], 
and the aberrant cell signaling in epithelial junctions 
has been reported to be associated with the 
development of colorectal cancer [13]. 

We analyzed the single-cell transcriptome of 272 
CRC epithelial cells and 160 normal epithelial cells. 
With advanced feature selection methods, we 
identified 342 discriminative transcripts that showed 
transcript expression difference between colorectal 
tumor and normal cells. We found that the 
upregulated transcripts in CRC epithelial cells were 
significantly enriched in Ribosome, Protein 
processing in endoplasmic reticulum, Antigen 
processing and presentation and p53 signaling 
pathway while the downregulated transcripts in CRC 
epithelial cells were significantly enriched in Mineral 
absorption, Aldosterone-regulated sodium 
reabsorption and Oxidative phosphorylation 
pathways. Several identified transcripts, such as 
LGALS4, FABP1, MT1G, TSPAN1 and CKB, showed 
great promises as candidates for CRC diagnosis and 
therapy. 

Materials and Methods 
The single-cell transcriptome of CRC and 
normal epithelial cells  

We downloaded the processed FPKM 
(Fragments Per Kilobase of transcript per Million 
mapped reads) single-cell transcriptome of 272 CRC 
epithelial cells and 160 normal epithelial cells from 
GEO (Transcript Expression Omnibus) database 
under accession number of GSE81861 [14]. Li et al. 
[14] collected the normal mucosa and CRC tissue and 
performed single cell sequencing. There were 
Myeloid, B cell, T cell, Mast, Endo and Epithelial cells 
in these colorectal tissues. Since most of them were 
epithelial cells, we focused on epithelial cells. All the 
data we used have passed the criteria of NODG 
(number of detected genes) ≥ 1,000, ROER (rate of 
exonic reads) ≥ 5% and ER (exonic reads) ≥ 0.1 million. 

More information of data quality control can be found 
in Li et al. [14]  

Our goal is to identify the discriminative 
transcripts using machine learning methods. The 272 
CRC epithelial cells were considered as positive 
samples and 160 normal epithelial cells were 
considered as negative samples. To filter the noisy 
transcripts, we only kept the 32,610 transcripts with 
maximum FPKM (Fragments Per Kilobase Million) 
across the CRC epithelial cells and normal epithelial 
cells greater than 5, as features.  

The minimal Redundancy Maximal Relevance 
method 

The mutation information based mRMR 
(minimal Redundancy Maximal Relevance) method 
(http://home.penglab.com/proj/mRMR/) [15] was 
originally developed to analyze image data but then it 
showed great power in selecting discriminative 
features in various areas [16-21].  

Let us use Ω to denote all the 32,610 transcripts, 
Ω𝑠𝑠  to denote the selected m transcripts, and Ω𝑡𝑡  to 
denote the to-be-selected n transcripts. The relevance 
𝐼𝐼  of transcript 𝑡𝑡  from Ω𝑡𝑡 with cell type c  was 
calculated with mutual information (I) equation [22, 
23]: 

REL = 𝐼𝐼(𝑡𝑡, c)    (1) 

The redundancy R of the transcript 𝑡𝑡  from 
Ω𝑡𝑡 with the selected transcripts in Ω𝑠𝑠 are 

RED = 1
𝑚𝑚
�∑ 𝐼𝐼(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖∈Ω𝑠𝑠 �    (2) 

The goal is to select the transcript 𝑡𝑡𝑗𝑗 from Ω𝑡𝑡 that 
has maximum relevance with cell type c  and 
minimum redundancy with the selected transcripts 
in Ω𝑠𝑠 

max𝑡𝑡𝑗𝑗∈Ω𝑡𝑡 �𝐼𝐼�𝑡𝑡𝑗𝑗 , c� − 1
𝑚𝑚
�∑ 𝐼𝐼�𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑖𝑖�𝑡𝑡𝑖𝑖∈Ω𝑠𝑠 � �  (𝑗𝑗 = 1,2, … ,𝑛𝑛)    

(3) 

When Ω𝑡𝑡 becomes empty, all the transcripts are 
ranked 

S = {𝑡𝑡1′ , 𝑡𝑡2′ , … , 𝑡𝑡𝑟𝑟′ , … , 𝑡𝑡𝑁𝑁′ }    (4) 

The rank can represent the discriminating ability 
of the transcript. Since the mRMR have already 
reduced the redundancy, the discriminative 
transcripts will be compact. We focused on the top 500 
mRMR transcripts for further analysis. 

Incremental Feature Selection method 
To determine how many mRMR transcripts 

should be selected, Incremental Feature Selection 
(IFS) method [24-30] was applied. As a wrapped 
feature selection method, IFS method evaluated the 
performances of SVM (Support Vector Machine) 
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classifiers constructed based on different transcript 
combinations. We used the function svm with default 
parameters in R package e1071 (https://CRAN.R- 
project.org/package=e1071) to construct the SVM 
classifier.  

Since the transcripts have been ranked using 
mRMR, it is unnecessary to try all transcript 
combinations. As a greedy optimization method, each 
time, one transcript was added into the previous 
transcript set [31-34] and the classification 
performance of the updated transcript set was 
evaluated with leave-one-out cross validation 
(LOOCV).  

The Sensitivity (Sn), Specificity (Sp), Accuracy 
(ACC) and Mathew's correlation coefficient (MCC) 
were used to evaluate the prediction performance: 

𝑆𝑆𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

   (5) 

𝑆𝑆𝑝𝑝 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇

    (6) 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

   (7) 

𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑁𝑁−𝐹𝐹𝑇𝑇×𝐹𝐹𝑁𝑁
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)

    (8) 

where TP, TN, FP and FN were the number of true 
positive, true negative, false positive and false 
negative samples.  

 With the performances of all possible IFS 
combinations, an IFS curve was plotted to visually 
select the optimized transcript combination. The 
x-axis was the number of used transcripts and the 
y-axis was the LOOCV performance. Since the sample 
size of CRC epithelial cells and normal epithelial cells 
were quite different, we used the MCC as the major 
performance evaluator. The peak of IFS curve 
indicated that the optimal transcript set with highest 
MCC. 

The up and down regulated transcripts in CRC 
epithelial cells 

The mRMR and IFS methods can identify the 
transcripts that can classify the CRC epithelial cells 
and normal epithelial cells, but they can't tell which 
transcripts were upregulated or downregulated in 
CRC epithelial cells. To visually investigate the 
transcript-cell relationship, we applied two-way 
hierarchical clustering of both CRC/normal epithelial 
cells and selected transcripts. From the heatmap, we 
can not only explore whether the CRC and normal 
epithelial cells were clustered into different groups, 
but also know which transcripts were upregulated or 
downregulated in CRC epithelial cells. 

Results 
The transcripts were ranked with mRMR 
method 

The mRMR method ranks the transcripts based 
on both their relevance with the cell types and their 
redundancy with other transcripts. Since it considered 
the redundancy, the selected transcripts will be 
representative and a small number of top transcripts 
will be discriminative for cell types. We identified the 
top 500 most discriminative transcripts using the 
mRMR method. These 500 transcripts had enough 
power to discriminate cell types. 

The optimal transcript combinations were 
identified with IFS method 

Since the mRMR result was only transcript 
ranks, it is still difficult to determine how many top 
transcripts should be chosen. As a greedy 
optimization method, the IFS method can quickly 
discovery the optimal transcript combinations with 
great performance. We tried different combinations of 
top transcripts and recorded the performance of the 
SVM classifier constructed based on these transcripts. 
Then the IFS curve was plotted in Figure 1 to visually 
select the transcript combinations. In the IFS curve, 
the x-axis was the number of transcripts and the 
y-axis was the LOOCV MCC.  

It was found that when the top 342 transcripts 
were used, the MCC was the highest. The sensitivity, 
specificity, accuracy and MCC of the 342-transcript 
classifier were 0.967, 0.938, 0.956 and 0.906, 
respectively. The 342 selected transcripts were given 
in Table S1. 

 

 
Figure 1. The IFS curve of how the classifiers based on different number of 
transcripts performance. The x-axis was the number of transcripts used to build 
the classifier and y-axis was the prediction MCC evaluated with LOOCV. The peak of 
IFS curve was MCC of 0.906 when 342 transcripts were used.  
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Table 1. The top 20 mRMR transcripts 

Order Chromosome Start Position End Position Transcript Name Transcript ID Score 
1 chr19 39292310 39304004 LGALS4 ENSG00000171747.4 0.138 
2 chr15 40643233 40648635 PHGR1 ENSG00000233041.4 0.085 
3 chr15 45722726 45878488 C15orf48 ENSG00000166920.6 0.067 
4 chr7 92817898 92855837 HEPACAM2 ENSG00000188175.5 0.065 
5 chr16 56659386 56661024 MT1E ENSG00000169715.10 0.066 
6 chr6 138409641 138428648 PERP ENSG00000112378.11 0.061 
7 chr10 85933493 85945050 C10orf99 ENSG00000188373.4 0.063 
8 chr1 45249256 45253377 BEST4 ENSG00000142959.4 0.059 
9 chr13 27825445 27830828 RPL21 ENSG00000122026.6 0.054 
10 chr2 88422509 88427635 FABP1 ENSG00000163586.5 0.055 
11 chr12 39040623 39303394 CPNE8 ENSG00000139117.9 0.054 
12 chr12 56544579 56584068 MYL6 ENSG00000092841.14 0.053 
13 chr19 40353962 40440533 FCGBP ENSG00000090920.9 0.052 
14 chr20 1290618 1373806 SDCBP2 ENSG00000125775.10 0.053 
15 chr16 56700642 56701977 MT1G ENSG00000125144.9 0.053 
16 chr6 31795511 31798031 HSPA1B ENSG00000204388.5 0.052 
17 chr5 179041178 179061785 HNRNPH1 ENSG00000169045.13 0.051 
18 chr1 46505811 46651630 TSPAN1 ENSG00000117472.5 0.051 
19 chr16 56662970 56667898 MT1M ENSG00000205364.3 0.051 
20 chr14 103985995 103989448 CKB ENSG00000166165.8 0.051 

 

The biological analysis of top transcripts 
 There was local peak in Figure 1 with MCC 

around 0.8 when top 20 transcripts were used. Since 
342 transcripts were too much to analyze one-by-one, 
we analyzed the top 20 transcripts which were given 
in Table 1.  

 The first transcript was LGALS4 which 
predominantly expressed in small intestine, colon, 
and rectum, and was under expressed in colorectal 
cancer. It acts as a tumor suppressor in colorectal 
carcinoma and suppresses cancer cell growth, 
migration, and invasion [35]. It is a dual function 
protein: promote cell proliferation and chemokine 
secretion in galectin-4-expressing colorectal cancer 
cells, but induce apoptosis in galectin-4-negative 
colorectal cancer cells [36]. 

The second transcript was PHGR1 which has 
been reported to play an essential role in 
gastrointestinal epithelium and has demonstrated 
potentials for clinical application in colorectal cancer 
lymph node metastases detection [37]. 

The third transcript was C15orf48. It was mainly 
expressed in esophagus, stomach, small intestine, 
colon and placenta. The associations between and 
squamous cell carcinoma has been reported [38]. 

The fourth transcript was HEPACAM2, a protein 
of the immunoglobulin superfamily, which plays a 
role in mitosis. Its expression level was increased in 
adenomas, the benign stage of tumor glandular 
tissues, such as the mucosa of small intestine and 
colon [39]. It seems to be involved in cell-cell adhesion 
and play an important role in tumor metastasis [39]. 

Another top promising transcript was PERP. It is 
the component of intercellular desmosome junctions 
and plays a role in cell-cell adhesion and stratified 

epithelial integrity. It is involved in p53 Pathway in 
CRC [40]. 

FABP1 ranked 10th and encoded the fatty acid 
binding protein. It is down regulated in colorectal 
carcinogenesis and associated with poorer prognosis. 
Lower expression of FABP1 indicated liver metastasis 
of CRC. FABP1 expression was observed throughout 
cancer development [41]. 

The 13th transcript was FCGBP. The FCGBP 
expression significantly decreased the overall survival 
of CRC patients and may be a potential therapeutic 
target for metastatic CRC patients [42]. 

The 15th transcript MT1G was related to 
metabolism and response to metal ions. It is silenced 
through epigenetic mechanisms during colorectal 
cancer progression, and its loss is associated with 
poor survival of CRC [43]. 

TSPAN1, a member of the transmembrane 4 
superfamily, ranked 18th. The expression level of 
TSPAN1 is increased in colorectal carcinoma and is an 
independent prognostic factor for the colorectal 
adenocarcinoma patients [44]. It can be regulated by 
miR-638 which inhibits TSPAN1 and serve as a tumor 
suppressor [45]. 

The 20th transcript in Table 1 was CKB. 
Interestingly, CKB is overexpressed in most cancer 
types, but not in CRC. In CRC, CKB is downregulated. 
The downregulation of CKB promotes EMT and 
accelerate colon cancer progression [46].  

The transcripts were up or down regulated in 
CRC epithelial cells  

To intuitively explore the transcript-cell 
relationship, we plotted two-way hierarchical 
clustering of both CRC/normal epithelial cells and 
342 transcripts in Figure 2. It can be seen that the CRC 
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epithelial cells and normal epithelial cells were clearly 
clustered into two groups and correspondingly, the 
342 transcripts were also clustered into two groups. 
The top cluster of transcripts were highly expressed in 
normal epithelial cells and the bottom cluster of 
transcripts were highly expressed in CRC epithelial 
cells. 

We enriched the up regulated transcripts and 
down regulated transcripts onto KEGG pathway and 
GO terms using hypergeometric test [47-53]. 

The significantly enriched KEGG pathways of 
the up regulated transcripts in CRC epithelial cells 
was given in Table 2. It can be seen that Ribosome, 
Protein processing in endoplasmic reticulum, Antigen 
processing and presentation, p53 signaling pathway 
were enriched.  

The significantly enriched KEGG pathways of 
the down regulated transcripts in CRC epithelial cells 
was given in Table 3. It can be seen that in CRC 
epithelial cells, the activity of Mineral absorption, 
Aldosterone-regulated sodium reabsorption and 
Oxidative phosphorylation were decreased. Han et al. 
have also reported that the differentially expressed 

genes (DEGs) of Colorectal cancer were enriched in 
mineral absorption [54].  

The significantly enriched GO biological process 
(BP), molecular function (MF) and cellular component 
(CC) terms of the up regulated transcripts in CRC 
epithelial cells was given in Table S2. The 
significantly enriched GO biological process (BP), 
molecular function (MF) and cellular component (CC) 
terms of the down regulated transcripts in CRC 
epithelial cells was given in Table S3. 

The network of the key transcripts in CRC 
epithelial cells 

 We mapped the 342 key transcripts in CRC 
epithelial cells onto STRING network [55] and 
constructed their interaction network with confidence 
score greater than 0.4. The network was shown in 
Figure 3. 280 genes can be mapped and they had 578 
interactions which were much more than expected 
349 edges with PPI (Protein-Protein Interaction) 
enrichment p-value smaller than 1.0e-16. They were 
biologically connected as a group.  

 

 
Figure 2. The heatmap of the 342 transcripts in CRC epithelial cells and normal epithelial cells. Each row corresponded to the scaled transcript expressed level of 
a transcript. The warmer colors indicated higher expression level and the colder colors indicated lower expression levels. Each column corresponded to an epithelial cell. The 
red ones were tumor epithelial cells and the green ones were normal epithelial cells. It can be seen that the CRC epithelial cells and normal epithelial cells were clearly clustered 
into two groups and correspondingly, the 342 transcripts were also clustered into two groups. The top cluster of transcripts were highly expressed in normal epithelial cells and 
the bottom cluster of transcripts were highly expressed in CRC epithelial cells. 
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Table 2. The significantly enriched KEGG pathways of the up regulated transcripts in CRC epithelial cells 

KEGG pathway FDR* P value Transcripts 
hsa03010 Ribosome 0.00136 4.32E-06 RPS4Y1, RPS18, RPS27A, RPL7, RPL13, RPL18A, RPL21, RPL23, RPL38 
hsa04141 Protein processing in endoplasmic reticulum 0.0456 0.000422 HSPA5, HSPA1B, HSPA6, HSP90AA1, HSP90AB1, HSPH1, PPP1R15A 
hsa04612 Antigen processing and presentation 0.0456 0.000436 HSPA1B, HSPA6, HSP90AA1, HSP90AB1, HSPA5 
hsa05215 Prostate cancer 0.0981 0.00125 ETV5, MDM2, HSP90AA1, HSP90AB1, GSTP1 
hsa04115 p53 signaling pathway 0.153 0.00244 ATR, MDM2, PERP, SESN3 

*: FDR<0.2 

Table 3. The significantly enriched KEGG pathways of the down regulated transcripts in CRC epithelial cells 

KEGG pathway FDR* P value Transcripts 
hsa04978 Mineral absorption 0.000195 6.21E-07 SLC26A3, MT1E, MT1F, MT1G, MT1M, MT1X, MT2A 
hsa04960 Aldosterone-regulated sodium reabsorption 0.000236 1.50E-06 HSD11B2, NR3C2, SCNN1A, SCNN1G, SGK1, NEDD4L 
hsa00190 Oxidative phosphorylation 0.0295 0.000347 NDUFB1, COX6B1, COX7A2, COX7C, ATP5C1, ATP5G1, ATP5H 
hsa04972 Pancreatic secretion 0.029 0.000376 PLA2G10, CLCA1, CLCA4, SLC26A3, SLC4A4, CA2 
hsa05012 Parkinson's disease 0.0311 0.000516 NDUFB1, COX6B1, COX7A2, COX7C, ATP5C1, ATP5G1, ATP5H 
hsa00910 Nitrogen metabolism 0.0311 0.000595 CA1, CA7, CA2 

*: FDR<0.05  
 

 
Figure 3. The network of the key transcripts in CRC epithelial cells. The 342 key transcripts in CRC epithelial cells were mapped onto STRING network. The 280 
mapped genes had 578 interactions which were much more than expected with PPI (Protein-Protein Interaction) enrichment p-value smaller than 1.0e-16. They were closely 
connected. 
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Compare the key transcripts with other CRC 
signature genes 

 We compared the 342 key transcripts with other 
CRC signature genes. Chu et al. did a meta-analysis of 
the differentially expressed genes between colorectal 
tumors and normal mucosa in 16 datasets and 
identified a 55-gene CRC signature [56]. Table S4 
listed the 55 CRC signature genes from Chu et al. [56]. 
We did hypergeometric test of the overlap between 
the 55 CRC signature genes and our 342 genes. There 
were 22 overlapped genes: ABCG2, AQP8, CA1, CA7, 
CDH3, CHP2, CLCA1, CLCA4, CPM, FCGBP, 
GUCA2A, GUCA2B, KIAA1199, KLK11, MMP7, 
MS4A12, MT1M, NR3C2, SLC26A3, SLC4A4, SPIB, 
ZG16. The p-value was 2.2e-30 and the odds ratio was 
75.5. Their overlap was very significant.  

Discussion 
Overall, in CRC epithelial cells, the biological 

processes of SRP-dependent co-translational protein 
targeting to membrane, co-translational protein 
targeting to membrane, protein targeting to ER, 
establishment of protein localization to endoplasmic 
reticulum, negative regulation of cell cycle arrest, 
response to oxidative stress, negative regulation of 
programmed cell death, regulation of cellular 
response to stress, negative regulation of cell death, 
regulation of cell cycle process, regulation of cell 
cycle, cellular response to stress, ribosome biogenesis 
and cell death were enriched for the up regulated 
transcripts. Many of them were typical cancer related 
pathways. For the down regulated transcripts in CRC 
epithelial cells, they were enriched onto cellular 
response to zinc ion, response to zinc ion, cellular 
response to cadmium ion and digestion biological 
processes. These were epithelial cell specific functions 
in normal tissues but disrupted in tumor tissue.  

Tumor heterogeneity is a key issue for cancer 
diagnosis and treatment. The traditional analysis of 
tumor tissues from cancer patients are usually 
difficult to reproduce since the tumor tissue is a 
mixture of different cells. The single cell sequencing 
enables the gene expression profiles on cell level. In 
this study, we analyzed the single-cell transcriptome 
of CRC epithelial cells and normal epithelial cells and 
identified the differentially expressed transcripts 
using advanced machine learning methods. It was 
found that the upregulated transcripts in CRC 
epithelial cells were significantly enriched in 
Ribosome, Protein processing in endoplasmic 
reticulum, Antigen processing and presentation and 
p53 signaling pathway while the downregulated 
transcripts in CRC epithelial cells were significantly 
enriched in Mineral absorption, Aldosterone- 
regulated sodium reabsorption and Oxidative 

phosphorylation pathways. The biological analysis of 
selected transcripts revealed the possible mechanism 
of colorectal cancer. 

Supplementary Material  
Supplementary tables.  
http://www.jcancer.org/v10p5883s1.pdf  
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