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Abstract

In this paper we study antibiotic-induced C. difficile infection (CDI), caused by the toxin-pro-

ducing C. difficile (CD), and implement clinically-inspired simulated treatments in a compu-

tational framework that synthesizes a generalized Lotka-Volterra (gLV) model with SIR

modeling techniques. The gLV model uses parameters derived from an experimental

mouse model, in which the mice are administered antibiotics and subsequently dosed with

CD. We numerically identify which of the experimentally measured initial conditions are vul-

nerable to CD colonization, then formalize the notion of CD susceptibility analytically. We

simulate fecal transplantation, a clinically successful treatment for CDI, and discover that

both the transplant timing and transplant donor are relevant to the the efficacy of the treat-

ment, a result which has clinical implications. We incorporate two nongeneric yet dangerous

attributes of CD into the gLV model, sporulation and antibiotic-resistant mutation, and for

each identify relevant SIR techniques that describe the desired attribute. Finally, we rely on

the results of our framework to analyze an experimental study of fecal transplants in mice,

and are able to explain observed experimental results, validate our simulated results, and

suggest model-motivated experiments.

Author summary

The burgeoning integration of big data and medicine is a portent of personalized health-

care. There is a need for accurate, predictive, and mechanistic models that can be relied

upon to forecast the course of a disease, test treatments in-silico, and ultimately inform

the doctor’s prescription. These models, still nascent, are buoyed by rich datasets available

due to recent advances in experimental methods (e.g. 16S rRNA high-throughput

sequencing); one such model, which we build upon in this paper, was developed by Stein

et al. to predict the growth of the infectious C. difficile (CD) and 10 other microbial genera.

In this paper we extend the existing model to capture clinical treatments and biologically

relevant phenomena. First, we incorporate fecal transplants and identify the mechanism

by which they treat C. difficile infection (CDI). Then, we develop a methodology that

endows a microbe with nongeneric attributes within the existing framework; specifically,
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we add CD sporulation and the developement of antibiotic-resistant strains of CD. By bet-

ter reflecting the clinically relevant properties of CDI we can “personalize” a mathematical

model to a given disease; this construction of generic yet customizable models will be rele-

vant for personalized healthcare models in years to come.

Introduction

Microbiota are covertly instrumental in bodily functions including immune response [1] and

colonization resistance [2, 3]. Some diseases are associated with an imbalanced microbiome,

due to disproportionate regulatory action of the host in response to the microbiome composi-

tion [4]. Ironically, another pathway to disease is through antibiotic administration, which can

dramatically alter microbial composition and diversity, hinder colonization resistance, and

subsequently allow for pathogen infection. Specifically in this paper, we focus on antibiotic-

induced C. difficile infection (CDI), a prevalent nosocomial disease [5, 6].

The advent of high-throughput sequencing provides cheap and accurate time-series abun-

dance data of interacting microbial populations, which can then inform dynamic models that

extrapolate system behavior [7, 8]. One idealization of interacting species is the generalized

Lotka-Volterra (gLV) model, which assumes that the competitive dynamics of a system are

entirely captured through pairwise (inter-species) and self (intra-species) interactions [9]. The

gLV model ignores explicit external factors like availability of organic compounds, tempera-

ture, or location, but it is the most general possible second order differential equation that

describes interacting populations, with some reasonable biological constraints.

Approximating microbiome dynamics as a gLV system is a first step towards quantifying

the complex interactions between competing microbes. Inarguably this model misses many

subtle, non-competition based, interactions: for example, a non-abundant type of bacteria (e.g.

Escherichia) may produce proteins vital to general bacterial function (e.g. pili production) [10],

but this contribution would not explicitly appear in the model.

In this paper we simulate the prevalence of C. difficile (CD) in the microbiome with a gener-

alized Lotka-Volterra model. The work by Stein et al. [11] and Buffie et al. [12] serves as a

point of departure, from which we develop a framework for evaluating the efficacy of different

treatment protocols for CDI. This framework develops causal relationships between simulated

therapies and microbiome compositions and also explores how bacterial adaptations such as

sporulation and antibiotic-resistant mutation may be added to the gLV model. These clinically

motivated approaches explain distinct qualitative aspects of CDI that are otherwise unexplored

or inconsistent with previous models.

We begin by discussing the clinical background and existing models of CD infection,

including the mathematical model we use in this paper, and by describing our in-silico imple-

mentations of CD treatments. Then we numerically construct phase diagrams that depict the

available behaviors of the simulated system, implement in-silico clinical therapies for CDI, and

quantitatively track the efficacies of these therapies. Lastly we describe how to include mecha-

nisms for sporulation and mutation in our model, and evaluate their impacts on the efficacy of

antibiotic treatment. Through these techniques, we reveal the importance of timing on the effi-

cacy of fecal microbiota transplantation (FMT) and additionally recover the clinical recom-

mendation for pulsed antibiotic administration when treating CD. Finally, we wield this

framework to explain experimental FMT outcomes [13], validate simulated results, and pro-

pose future experiments.
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The era of personalized medicine and prevalence of high-throughput sequencing will

demand accurate microbiome models that can predict, diagnose, and recommend treatment

for microbiome disease, and the framework developed in this paper builds upon existing mod-

els [14] to progress towards this goal.

Background

CD is a spore-forming bacterium that can produce toxins which cause CD associated diarrhea,

afflicting three million people each year [15]. CDI is especially common in the elderly and in

patients who are prescribed antibiotics, since antibiotics deplete the microbiome so that

ingested spores of CD— often acquired in healthcare facilities or nursing homes— may invade

the vulnerable microbiome [16].

The link between antibiotic treatment, CDI, and microbiome composition was investigated

by Buffie et al. [12] in a study that gathered mouse time-series phylogenetic data via high-

throughput 16S rRNA sequencing. In the study three scenarios were considered, in which the

mice were either left alone as a control, exposed to CD, or dosed with the antibiotic clindamy-

cin and subsequently exposed to CD. Each scenario was performed in triplicate and consisted

of around 10 time points spanning four weeks, and each time point consisted of thousands of

phylogenetic 16S rRNA gene sequences which were mapped to taxonomic species and tallied.

The study found that after antibiotic administration of clindamycin the mouse microbiome

was less diverse (in terms of the Shannon diversity index) and vulnerable to CDI, which is con-

sistent with clinical observations of humans who develop CDI [15, 16]. Because the anatomies

of mice and humans are similar [17] and the microbiomes of both species react to changes in

diet in a similar manner [18], it is common to treat the mouse model as a proxy for human

CDI.

In a first attempt to model the relationship between CDI and antibiotic treatment, Stein

et al. [11] proposed a generalized Lotka-Volterra (gLV) model to explain the interactions

between different microbes. The parameters for this model were fit with the previously men-

tioned data from Buffie et al. [12]. To reduce dimensionality, Stein et al. assumed that bacteria

within a given genus behave similarly, and consolidated the species-level data into genus-level

data. The parameter fitting procedure was tested on in-silico data, and the fitted parameters

satisfied biologically reasonable restrictions. This model— described in more detail in the text

surrounding Eq (1)— produces microbiome composition trajectories which allow for simu-

lated antibiotic treatment or exposure to CD. The Spearman rank correlation, a measure com-

paring the predicted microbe abundances with the experimentally measured abundances, was

0.62 (the largest achievable value is 1), and simulated trajectories for each microbe typically

matched experimental trajectories within an order of magnitude. Especially, the model pre-

served the clinical and experimental conclusion that microbiomes treated with the antibiotic

clindamycin were vulnerable to CDI.

In this paper, we start from a gLV model with previously fitted parameters [11], analyze the

steady states, and then build upon this model to explore clinically motivated adaptations. In

particular, we focus on simulated remedial treatments that can avoid or reverse C. difficile
infected steady states, which we interpret as microbiomes suffering CDI.

Models and methods

Generalized Lotka-Volterra equations

The generalized Lotka-Volterra equations track the abundance of N populations xi through

time; in our case, the populations are N − 1 genera plus the bacterial species CD. They read, for
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i 2 1, . . ., N,

d
dt

xiðtÞ ¼ xiðtÞ mi þ
XN

j¼1

MijxjðtÞ þ εiuðtÞ

 !

: ð1Þ

The dynamics of each population are of the same form, so the distinct individual trajecto-

ries are entirely determined by the choices of parameters and initial conditions. The parame-

ters and initial conditions that are used to generate each figure are given in Table A of S1

Appendix. For a population xi, μi describes that population’s self-growth while Mij describes

the pairwise effect of population j on population i, an interaction that can be interpreted as

mutualistic, commensalistic, or parasitic. Lastly, εiu(t) is an external forcing term, which in

our model represents the effect of an administered antibiotic u(t) operating with efficacy εi. In

all, Eq (1) accounts for zeroth, first, and second-order terms, and approximates the competi-

tive dynamics as a power series of the individual populations.

The procedure for parameter fitting is explained in detail and performed by Stein et al. [11].

Briefly, the fitted parameter values satisfy μi> 0 and Mii< 0 for each i, so that in isolation each

population will grow and eventually self-limit. Most but not all microbial groups are inhibited

by the antibiotic clindamycin. Since the interactions between populations have no clear hierar-

chy, we interpret the gLV model as microbes on the same trophic level competing for a shared

resource— the pairwise interactions, then, effectively describe a food web which we visualize

in Fig 1. While dynamical systems such as this one may in principle display an array of behav-

iors, with these fitted parameters we have only observed trajectories that approach biologically

reasonable steady states (e.g. no periodic orbits have been observed); if we interpret the nega-

tive values in Mij as negative covariances between populations, then this stability is consistent

with the covariance effect [19].

Simulation of CDI treatments

In clinical practice, CDI is defined by the presence of toxigenic CD or of CD toxins in a patient

experiencing diarrhea— since there are asymptomatic carriers of CD the mere presence of CD

is not sufficient for diagnosis [16]. However, since the model Eq (1) does not predict toxigenic-

ity or toxin production, for the purposes of this paper we equate CDI to the prolonged pres-

ence of CD in a simulated microbiome.

Stein et al. [11] investigated the existence and stability of steady states for the system Eq (1).

Additionally, they found that for some initial compositions, antibiotic administration can alter

a microbial composition to the degree that the composition becomes susceptible to CD coloni-

zation. Building upon their work, we propose the following three clinically relevant interven-

tions and their corresponding in-silico implementations:

1. inoculation with CD at time tI, corresponding to x(tI) 7! x(tI) + xc where xc is purely com-

posed of CD,

2. antibiotic administration, corresponding to a u(t) that is (unless otherwise specified) a

unit pulse of concentration c at t = 0, and

3. transplantation of CD-resilient microbiota into a CD-susceptible microbiome at time tT,

corresponding to x(tT) 7! x(tT) + xIC, where xIC is a transplant composed of a CD-resilient

initial condition.

We refer to a simulation which implements any combination of these external interventions

as a treatment scenario.

In silico analysis of antibiotic-induced C. difficile infection
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Simulations are run in Python with the scipy package and the scipy.integrate.
odeint function, which uses ordinary differential equation solver lsoda from odepack,

written in FORTRAN. This solver adaptively switches between stiff and non-stiff solvers, and

simulations are run with an absolute tolerance of 10−12. The code used to generate the figures

in this paper is freely available at https://github.com/erijones/simulated_CDI_with_gLV.

Simulated microbial transplants

Clinically, an external microbial transplant seeks to rejuvenate an unhealthy microbiome by

infusing “healthy” microbes into the unhealthy patient. The infused samples typically consist

of probiotics or a microbiome (often fecal) sample from a healthy subject [20]. Microbial

transplants can confer attributes (e.g. obesity) from the donor to the donee [21], so in some

sense a microbiome transplant is seeking to confer CD-colonization resistance from a CD-resil-

ient donor to a CD-susceptible donee. Since antibiotics tend to be ineffective in treating CDI

and additionally can facilitate the growth of drug-resistant mutant strains of CD by providing

them with a selective advantage, fecal transplants are becoming an increasingly popular CDI

treatment [15].

Fig 1. Pairwise interactions between bacterial populations may be interpreted as a microbial food web. An arrow

from population j to population i represents the effect of j on the growth of i, which we equate to the interaction term

Mij in a generalized Lotka-Volterra model, Eq (1). The width and opacity of an arrow are proportional to |Mij|, and

positive interactions (Mij> 0) are green while inhibitory interactions (Mij< 0) are red. Mij was fit in [11] using

experimental mouse data from [12]. To reduce dimensionality, bacterial species of the same genus are consolidated

into one population; the exception is C. difficile (CD), which is a single bacterial species. CD, the culprit behind C.
difficile infection (CDI), is colored red and located in the center of the food web.

https://doi.org/10.1371/journal.pcbi.1006001.g001
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In our implementation we simulate transplants made of CD-resilient initial conditions, and

demonstrate how these treatments can guide the system into a desired (i.e. noninfective)

steady state. We model the administration of a transplant of some external microbial source v

at time t� as

dxðtÞ
dt
¼ fðxÞ þ v dðt � t�Þ ; ð2Þ

where f(x) entirely encapsulates the right-hand sides of the gLV equations of Eq (1) in vector

form and δ(t) is the Dirac delta function, which will serve to instantaneously add the transplant

v to the microbial community x at time t�.

Sporulation

Under environmental pressures CD can sporulate, entering a defensive state of dormant

spores that maintain the genetic information of CD while functioning at a fraction of the vege-

tative cell’s metabolism. These spores are resilient to antibiotics, and CD sporulation may be

induced by environmental stressors such as heat [22] and alcohol [16]. While the entire gamut

of environmental conditions that induce sporulation is not yet known [23], there is some evi-

dence that in murine models antibiotics may induce sporulation [15]. The toxin-producing

types of CD prevalent in nosocomial infections are notoriously difficult to kill, and their resil-

ience has in part been attributed to sporulation [15].

Mathematically, sporulation can be modeled by creating a population of spores that,

through conversion of active CD, grows when environmental conditions are harsh and

declines when conditions are mild. This implementation is inspired by the treatment of

latently infected T-cells in SIR models of HIV, in which the latently infected T-cells effectively

hide from the immune response in the same way that the inert spore cells are uneffected by the

presence of antibiotics and other microbes [24]. To capture sporulation, we augment the basic

model Eq (1) by introducing a spore compartment s(t) so that the populations of the original

gLV model become

d
dt

xiðtÞ ¼ xiðtÞ mi þ
X

j

MijxjðtÞ þ εi uðtÞ

 !

;

d
dt

xcðtÞ ¼ xcðtÞ mc þ
X

j

McjxjðtÞ þ εc uðtÞ

 !

þ bsðtÞ½uðtÞ < uspor� ; and

d
dt

sðtÞ ¼ a xcðtÞ½uðtÞ � uspor� � bsðtÞ½uðtÞ < uspor�;

ð3Þ

where the terms in square brackets should be interpreted as conditional statements that return

1 if true and 0 if false.

In Eq (3), we assume that the background microbes (which we define as the bacteria that

are not CD) are uneffected by the presence of the inert spores. In the presence of antibiotics

bacterial growth often acts as a step function, growing or not growing if the antibiotic concen-

tration is lower or higher than the bacteria’s minimum inhibitory concentration (MIC) [25].

We similarly model the inflow and outflow of spores as a step function, where sporulation or

germination occurs if the antibiotic concentration is larger or smaller than some threshold

uspor. Since the spores are robust, we assume they have no death rate. We assume that some

proportion α of the CD normally killed by antibiotics are converted to spores, so there is no

explicit α term in the CD growth term, and as a consequence of this we require α< εcu(t). The

In silico analysis of antibiotic-induced C. difficile infection
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experimental methods used to measure CD sporulation are not yet standardized, so there is no

clear consensus on the rate of CD sporulation [22]; therefore, the sporulation parameters α, β,

and uspor must be considered in a qualitative fashion.

Mutation

The final augmentation we add to the gLV model is antibiotic-resistant mutation, which is cul-

pable for many of the difficulties in treating CDI [26]. Existing antibiotic resistance models for

both within-host [27] and between-host [28] versions of antibiotic-resistance typically only

consider isolated bacterial systems which include only the native and mutant strains of a single

bacterial species. Since we consider mutation in the gLV framework, in this paper we are able

to probe the more realistic scenario of mutation occurring within a complex microbial

community.

We modify the standard gLV model in Eq (1) to include terms that allow for mutation of

CD into an antibiotic-resistant mutant strain of CD, denoted xm(t), so that the microbial

dynamics are described by

d
dt

xiðtÞ ¼ xiðtÞ mi þ
X

j

MijxjðtÞ þ εiuðtÞ

 !

;

d
dt

xcðtÞ ¼ xcðtÞ mc þ
X

j

McjxjðtÞ þ εcuðtÞ

 !

� k xcðtÞ ; and

d
dt

xmðtÞ ¼ xmðtÞ mm þ
X

j

MmjxjðtÞ

 !

þ k xcðtÞ:

ð4Þ

In addition to the standard gLV pairwise interactions, the background microbes xi of Eq (4)

now interact with the CD mutant xm via the Mim term. Following existing mutation models

[28], we (1) group all potential antibiotic-resistant mutations into the one mutant population

xm and (2) neglect the possibility of mutation from a mutant strain xm back to the native strain

xc. Furthermore, we assume that the mutations are fully resistant to antibiotics and so we omit

the εm term in Eq (4). While other candidate models for antibiotic-resistant mutation exist

and have been examined [29], here we focus on embedding this particular implementation of

single-strain mutation into the gLV framework; other types of mutation models may be imple-

mented in a similar way.

Since we are extrapolating beyond the mouse data collected in [12], it is not surprising that

the mouse microbiome data does not distinguish between native and mutant strains of CD.

Antibiotic resistant strains of CD are already rampant: one survey found that close to half of

tested CD strains were resistant to at least one antibiotic, and about one quarter of tested

strains were resistant to multiple antibiotics [30]. However, since the antibiotic susceptibility

of CD εc is non-zero, we assume that the administered CD used to inoculate the mice is antibi-

otic-sensitive.

Results

Mapping system behaviors

We first demonstrate the available behaviors of the system described by Eq (1). In Fig 2 we

evolve our system from the nine distinct initial conditions experimentally measured by Stein

et al. [11] for one particular treatment scenario, in which all initial conditions are initially

In silico analysis of antibiotic-induced C. difficile infection
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treated with antibiotics and later inoculated with CD. All but one of these initial conditions are

free of CD, and the remaining initial condition (IC 8) has a trace amount of CD. Despite the

diverse composition of the initial conditions, under this treatment scenario the simulated tra-

jectories evolve into only two steady states.

Then, in Fig 3 we apply four different treatment scenarios to one initial condition and iden-

tify three different reachable steady states, indicating that the initial conditions can be sensitive

to which treatment scenario is applied. In this paper, within a single simulation microbe

counts can vary by more than two orders of magnitude. For clarity, in our figures we plot the

total microbe count on a log scale (where the total microbe count is the sum of all of the

microbes in each microbial population), and then at each time we linearly color each microbial

population according to its proportion at that time, so that at a given time regions of equal size

correspond to equal microbe counts. The treatment scenarios that result in Fig 3 mirror the

experimental mouse treatments [12] and include a control, high dosing with antibiotic (the

inset of Fig 3b depicts the initial microbial response to antibiotics), low dosing with antibiotic

followed by inoculation with CD, and high dosing with antibiotic followed by inoculation with

CD. While the log scaling disguises changes in total microbe count between the different

steady states, the steady state of Fig 3a contains seven times as many microbes as the depleted

Fig 2. Diverse initial conditions respond similarly for a simulated treatment. Microbiome compositions are

simulated forward in time from experimentally determined and diverse initial conditions (a), but all initial conditions

eventually equilibrate to only two steady states (b) for this particular treatment scenario. Initial conditions are

experimentally measured microbiome compositions from mice [12] and are time evolved according to the generalized

Lotka-Volterra model, Eq (1), with parameters fit in [11]. In this simulated scenario, the system is administered 1 dose

of antibiotic on day 0 and inoculated with the infectious CD (colored red) on day 10.

https://doi.org/10.1371/journal.pcbi.1006001.g002
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(in microbe count) steady state of Fig 3b, and contains more than twice as many microbes as

the infected steady state of Fig 3d (for details on steady state compositions refer to Table B of

S1 Appendix). This figure elucidates the mechanism for CDI: antibiotic-induced microbiome

depletion followed by opportunistic CD colonization.

Taken together the complementary results of Figs 2 and 3 indicate that (1) for a given treat-

ment scenario there are a limited number of achievable steady states across all initial condi-

tions, and (2) for a given initial condition there are a variety of steady states that may be

achieved across different treatment scenarios. Since the model was fit with data collected over

a 30 day period but the obtained steady states are often slow to equilibrate (e.g. around 100

days in Fig 3), we should proceed with caution when extrapolating the model [31]. However,

since the collected experimental data [12] roughly equilibrates by day 30, and because experi-

mental validation on longer time scales is difficult to obtain, we follow convention [32] and

study long-term system behavior through steady state analyses.

Fig 3. External intervention can alter the steady state a given initial condition achieves. All panels originate from

the same initial condition, but different panels correspond to different interventions: (a) no interventions occur; (b)

one dose of antibiotic is administered at day 0 (inset: the microbial dynamics during the first 5 days, in response to the

one-day administration of antibiotics); (c) half of a dose of antibiotic is administered at day 0, and then at day 10 the

system is inoculated with CD; (d) one dose of antibiotic is administered at day 0, and then at day 10 the system is

inoculated with CD. The growth of C. difficile (colored red) is encouraged by antibiotic treatment, since the antibiotics

deplete the other microbes to a level at which C. difficile gains a foothold.

https://doi.org/10.1371/journal.pcbi.1006001.g003
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In the four weeks before the mouse experiment the mice were identically housed and fed,

and during the experiment the microbial compositions of mice in the control group were

approximately constant over time [12]. Hence, what we consider “initial conditions” may also

be interpreted as steady states compositions of the mice before any external intervention.

However, the gLV model Eq (1) does not capture these initial conditions as steady states. Over

the course of the 13-day control group experiment the measured bacterial abundances main-

tained a relatively stable composition, with the 7 or 8 colonized bacteria varying by less than

an order of magnitude over the course of the experiment. However, the model Eq (1) predicts

that the same control group initial conditions (ICs 2, 5, and 8) will tend towards a simpler

steady state that consists of only 3 bacteria.

This inconsistency demonstrates two limitations of the gLV model: the paucity of steady

states, and the likelihood of their stability. For a generalized Lotka-Volterra system of N species

there are 2N steady states, each corresponding to a different subset of bacteria— hence, there is

just one steady state that consists exclusively of the 7 overlapping bacteria of the control group.

Since there is variation between the control experiments, there can be no steady state that

would simultaneously and precisely fit all three control trials. Furthermore, even if this steady

state were relatively accurate for each trial it is unlikely that it would be stable: Stein et al. [11]

found that 98% of the steady states of this system were unstable. Despite the fact that unper-

turbed initial conditions are not stable steady states, other qualitative features of the model

(including antibiotic-induced depletion of the microbiome and opportunistic CDI) indicate

the model’s utility in modeling CDI.

To summarize the available system dynamics, we construct the phase diagrams in Fig 4 by

systematically sweeping through treatment scenarios for each initial condition; specifically, we

vary the concentration of antibiotic treatment and whether the system is exposed to a small

amount of CD.

Though we simulate nine initial conditions (ICs), the phase diagrams for some initial

conditions are redundant. We classify the phase diagrams of Fig 4 as (a) CD-susceptible, ICs

which become infected upon exposure by CD regardless of antibiotic usage; (b) CD-resilient,
ICs which are not infected by CD regardless of antibiotic usage; and (c) CD-fragile, ICs

which switch from CD-resilient to CD-susceptible upon sufficient administration of antibi-

otic (an antibiotic concentration of approximately 0.71). We label the five reachable steady

states A through E, categorize them as CD-infected or CD-uninfected, and plot their

compositions in S1 Fig. Each phase diagram is composed of a number of treatment scenar-

ios; for each treatment scenario, a 1-day pulse of antibiotic with varying antibiotic concen-

tration is administered on day 0, and then a small amount of CD may be administered

on day 10 depending on whether the scenario is with or without CD. For reference, the

experimental antibiotic dose was normalized in [11] to a 1-day pulse of antibiotic concen-

tration 1.

With the phase diagrams of Fig 4, we may now identify the initial condition plotted in Fig 3

as CD-fragile. Furthermore, the steady states of Fig 3a–3d correspond, respectively, to steady

states C, E, C, and D of Fig 4. Notably, IC 8 is CD-resilient despite the fact that the initial con-

dition contains a small amount of CD; in fact, according to the fitted interactions the presence

of CD promotes the growth of microbes that inhabit the uninfected steady state. Therefore, the

isolated presence of CD inhibits colonization of an infected steady state.

One key takeaway from this survey of model behaviors is that there is no a priori obvious

predictor for whether an initial condition will be CD-susceptible, CD-resilient, or CD-fragile,

even with knowledge about the microbial food web. Often, the complex interplay of microbial

interactions can lead to unexpected and even counterintuitive results.

In silico analysis of antibiotic-induced C. difficile infection
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Invadability of CD

In the numerical phase diagrams of Fig 4 we observe different regimes for different initial con-

ditions, but we can substantiate this phenomenon analytically as well. We label steady state A

in Fig 4 by x�A, and similarly label all other steady states. After all antibiotic has been adminis-

tered, we perform a perturbative analysis of the uninfected steady states by introducing a small

amount of CD (notated xc(t)) to the uninfected steady state x�. This CD will invade the steady

state only if d
dt xcðtÞ
� �

jx� > 0. Since the introduced xc(t) is positive, we may discern the invad-

ability of an uninfected steady state x� by the sign of I(x�), defined to be

Iðx�Þ �
1

xcðtÞ
d
dt

xcðtÞ
� ��

�
�
�
x�
¼ ðμþMx�ðtÞÞc: ð5Þ

Here, we have rearranged Eq (1), removed the antibiotic dependence u(t), consolidated all

the μi and Mij into their respective vector and matrix forms μ and M, and consolidated the

individual populations xi(t) into their vector form x(t). Notationally, the subscript c denotes

the value of a vector corresponding to the index of CD. While magnitude of the invadability

|I(x�)| will correspond to the initial rate at which CD will grow or decay, only the sign of I(x�)

is relevant in determining long-term susceptibility or resilience to CD.

In Table 1 we compute and compile this invadability for each of the three uninfected steady

states x�B, x�C, and x�E. This table also provides the size of each steady state, where size is

Fig 4. Phase diagram of reachable steady states from initial conditions. (a) Six initial conditions (ICs) are

susceptible to C. difficile (CD-susceptible), resulting in infected steady state A if inoculated with any amount of CD. (b)

Two initial conditions are CD-resilient and always remain in uninfected steady state C regardless of CD exposure. (c)

One initial condition displays more complex behavior, becoming susceptible to CD only after being treated with a

sufficient dose of antibiotics (CD-fragile). The steady states of the four external interventions of Fig 3 correspond to

different regions of the CD-fragile phase diagram (c). The phase boundaries of Fig 4 are robust to the amount of CD

inoculum (ranging from 10−10 to 1 in nondimensionalized units) as well as to the timing of CD inoculation (ranging

from on day 1 to on day 100). For details, refer to Table A of S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1006001.g004
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interpreted as the sum of all the bacterial populations (here written as the 1-norm). These con-

clusions provide analytic justification for why some initial conditions are susceptible to CD

while others are not, and complement the phase diagrams in Fig 4.

CD is predominantly inhibited by the existence of other microbes (mostly, Mcj< 0) and so

a larger |x�(t)| will tend to inhibit the growth of CD. Additionally, microbes tend to be inhib-

ited by antibiotics (mostly, εi< 0). Together, these tendencies allude to a mechanism of CDI

whereby antibiotic administration depletes the microbiome and induces CD susceptibility.

While Table 1 indicates that the reachable CD-susceptible steady states are smaller than

CD-resilient steady states, the size of the initial condition had little effect on the overall steady

state profile: growing or shrinking the initial condition sizes only marginally modified the

resulting phase diagrams. Hence, the different steady states are robust to variations in initial

condition size.

Having exhaustively explored the basic behaviorial regimes of Eq (1), we now implement

in-silico two commonly administered real-world medical interventions: fecal microbiome
transplantation and antibiotic administration.

Simulated microbial transplants

Following Eq (2), we choose a microbial transplant v that is derived from a CD-resilient donor

so that v is proportional to the composition of a CD-resilient initial condition, and we choose

the donee microbiome to be the CD-fragile initial condition so that the effects of the transplant

are more apparent. In the simulation we choose the timing of the treatment scenario to match

the clinical counterpart of CDI, in which CD attempts to colonize a microbiome that has been

recently depleted by antibiotics: we administer antibiotics on day 0, inoculate with CD on day

1, and insert a transplant on day d. By categorizing the resultant steady state as CD-infected or

CD-uninfected and sweeping over antibiotic concentrations, relative transplant sizes, and

transplant times, we realize the phase diagram in Fig 5.

Fig 5 demonstrates how a transplant can alter the steady state behavior of a system exposed

to CD. We can bias the initial condition towards a CD-uninfected steady state with a proper

fecal transplant via the mechanism of steady state conversion, wherein a transplant can convert

a state from CD-susceptible to CD-resilient. This result, consistent with clinical practice, sup-

plies a numerical framing for microbial transplants, narrowing the gap between real-world

practice and simulation.

For transplants that are applied after antibiotic administration, this figure indicates that

shorter transplant delays lead to more effective transplants. However, a transplant applied

concurrently with antibiotic administration on day 0 (labeled d = 0 in Fig 5) is less effective

than a transplant applied after antibiotics on day 1. This reflects that antibiotic administration

depletes all microbes, so a transplant on day 1 will be unsullied by antibiotics whereas applying

a transplant on day 0 will lead to the depletion of the aggregate composition.

Table 1. Analytic justification for CD-susceptibility. The ability of CD to invade the three uninfected steady states

x�B, x�C , and x�E depends upon the sign of Iðx�Þ � 1

xcðtÞ
d
dt xcðtÞ
� �

x� : a positive value indicates a CD-susceptiblity, while a

negative value indicates CD-resilience. This result follows from analysis of Eq (1).

steady state interpretation (I(x�)) kx�(t)k1

x�B CD-susceptible (0.24) 3.238

x�C CD-resilient (-0.86) 24.770

x�E CD-susceptible (0.28) 3.546

https://doi.org/10.1371/journal.pcbi.1006001.t001
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In Fig 6 we examine the effect of transplant timing for a fixed antibiotic concentration

and transplant size. Steady state conversion is most effective immediately after antibiotic

administration, when the depleted microbiome has room to grow. During this time the mal-

leable microbiome is especially responsive to transplants, and introduction of the right collec-

tion of microbes can direct the microbiome towards an infection-free steady state. However,

as indicated in Fig 3, without any transplant the CD-fragile IC will naturally evolve towards a

CD-susceptible steady state: hence, the timing of the transplant is critical, with more immedi-

ate transplants being more effective.

We found that out of the measured ICs, the collection of microbes that best deter CDI are

derived from IC 8. This transplant replenishes the unclassified Lachnospiraceae (colored pur-

ple), which promote constituents of the uninfected steady state while inhibiting Blautia (col-

ored yellow), a key member of the infected steady state. More surprisingly, the existence of CD

in IC 8 amplifies the effect of the transplant— the same transplant but without CD was a func-

tional but substantially less effective treatment, and similarly mediocre results were obtained

with a transplant derived from the other CD-resilient initial condition (IC 2) as displayed in S2

Fig. This result is due to the deleterious and contradictory effect of CD on the CD-infected

steady state. As an aside, note that since IC 8 contains CD, the transplant on day 0 effectively

inoculates the system with CD on day 0 rather than on day 1.

While appropriately derived and implemented transplants are effective at reversing CDI, if

we had mistakenly used a CD-susceptible donor instead, simulation confirms the intuitive

expectation that these results would be flipped. Since these initial conditions are a priori

Fig 5. Administration of microbial transplants can ward off infected steady states. Starting from the CD-fragile

initial condition, antibiotics of varying antibiotic concentration are administered on day 0, and the system is exposed

to CD on day 1. Then, a “healthy” transplant made up of the CD-resilient initial condition 8 is infused on day d. The

infected region corresponds to infected steady state D, and the uninfected region corresponds to uninfected steady state

E. Note that a transplant on day 0 (dashed line), concurrent with the start of antibiotic administration, is less effective

than a transplant on day 1. A relative transplant size of 1 corresponds to a transplant that has the same size as the initial

condition that the transplant was derived from. The phase boundaries of Fig 5 are robust for small amounts of CD

inoculum (ranging from 10−10 to 10−8 in nondimensionalized units), but for larger amounts of CD inoculum (ranging

from 10−5 to 10−2) transplants become more effective at all timings, requiring a smaller transplant to overcome a larger

antibiotic dose. For details, refer to Table A of S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1006001.g005
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unidentifiable as CD-resilient or CD-susceptible, this prompts a clinically relevant caution of

whether some donor’s microbiome will be beneficial or detrimental to another’s microbiome.

In a recent experimental study by Buffie et al. [13] CD-vulnerable mice exposed to CD were

given transplants consisting of a known microbial composition, and the transplant efficacy for

each composition was measured. Our work on simulated transplants, which resembles the

experimental study, provides context and explanation for the mechanism of the experimental

transplants. In conjunction, simulated and experimental transplants could direct the develop-

ment of model-guided and experimentally-validated “designer” transplants.

Simulated antibiotic dosing

Antibiotic administration has traditionally been the standard approach to fight infection,

but antibiotics have struggled to control CD infection: CDI has a recurrence rate of 30-65%

following antibiotic treatment, while fecal transplantation has cure rates upwards of 90% [33].

Nonetheless, the Society for Healthcare Epidemiology of America (SHEA) and the Infectious

Diseases Society of America (IDSA) jointly recommend treating CDI with antibiotics— often

vancomycin— administered in one of three dosing regimens: a constant dosing regimen, a

pulsed dosing regimen, or a tapered dosing regimen [16]. Other studies have found that vanco-

mycin administered in tapered or pulsed doses reduced the likelihood of recurrent infections

of CD, compared with treatment at a constant dosage [34]. Our model, which allows arbitrary

control over the dosing schedule and concentration u(t), provides a computational framework

on which we can compare the efficacy of different dosing schedules: our implementations of

the three dosing regimens are plotted in S3 Fig.

Fig 6. Mechanism of steady state conversion. Microbiome compositions are identically dosed with antibiotic on day 0

and inoculated with CD (colored red) on day 1. Transplants of the same size are administered on (a) day 1, leading to a

CD-uninfected steady state, and (b) day 7, leading to a CD-infected steady state. Following the antibiotic-induced

microbiome depletion, the transplant serves to replenish the microbes responsible for the CD-uninfected steady state

(e.g. unclassified Lachnospiraceae, colored purple) while curbing the growth of those responsible for the CD-infected

steady state (e.g. Blautia, colored yellow).

https://doi.org/10.1371/journal.pcbi.1006001.g006

In silico analysis of antibiotic-induced C. difficile infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006001 February 16, 2018 14 / 24

https://doi.org/10.1371/journal.pcbi.1006001.g006
https://doi.org/10.1371/journal.pcbi.1006001


Over short time scales of 1-2 days we found that given the same total amount of antibiotic,

the rate at which antibiotics were administered (e.g. .5 doses for 2 days vs. 2 doses for.5 days)

did not affect the eventual steady state. Over longer time scales of around 2 weeks, we observed

similar behavior— the model does not capture long-term differences between different dosing

regimens as long as the total amount of administered antibiotic is the same, reflecting that the

time-scale for microbial growth is longer than the period over which antibiotics are typically

administrated.

In modeling the different dosing regimens, we are faced with one main complication: only

one antibiotic, clindamycin, was fit in [11], and furthermore clindamycin was acting to induce
CDI rather than halt it. The antibiotic efficacy parameter ε therefore does not serve as a

realistic proxy for vancomycin or metronidazole, antibiotics which are used to eliminate CD

[34]. To simulate the effect of an antibiotic which eliminates CD, we introduce an artificial

“targeted antibiotic” ~ε, which by construction only inhibits CD; specifically, ~εc ¼ � 1 and

~εi ¼ 0 for i 6¼ c.
Even with this targeted antibiotic our model does not capture significant differences

between the treatment regimens, which is contrary to the clinical recommendation that pulsed

or tapered dosing be preferred over constant dosing [16]. In Fig 7a and 7b we administer the

Fig 7. Different antibiotic treatment regimens influence transient CD dynamics when considering sporulation.

All scenarios start from infected steady state D. Over 10 days, the same volume of “targeted” antibiotic is administered

via a pulsed (a,c) or constant (b,d) dosing regimen. The top panels use the original gLV model Eq (1) while the bottom

panels use the sporulation gLV model Eq (3). For details about the parameters used in this figure, refer to Table A of S1

Appendix.

https://doi.org/10.1371/journal.pcbi.1006001.g007
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same amount of targeted antibiotic via constant and pulsed dosing to the CD-infected steady

state and find that the two dosing regimens produce near-identical microbe trajectories (a sim-

ilar result, shown in S4 Fig, was found with tapered dosing). We propose sporulation (which

acts on a much shorter time-scale) as a biologically relevant mechanism that could explain this

inconsistency.

Sporulation

In considering the model for sporulation detailed in Eq (3), the steady state analysis we previ-

ously performed is still relevant since all steady states will eventually be spore-free— we assume

that the antibiotics will eventually cease, so the sporulation term of Eq (3) will eventually decay

exponentially. However, the naïve expectation that including sporulation would make CD-

infected steady states more common is incorrect; once again, due to the interactions between

CD and other background microbes (mediated by the interaction matrix M), the presence of

CD encourages growth of the microbes that populate the infection-free steady state, and so

increasing the prevalence of CD through sporulation only entrenches the non-infective steady

state. Since the steady states and phase diagrams are mostly unchanged by the inclusion of

sporulation, we concentrate on the dynamics of CD and CD spores on shorter time scales.

In Fig 7 we compare the effects of the standard gLV model Eq (1) (top panels) and the spor-

ulation model Eq (3) (bottom panels) under constant and pulsed antibiotic dosing regimens.

Here, we use the targeted antibiotic previously described and apply all treatments to the CD-

infected steady state D. Sporulation causes spores to form as antibiotics are administered, and

germinate once the antibiotics cease, which is on display in the pulsed dosing regimen scenario

of Fig 7c. After targeted antibiotic administration CD recovers slightly more quickly with spor-

ulation than without, and we interpret this expedited resurgence as a more robust CDI. For

details about the parameters used in Fig 7, refer to Table A of S1 Appendix.

While many of the in-host dynamics and the biological mechanisms that underlie CD spor-

ulation and germination remain under active investigation, studies have identified that both

spores and vegetative CD colonize and persist in the gut [35], and other studies have discerned

the role of bile acids in promoting spore germination [36]. Our model does not allow for the

long-term establishment of spores because we assume that germination always occurs in the

absence of antibiotics, and we include no mechanism for germination induced by bile acids.

However, more detailed sporulation models (e.g. models that include bile acid-induced germi-

nation) may extend our basic model to build upon the qualitative features of CDI it possesses.

We emphasize that sporulation is simply a proposed biological mechanism that would

modify the model’s predictions to better match clinical observations, and so these results

should be interpreted in a qualitative manner. However, by including sporulation we regain

(at least for short time scales) the clinically expected result [16] that pulsed dosing is more

effective than constant dosing at eliminating CD— comparing the top panels with the bottom

panels of Fig 7 indicates that a pulsed dosing regimen dramatically reduces the buildup of CD

spores compared to constant dosing.

Mutation

The mechanism of mutation, introduced in Eq (4), introduces new unconstrained parameters

for the mutation rate k as well as for pairwise interactions Mim and Mmi. Here we identify an

intuitive parameter choice that reflects the underlying biology, discuss the resultant steady

states, and then demonstrate the effects of mutation on transient microbe dynamics.

Antibiotic-resistant mutations typically incur a fitness cost in the absence of antibiotics

since resources are being allocated for defense against antibiotics rather than growth [37–39],
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so we choose μm = .9μc< μc. Our choice of M assumes that the background microbes interact

with mutant and native types identically (i.e. Mmi = Mci and Mim = Mic for i 6¼ c, m). In real sys-

tems, the mutation rate k is variable and depends on factors including the concentration of

antibiotic, the type of antibiotic, the native strain type, and other environmental pressures. In

our model we approximate the mutation rate as a constant k = 2 � 10−6 (in units of 1/day), a

choice which is in the range of measured mutation rates of some bacteria [40], but for our pur-

poses mostly serves to highlight the effects of mutation. For details about the parameters used

in our simulations of the mutation model, refer to Table A of S1 Appendix.

Due to our parameter choices the steady states of the background microbes are largely

unchanged between the mutation model and the basic model (the CD-infected steady states of

the standard and mutation models are explicitly compared in Table B of S1 Appendix), but the

transient dynamics shown in Fig 8 differ. In these plots the same amount of targeted antibiotic

is applied to the same initial state, but Fig 8a uses the standard gLV model Eq (1) while Fig 8b

uses the modified mutant gLV model Eq (4). The targeted antibiotic severely inhibits CD in

the standard gLV model, but in the mutation model the antibiotic-resistant mutant compen-

sates for the antibiotics and reinforces the colonization of CD despite the antibiotic pressures.

At the scale of a single bacterium experiments now track the growth and decline of individ-

ual lineages of bacteria when confronted with antibiotics [41], and at larger scales experiments

track the spread and fixation of mutations across an entire bacterial community [42]. Since the

gLV model considers populations of bacteria rather than individual cells, the individual line-

ages cannot be resolved. However, our model does capture the tendency of microbes with a

selective advantage to outcompete microbes with lower fitness (in our case, CD mutants out-

compete native CD in the presence of antibiotics), and these simulations resemble the selective

sweeps found in experimental data [42].

Fig 8. Antibiotic-resistant mutation improves CD resilience to antibiotics in transient dynamics. These

simulations are identical except that (a) uses the original gLV model Eq (1) while (b) uses the mutation gLV model Eq

(4). This scenario starts from the CD-infected steady state D and administers an idealized “targeted” antibiotic (that

only inhibits CD) for 30 days. For details about the parameters and initial conditions used in this figure, refer to

Table A of S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1006001.g008
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Existing mutation models have studied native and mutant strains of bacteria in isolation,

but by embedding mutation within a gLV framework we can probe the complex behaviors of

mutant strains within a microbial consortia. Accordingly, the wealth of behaviors present in

the simpler mutation models [28] may be observed within the gLV model with mutation Eq

(4). This comprehensive and community-level view is essential in identifying, understanding,

and resolving the role of antibiotic-resistant mutants in disease.

Discussion

Application of framework for experimental explanation, model validation,

and suggestion of model-motivated experiments

A study by Buffie et al. [13] follows the modeling method of Stein et al. [11] and fits a gLV

model to both mouse and human experimental time-series data in order to predict the growth

of CD following antibiotic administration. In this study they identify the microbes anticorre-

lated with CDI in experimental data as well as the microbes that most inhibit the growth of CD

according to the interaction matrix M of the gLV model. They create and administer trans-

plants made up of a subset of these identified microbes: four transplants consist of individual

microbes in isolation while another consists of a combination of all four microbes.

Buffie et al. [13] find that of the four transplants made up of isolated microbes only one

microbe is effective at curing CDI, despite the fact that the other three microbes were a priori
supposed to inhibit CD. We provide two explanations for their findings, motivated by the results

of our paper: (1) the ability of CD-resilient transplants to confer CD-colonization resistance is

largely variable and depends on the transplant composition (e.g. the variation in transplant effi-

cacies between Fig 5 and S2 Fig), and (2) inhibiting the growth of CD does not necessarily

inhibit CD-infected steady states, since the presence of CD inhibits some of the microbes that

populate the CD-infected steady state. By applying the results of our simulations to microbiome

transplant experiments, we can offer a computational context for experimental results.

Many of the microbes identified by Buffie et al. [13] as potential transplants were of the

genus Clostridium; in fact, the only isolated-microbe transplant that was effective in curing

CDI was Clostridium scindens. If we resolve only to the genus level (as assumed when con-

structing the gLV model in Stein et al. [11]), this experimental result is consistent with our

own transplant simulations in which a transplant made up of the CD-resilient IC 8 was signifi-

cantly more effective with CD than without (Fig 5). Hence, the seemingly contradictory

computational result— that the presence of CD inhibits CD-infected steady states— is vali-

dated by experiment.

Finally, we can formulate experimental questions that are couched in our computational

framework. Our results point to the importance of timing when administering microbial

transplants, an area that is mostly unexplored both experimentally and therapeutically, and

experiments could elucidate how the the timing of transplants effects their efficacy. While Buf-

fie et al. [13] inferred microbial interactions from a gLV model, when predicting the CD-

inhibiting microbes their analysis did not include dynamic simulations; applying our method

of simulated transplants to such experiments could inform the selection of “personalized”

transplants, and the corresponding experiments could then be used to inform the model, the

model’s limitations, and additional experiments.

Unidentifiability of beneficial bacterial communities

In this paper, the principle driver of CDI was whether a given microbial composition was

CD-resilient or CD-susceptible: for example, when administering a fecal transplant, the
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effectiveness of the treatment depended on the properties of the donor’s microbiome. In gen-

eral these properties are unknown a priori, so picking the right donor is a gamble. In clinical

practice, the screening process for potential fecal donors consists primarily of avoiding those

with impaired microbiomes (e.g. due to recent antibiotic therapy) or poor health, with only

about 10% of prospective donors being accepted [43, 44]. While fecal transplantation has been

more successful at curing CDI than traditional antibiotic treatments [45], predictive models

are not currently being implemented to quantitatively select an optimal donor. Eventually, pre-

dictive models could allow for “designer” fecal transplants that are engineered to optimally

confer colonization resistance. Until donor selection methods consist of searching for optimal

donors rather than excluding diseased donors, our model warns that donor selection— even

of seemingly healthy donors— can have unexpected consequences.

Pharmacokinetic and pharmacodynamic approximations

In this paper, we follow Stein et al. [11] and model the pharmacokinetics (the in-host concen-

tration of the antibiotic u(t)) as a pulse. In reality, clindamycin pharmacokinetics are charac-

terized by an initial spike in the in-host antibiotic concentration, after which antibiotics are

cleared from the system (driven by uptake and deterioration of the antibiotic) with a half-life

of approximately 4 hours [46]. However, in our simulations we found that over short durations

(1-14 days) it is the total amount of administered antibiotic that determines the long-term

dynamics of Eq (1) rather than the shape of the dosing regimen u(t) (meaning that administer-

ing.5 doses for 2 days leads to the same outcome as administering 2 doses for.5 days). This

insensitivity to the form of u(t) justifies our simplified pharmacokinetic form.

Additionally, we model the pharmacodynamics (the microbial response or killing rate due

to antibiotics) as a linear response −εi u(t), while more realistic models use a saturating Hill

function [47, 48]. However, we only use one antibiotic concentration for each simulation, cor-

responding to one killing rate for each simulation. For any killing rate in the range of the satu-

rating Hill function, one may find an effective antibiotic concentration that achieves this

killing rate via either the linear response or by the saturating Hill function. Since both the lin-

ear response and the saturating Hill function are monotonic, there is a nonlinear scaling for

u(t) between the two response functions, meaning that our results— acquired with the linear

response function— may be extended to a model that uses a saturating Hill function as long as

the antibiotic scaling is observed (e.g. for the phase diagram of Fig 5, stretch the antibiotic

axis). Since a linear antibiotic response qualitatively captures the same long-term dynamics

that a saturating Hill function would, we are justified in using a simplified pharmacodynamic

model.

Limitations of the gLV model

The gLV model idealizes interspecies interaction, and this simplification imposes limitations

on our framework. The gLV model does not explicitly model why populations grow or decay

(due to the underlying resource excesses or limitations) [49], and populations are assumed to

respond instantly to changes in other populations, failing to account for the time required to

respond to change [50]. The number of parameters required for a gLV model scales as N2 for

N species, and even with high-throughput sequencing, the number of data points per parame-

ter is still low (e.g. roughly 5 data points per parameter in [11]). Despite these drawbacks, gLV

models are commonly implemented to describe microbial growth [14] since they are predic-

tive, manipulable, and often capture the qualitative characteristics of microbial consortia. Our

framework attempts to resolve some of these limitations by treating the gLV model as a base
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model, then offering extensions to the model that incorporate nongeneric and mechanistic fea-

tures in order to more accurately portray microbial growth.

Analytic concerns of parameter fitting

There are many techniques that fit parameters to data [51, 52], but it is difficult to know that

these fitted parameters are indeed the true parameters. Stein et al. [11] fit the parameters used

in this paper with regularized linear regression with a Tikhonov regularization, but other fit-

ting methods exist, such as LIMITs [53], a software specifically designed for fitting microbial

time-series data to a gLV model. Analytically, there are sufficient conditions on the model

parameters that ensure the Lyapunov stability of fixed points of generalized Lotka-Volterra

systems [9], but the fitted parameter values in this paper do not satisfy all of these conditions.

Leveraging fitting methods to simultaneously fit parameters to data while maintaining the

analytic properties that ensure stability would alleviate the potential for non-biological diver-

gences in microbe count (divergences which are not impossible in the given system since M
has a single positive eigenvalue). Regardless of this possibility, no unstable behavior was

observed in any of the simulations run for this paper, perhaps due to the relatively few symbi-

otic relationships.

Combining gLV and SIR techniques

In this paper we fuse standard SIR techniques with the gLV model, thereby introducing spe-

cific mechanisms for sporulation and mutation. In this way, our framework allows for non-

generic attributes of populations to be captured and simulated, and the resulting analyses pro-

vide qualitative insights into different mechanisms. Effectively, this allows for the entire family

of SIR methods to be used in conjunction with the gLV model.

Conclusion

As the era of personalized medicine approaches, there is a growing need for accurate computa-

tional models that reflect human biology and can predict the progress of disease. This pursuit

will be aided by the availability of “big data” in medicine, but this data needs to be harnessed in

a useful way. This paper addresses initial steps in developing these computation models by

constructing a framework at the interface between computational models and clinical thera-

pies. This modular framework allows for “plug-and-play” implementations of clinical tech-

niques and observed phenomena: in this paper, we implement fecal transplant therapy,

antibiotic treatment regimens, sporulation, and mutation.

Our in-silico implementations of clinical treatments were mostly congruent with the actual

clinical realizations— there exist initial conditions that become susceptible to CD after expo-

sure to antibiotics; administration of a fecal transplant can halt CDI; and (once sporulation is

included) pulsed dosing is more effective at eliminating CD than constant dosing, though fecal

transplants are more effective than antibiotic administration in the long run. Introducing

mechanisms for antibiotic-resistant mutations and sporulation strengthens the resilience of

CD to remedial treatments. In all, this framework captures the intention and qualitatively the

results of real-world clinical techniques.

There are many avenues stemming from this framework that may be explored in the future,

including research into “designer transplants” or of bile acid-mediated germination of CD

spores. Eventually this framework could be used to suggest clinical practices, but first more

experiments, better data, and novel modeling are needed. As we recognize the advancement of

gene sequencing in the past few years, it is not inconceivable that user-specific personalized
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medicine programs, built upon mathematical models of human health, will be accessible in the

future.

Supporting information

S1 Fig. Microbial composition of reachable steady states. Under the gLV model Eq (1) and

for all experimentally measured initial conditions, all treatment scenarios tested in this paper

result in one of the steady states A-E. To find which steady state a given treatment scenario

causes, refer to Fig 4. Note that while steady states A and D appear indistinguishable in this

plot, their compositions do vary slightly. The microbial compositions of each steady state are

explicitly given in Table B of S1 Appendix.

(TIF)

S2 Fig. Different CD-resilient initial conditions have different transplant efficacies. Start-

ing from the CD-fragile initial condition, antibiotics of varying antibiotic concentration are

administered on day 0, and the system is exposed to CD on day 1. Then, a transplant made up

of the CD-resilient initial condition 2, to contrast Fig 5 which used IC 8, is infused on day d.

Note that for a transplant from this donor IC 2 to be effective, the relative transplant size needs

to be much greater than when using IC 8. The infected region corresponds to infected steady

state D, and the uninfected region corresponds to uninfected steady state E. A relative trans-

plant size of 1 corresponds to a transplant that has the same size as the initial condition that

the transplant was derived from.

(TIF)

S3 Fig. Antibiotic dosing regimens. We consider three types of antibiotic treatment u(t),
displayed here, in the gLV model Eq (1). These dosing regimens— constant, tapered, and

pulsed— are common in clinical practice. In this example, 2 doses are administered over 10

days.

(TIF)

S4 Fig. Tapered and constant antibiotic treatment regimens produce qualitatively similar

microbial trajectories. Both scenarios start from infected steady state D. Over 10 days, the

same volume of “targeted” antibiotic is administered via a tapered (a) or constant (b) dosing

regimen, with microbial trajectories evolving according to the original gLV model Eq (1). The

parameters used in this figure are the same as in Fig 7a and 7b.

(TIF)

S1 Appendix. Supplementary tables. Parameter values used for simulations (Table A) and

microbial compositions of initial conditions and steady states (Table B).

(PDF)
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