
RESEARCH ARTICLE

Hybrid Symbiotic Organisms Search
Optimization Algorithm for Scheduling of
Tasks on Cloud Computing Environment
Mohammed Abdullahi1,2*, Md Asri Ngadi2

1Department of Computer Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia,
2Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

* abdullahilwafu@abu.edu.ng

Abstract
Cloud computing has attracted significant attention from research community because of

rapid migration rate of Information Technology services to its domain. Advances in virtuali-

zation technology has made cloud computing very popular as a result of easier deployment

of application services. Tasks are submitted to cloud datacenters to be processed on pay

as you go fashion. Task scheduling is one the significant research challenges in cloud com-

puting environment. The current formulation of task scheduling problems has been shown

to be NP-complete, hence finding the exact solution especially for large problem sizes is

intractable. The heterogeneous and dynamic feature of cloud resources makes optimum

task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for

optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to per-

form competitively with Particle Swarm Optimization (PSO). The aim of this study is to opti-

mize task scheduling in cloud computing environment based on a proposed Simulated

Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality

of solution of SOS. The SOS algorithm has a strong global exploration capability and uses

fewer parameters. The systematic reasoning ability of SA is employed to find better solu-

tions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness func-

tion is proposed which takes into account the utilization level of virtual machines (VMs)

which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was

used to evaluate the efficiency of the proposed method using both synthetic and standard

workload. Results of simulation showed that hybrid SOS performs better than SOS in terms

of convergence speed, response time, degree of imbalance, and makespan.

Introduction
Cloud computing is one of the recent developments in the field of computing which enables
limitless usage of Information Technology in diverse domains such as medicine, business,
mobile system, smart systems, environmental computing etc [1, 2]. This has lead to rapid

PLOSONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 1 / 29

a11111

OPEN ACCESS

Citation: Abdullahi M, Ngadi MA (2016) Hybrid
Symbiotic Organisms Search Optimization Algorithm
for Scheduling of Tasks on Cloud Computing
Environment. PLoS ONE 11(6): e0158229.
doi:10.1371/journal.pone.0158229

Editor: Josh Bongard, University of Vermont,
UNITED STATES

Received: March 4, 2016

Accepted: June 13, 2016

Published: June 27, 2016

Copyright: © 2016 Abdullahi, Ngadi. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158229&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158229&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158229&domain=pdf
http://creativecommons.org/licenses/by/4.0/

adoption of cloud computing in recent years, because it acts as an efficient computing para-
digm for renting Information Technology (IT) services and infrastructures based on pay-per-
use model [3]. Pay-per-use model eliminates the need for companies to invest in acquisition of
IT infrastructures or software licenses.

Cloud services are categorized as Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [4]. These services are provisioned to users of
virtual resources which make cloud computing resources dynamic and elastic thereby creat-
ing the notion of unlimited resources. User are charged for the services they consumed on
pay-per-use basis, and this flexible mode of charging users has encouraged migration of IT
services to the cloud environment. The focus of this study in on IaaS cloud where computing
resource are offered as services. Users subscribed for VMs for execution of their tasks, and
better utilization of physical resources is directly dependent on the optimal scheduling of
tasks on VMs.

Task scheduling has been one of the widely researched problems in cloud computing, but it
remains a NP-hard problem [5]. Pool of Virtual resources are made available to cloud users by
network of servers in IaaS layer. IaaS layer delivers hardware and associated software which
enable provision of flexible and efficient computational capacities to end users. The resource
management subsystem of IaaS layer is responsible for scheduling submitted tasks for execu-
tion. Scheduling of tasks on VMs is a key process on IaaS cloud, because mapping of tasks to
VMs need to be carried out in an efficient manner due to heterogeneous and dynamic charac-
teristics of VMs. Since there is no exact algorithm for finding optimal solution for NP-Com-
plete problems, a good schedule solution can only be achieved via heuristic methods [6–9]. The
objective of task scheduling algorithm is to reduce execution time and cost; the algorithm
decides which VM should execute the received task. In cloud computing environment, VMs
have heterogeneous processing capacities and characteristics. Therefore, load balancing among
VMs needs to be taken into account when scheduling tasks, which entails careful coordination
and optimization in order achieve lower makespan [10, 11]. Task scheduling algorithms try to
efficiently balance the load of the system taking into consideration total execution time of avail-
able VMs.

Methods proposed in the literature for solving task scheduling problems are either heuristic
based or metaheuristic based. Heuristic based methods try to find optimal solution based on
some predefined rules, and the quality of solutions obtained by these methods are dependent
on the underlining rules and problem size. The solution obtained by heuristics search methods
are not feasible and they are generated at high operating cost [12].

Metaheuristic techniques have been extensively applied to solve optimization problems.
Metaheuristic methods employ a pool of candidate solutions to traverse solution space unlike
the mathematical and heuristic techniques that uses single candidate solution. This attribute of
metaheuristic algorithms make them perform better than mathematical and heuristic tech-
niques. Some of the popular metaheuristic methods for solving task scheduling problems in
cloud computing environment are Genetic Algorithm (GA) [13], Particle Swarm Optimization
(PSO) [14], Ant Colony Optimization (ACO) [15, 16], League Championship Algorithm
(LCA) [11], BAT algorithm [17, 18], Symbiotic Organisms Search (SOS) [10]. The idea of SOS
as a metaheuristic algorithm was introduced in [19]. SOS algorithm was inspired by interactive
relationship exhibited by organisms in ecosystem for survival and it was shown to perform
competitively well [19] with GA, Differential Evolution (DE), PSO, Honey Bee Colony (HBC).
Since the introduction of SOS algorithm, a number of researches have applied SOS to solve
some practical optimization problems [10, 20–25]. Therefore, the potential of SOS in finding
global solution to optimization problems exhibited so far make it attractive for further investi-
gation and exploration.

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 2 / 29

Quality of solution and convergence speed obtained by metaheuristic algorithms can be
improved by its hybridization with either a metaheuristic algorithm or local search method, by
generating initial solution using heuristic search techniques or by modifying the transition
operator [26]. To the best of our knowledge none of the aforementioned techniques have been
explored to investigate the possible improvement of SOS in terms of convergence speed and
quality of solution obtained by SOS.

In this paper, we developed a fitness function model for computing makespan taking into
account utilization of VMs in order to reduce degree of imbalance among VMs. We studied
task scheduling using Improved Symbiotic Organism Search(SASOS). The proposed SASOS
combines SA method [27] and SOS optimization algorithm [10]. The SOS uses fewer control
parameters, and has a strong exploration and faster convergence capability. SA was used to
search local solution space identified by SOS which equip SASOS with exploitative ability. The
objective is to obtain optimal schedules by minimizing makespan and degree of imbalance
among VMs.

The main contributions of the paper are:

1. An objective function for optimum scheduling of tasks on VMs is presented taking into
account the utilization level of VMs in order to reduce makespan, response time and degree
of imbalance among VMs.

2. Hybridization of SOS with SA, applying SA to find optimum solution in the global solution
regions identified by SOS.

3. Implementation of the proposed method in CloudSim.

4. Performance comparison of SOS and the proposed method in terms of makespan, response
time and degree of imbalance.

5. Empirical analysis of convergence speed obtained by SASOS and SOS.

The organization of remaining parts of the paper is as follows. Metaheuristic algorithms
applied to task scheduling problems in cloud and SOS are presented in Section 2. Section 3
describes problem formulation. Design of proposed algorithm and its description is presented
in Section 4. Results of simulation and its discussion are in Section 5. Section 6 presented sum-
mary and conclusion of the paper.

RelatedWorks
Metaheuristic algorithms [10, 11, 13–18] have been applied to solve task assignment problems
in order to reduce makespan and response time. These methods have proven to find optimum
mapping of workloads to resources which reduces cost of computation, better quality of ser-
vice, and increased utilization of computing resources. ACO, PSO, GA, and their variants are
the mostly used nature inspired population based algorithms in the cloud. PSO outperforms
GA and ACO in most situations [28] and has faster execution time. PSO is simpler to imple-
ment as compared to GA and ACO respectively. Workflow scheduling problems have been
widely studied using PSO [14, 29–31] with aim of reducing communication cost and make-
span. Scheduling of Independent tasks have also been studied in cloud using PSO [32–34] and
it proved to ensure minimal makespan. Improved and hybrid versions [32, 35, 36] of PSO were
also proposed for scheduling of tasks in cloud and they obtained better solution than those of
ACO and GA. Recently, discrete version of SOS was applied to task scheduling problem in
cloud computing environment [10] and SOS algorithm was found to outperform PSO and its
popular variants.

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 3 / 29

Symbiotic Organisms Search
The SOS algorithm was inspired by symbiotic interactions between paired organisms in an eco-
system. Each organism denotes a potential solution to an optimization problem under consid-
eration and has its position in the solution space. Organisms adjust their position according to
mutualism, commensalism, and parasitism biological interaction models of the ecosystem.
With mutualism form of interaction, the two interacting organisms benefit from the relation-
ship and this is applied in the first phase of the algorithm. The commensalism association
enables only one organism to benefit from the relationship while other is not harmed. The
commensalism association is applied in the second phase of the algorithm to fine tune the solu-
tion space. With parasitism interaction, only one organism benefits while the other is harmed.
The parasitism interaction technique is applied in the third phase of the algorithm. The fittest
organisms survive in the solution space while the unfit ones are eliminated. The best organisms
are identified as those that benefited from the three phases of the interaction. The phases of the
procedure are continuously applied on the population of organisms which represents candidate
solutions until the stopping criterion are reached. The basic pseudocode of SOS is presented in
Algorithm 1. The quality of position of the organism depends on the fitness which defines the
extent of adaptation of the organisms to the ecosystem.

SOS share some common features with most of the nature inspired algorithms. The candi-
date solutions are represented by population of organisms using operators to direct the search
process by candidate solutions. Selection mechanism is used to keep better solutions, and it
requires the settings of population size and stopping criterion before the search process starts.
On the other hand, SOS does not require algorithm specific parameters unlike PSO that needs
inertia weight, social and cognitive factors or GA that used crossover and mutation. Inadequate
turning of these algorithm specific parameters could lead to non-optimal solutions.

Algorithm 1 The basic pseudo code for SOS

INPUT: Ecosize, Initial population, Stopping criteria
OUTPUT: Optimal solution
1: Do
2: For (All organisms in the ecosystem)
3: Determine the best organism
4: Mutualism Phase
5: Commensalism Phase
6: Parasitism Phase
7: End For
8: While stopping condition is not exceeded

The SOS algorithm procedure starts with a randomly generated population of organisms
called ecosystem. Then, the positions of the organisms are updated using the three phases of
SOS. In D-dimensional solution search space, a search population of n organisms is denoted as
X = {X1, X2, X3, . . ., Xn}. The position of the ith organism is denoted as Xi = {xi1, xi2, xi3, . . .,
xid}. A fitness function is defined to determine the quality of solution obtained by an organism.
Each organism represents a task schedule which is encoded in a vector of 1xn dimension,
where n is the number of tasks. The elements of the vector are natural numbers in the range [0,
m − 1], wherem is the number of resource for executing the tasks. The best position searched
by all organisms so far is represented by Xbest. Since task scheduling is a discrete optimization
problem and SOS was originally proposed to solve a continuous optimization problem, we
adapt a function proposed in [10] for mapping continuous position to a discrete position. The
mapping function is defined in Eq (1). The fitness value of each organism is evaluated

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 4 / 29

iteratively using their corresponding positions as input in the three phases of the algorithm as
explained in the following subsections.

Xi ¼ roundðXi mod mÞ ð1Þ

wherem is the number of resources for executing the submitted tasks.
Mutualism Phase. Suppose Xi is the ithmember of the ecosystem. In this phase, Xj is ran-

domly selected from the swarm of organisms to interact with Xi, i 6¼ j for mutual benefit. The
essence of the interaction is to improve extent of survival of both Xi and Xj in the ecosystem.
The new candidate solutions for Xi and Xj are obtained according to Eqs (2) and (3).

X�i ¼ Xi þ Uð0; 1Þ � ðXbest þMV � aÞ ð2Þ

X�j ¼ Xj þ Uð0; 1Þ � ðXbest þMV � bÞ ð3Þ

MV ¼ 1

2
ðXi þ XjÞ ð4Þ

where i = 1, 2, 3, . . ., ecosize; j 2 {1, 2, 3, . . ., ecosize|j 6¼ i}; U(0, 1) is a vector of uniformly dis-
tributed random numbers between 0 and 1.MV is the mutual relationship vector between Xi

and Xj as defined in Eq (4). Xbest represents the organism with best fitness value. α and β repre-
sent the benefit factors between organism Xi and Xj. In a mutual relationship, an organism
might benefit heavily or lightly while interacting with a mutual partner. Therefore, α and β are
stochastically obtained as either 1 or 2. 1 and 2 denotes light and heavy benefits respectively.
The new candidate solutions replaced the old ones if their fitness values are better than those of
the old ones. In this case, X�i and X

�
j replace Xi and Xj respectively in the next generation of eco-

system. Otherwise, X�i and X
�
j are discarded while Xi and Xj survives to the next generation of

the ecosystem. This scenario is captured by Eqs (5) and (6).

Xi ¼
(
X�i if f ðX�i Þ > f ðXiÞ

Xi if f ðX�i Þ � f ðXiÞ
ð5Þ

Xj ¼
(X�j if f ðX�j Þ > f ðXjÞ

Xj if f ðX�j Þ � f ðXjÞ
ð6Þ

where f(.) denotes the fitness evaluation function.
Commensalism Phase. In commensalism phase, an ithmember of the ecosystem ran-

domly selects an organism Xj for interaction with Xi, i 6¼ j. In this case, Xi intends to benefit
from Xj, and Xj neither gaining or losing from the interaction. The interaction is mathemati-
cally modelled by Eq (7).

X�i ¼ Xi þ Uð�1; 1Þ � ðXbest þ XjÞ ð7Þ

where U(−1, 1) is a vector of uniformly distributed random numbers between −1 and 1. Xbest

represents the organism with best fitness value similar to that of mutualism phase. Xi is updated
to X�i as computed in Eq (7), if the fitness value f ðX�i Þ is better that of f(Xi). The relationship for

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 5 / 29

updating Xi is given by Eq (8).

Xi ¼
(
X�i if f ðX�i Þ > f ðXiÞ

Xi if f ðX�i Þ � f ðXiÞ
ð8Þ

Parasitism Phase. In parasitism phase, an artificial parasite called parasite vector is cre-
ated by cloning an ith organism Xi and modifying it using randomly generated number. Then,
Xj is randomly selected from ecosystem, and fitness values of parasite vector and Xj are com-
puted. If the parasite vector is fitter than Xj, Xj is replaced by the parasite vector, otherwise Xj

survives to the next generation of ecosystem and parasite vector is discarded. Xj is updated
according to the relation in Eq (9).

Xj ¼
(PV if f ðPVÞ > f ðXjÞ

Xj if f ðPVÞ � f ðXjÞ
ð9Þ

PV denotes the parasite vector.

Simulated Annealing
Simulated annealing was introduced in [37, 38]. It is a simple and robust optimization method
inspired by the annealing process of physical systems. When a solid is heated, there will be dis-
orderliness in the state of particles as the temperature and internal energy increases. As the
cooling process is applied, the particles are ordered. The internal energy is minimized as the
temperature reached the room state. The simulated annealing algorithm is obtained by using
the internal energy as the objective function and temperature evolution as the control parame-
ter [39]. The SA procedure begin with an initial solution X and created an updated solution X0

in the neighborhood of the current solution X. The algorithm will generate a solution if the fit-
ness value F(X�) is lower than F(X). However, a higher fitness of X� is accepted at times with
the probability define in Eq (10). This strategy enables the search procedure to avoid entrap-
ment in local optima.

Pr ¼ exp
�ðf ðX�Þ � f ðXÞÞ

T

� �
ð10Þ

where F(X�) and F(X) are the fitness evaluation functions of neighbor and current solutions
respectively; and T is the temperature known as the control parameter. The algorithm perform
such series of moves in order to attain equilibrium state. The temperature parameter is deter-
mined according to cooling rate. The cooling rate used in this work is adopted from [28] as
defined in Eq (11). The algorithm terminates if there is no further improvement after series of
decrease in temperature. The temperature mainly affects the global search performance of SA
algorithm. At high initial value of temperature, the SA will have a high chance of locating
global optimal solution which in consequence increase the computation time. Conversely,
when the value of initial temperature is low, the chance of algorithm locating global optimal
solution is limited though the computation time of the algorithm will be shorter.

T ¼ di � To þ Tf ð11Þ

where δi is the temperature descending rate, 0< δ< 1, i is the number of times neighbor
solutions have been generated so far; To is the initial temperature; Tf is the final temperature.
The basic structure of SA algorithm is presented as Algorithm 2.

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 6 / 29

Algorithm 2 The basic pseudo code for SA

INPUT: Initial Temperature, Final Temperature, Cooling rate
OUTPUT: Best solution
1: Generate an initial solution x0
2: Do
3: Generate new solution x0 in the neighborhood of x0
4: Compute the acceptance probability Pr according to Eq (10)
5: Decide on acceptance or rejection of new solution based on Pr.
6: Memorize the best solution found so far
7: Reduce the temperature
8: While stopping condition is not exceeded

Simulated Annealing based Symbiotic Organisms Search (SASOS)
With proposed SASOS, the new candidate solutions are generated by moving the previous
solution towards another randomly selected solution from ecosystem using the three phases of
SOS as modelled by Eqs (2) (3) and (7). The techniques increase the chance of locating the
global optima, but it cannot ensure a better solution, so convergence rate is slow. The conver-
gence will be faster, if every new candidate solution is better than the previous one. However, if
only the better solutions are accepted as described in Eqs (5) (6) (8) and (9), the algorithm
could be entrapped in local optima. Therefore, to improve the speed of convergence and quality
of solution, SA technique is employed into solution search procedure of mutualism and com-
mensalism phases of the SOS. The parasitism phase is left untouched because it perturbates the
solution space by deleting the inactive solutions and injecting the active ones which could
move the search procedure out of the local optima region. The SA can obtain better solution
for the best organism of each generation of organisms, and accept poor neighbor solutions
using certain probability. In each iteration, the possibility of accepting poor solutions are
higher at the early stage of the search process but reduces at the later stage of the search pro-
cess. The SA probability of accepting neighbor solution into new generation of organisms is
given in Eq (12).

Pr ¼ exp � f ðX�i Þ � f ðXiÞ
T

� �
ð12Þ

where f ðX�i Þ and f(Xi) are the fitness evaluation functions of neighbor and current solutions
respectively, T is the control parameter. The pseudocode for SA used in SASOS is described in
Algorithm 3. The steps of SASOS are described in Algorithm 4.

Algorithm 3 SA Procedure based on SOS solution search

1: Do
2: Generate new solution X�i in the neighborhood of Xi based on specified
solution search eqaution(i.e Eqs (2) and (3) for mutualism phase; Eq (7) for
commensalism phase)
3: Df ¼ f ðX�i Þ � f ðXiÞ
4: If Δf� 0 or exp � Df

T

� �
> Uð0; 1Þ

5: Xi X�i
6: End If
7: U(0, 1) is a uniformly random generated number between 0 and 1
8: While stopping condition is not exceeded

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 7 / 29

Algorithm 4 The pseudo code for SASOS

INPUT: Set ecosize, create population of organisms Xi, i = 1, 2, 3, . . ., eco-
size, initialize Xi, Set stopping criteria, Initialize SA parameters: Ini-
tial temperature Tinit, Final temperature Tfin, Cooling rate δ.
OUTPUT: Optimal schedule
1: Identify the best organism Xbest
2: While stopping criterion is not met
3: For i = 1 to ecosize
4: Mutualism Phase
5: Simulated annealing on Xi according to Eq (2) using Algorithm 3
6: Simulated annealing on Xj according to Eq (3) using Algorithm 3
7: Transform Xi and Xj using Eq (1)
8: Commensalism Phase
9: Simulated annealing on Xi according to Eq (7) using Algorithm 3
10: Apply Eq (11) to reduce the temperature
11: Transform Xi using Eq (1)
12: Parasitism Phase
13: Create parasite_vector
14: Update Xj according to Eq (9)
15: Transform Xj using Eq (1)
16: Identify the best organism Xbest
17: End For
18: End While

Problem Formulation
When tasks to be scheduled are received by Cloud Broker (CB), it queries Cloud Information
Service (CIS) to identify the services required to execute the received tasks from the user and
then schedules the tasks on the discovered services. For instance, if tasks {T1, T2, T3, . . ., Tn} are
submitted to CB in a given time interval. The processing elements (Virtual Machines) are het-
erogeneous having varied processing speeds and memory, indicating that a task executed on
different Virtual Machines (VMs) will result in disparate execution cost. Suppose Virtual
Machines {M1,M2,M3, . . .,Mk} are available when the tasks are received by CB. The tasks are
scheduled on the available VMs and execution of the tasks are done on the basis of First-Come
First-Serve. Our aim is to schedule tasks on VMs in order to achieve high utilization with mini-
mal makespan. As a result, Expected Time to Compute (ETC) of the tasks to be scheduled on
each VM will be used by the proposed method to make schedule decisions. ETC values were
determined using the ratio of millions instructions per second (MIPS) of a VM to length of the
task [40, 41]. ETC values are usually represented in matrix form, where the number of tasks to
be scheduled represents the rows of matrix and number of available VMs indicates the columns
of the matrix. Each row of ETC matrix represents execution times of a given task for each VM,
while each column represents execution times of each task on a given VM. Since our objective
is to minimize the makespan by finding the best group of tasks to be executed on VMs. Let Cij,
i = 1, 2, 3, . . .,m, j = 1, 2, 3, . . ., n be the execution time of executing jth task on ith VM where
m the number of VMs is and n is the number of tasks. The fitness value of each organism is
determined using Eq (13), which determines the strength of the level of adaptation of the
organism to the ecosystem.

objective function ¼ maxf
Xm
i¼1

f ðMiÞ
m
g ð13Þ

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 8 / 29

f ðMiÞ ¼
m

makespan ð14Þ

m ¼
Xm
i¼1

li

m
ð15Þ

li ¼
Ti

makespan
ð16Þ

makespan ¼ maxfCjkjj 2 T; j ¼ 1; 2; 3; :::; n; k 2 M; k ¼ 1; 2; 3; :::;mg ð17Þ

where f(Mi) is the fitness value of virtual machine i; μ is the average utilization of virtual
machines ready for execution of tasks and its essence is to support load balancing among VMs,
λi defines the utilization of virtual machine i; n is the number of tasks andm is the number
VMs.

Performance metrics
The following metrics were used to evaluate the performance of the proposed method.

Makespan. Makespan is the time when the last task finished execution. Makespan is the
most popular metric for measuring the performance of scheduling the methods. Lower make-
span indicates efficient scheduling of task to virtual machines. Let TMi

(ji) be the execution time
of processing set of tasks j on virtual machineMi, makespan is defined by Eq (18).

makespan ¼ maxfTM1
ðj1Þ;TM2

ðj2Þ;TM3
ðj3Þ; :::;TMn

ðjmÞg ð18Þ

wherem and n are the number of virtual machines and tasks respectively.
Response Time is the time from when the job arrives in a system to the time the first task is

scheduled. Response time measures the time taken for scheduling algorithm to respond to a
job. Response time is determined by Eq (19).

ResponseTime ¼ Tfirstrun � Tarrival ð19Þ

where Tfirstrun is the finishing time of first task; Tarrival is the arrival of the first task.
Degree of Imbalance. Let Tmax, Tmin and Tavg denotes the maximum, minimum, and average

total execution times, respectively, among all VMs. Degree of imbalance (DI) defines the extent
of load distribution among VMs according to their processing capacities, DI is determined by
Eq (20).

DI ¼ Tmax � Tmin

Tavg
ð20Þ

Simulation and Results
Simulation Parameter Settings and Datasets: The performance of the proposed method was
evaluated using CloudSim [42]. CloudSim is a toolkit for modeling cloud computing scenarios.
Two datacenters were created each containing two hosts respectively. Each host has 20 GB
ram, 1 TB storage, 10 GB/s bandwidth and time-shared VM scheduling algorithm. One of the
hosts is a dual-core machine while the other host is a quad-core machine each with X86 archi-
tecture, Linux operating system, Xen virtual machine monitor (VMM), and cumulative pro-
cessing power of 1000000 MIPS. 25 VMs were created each with image size of 10 GB, 0.5 GB

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 9 / 29

memory, 1 GB/s bandwidth and 1 processing element. The processing power of the VMs
ranges from 100 to 5000 MIPS respectively. Time-shared cloudlet scheduler and Xen VMM
were used for all the VMs. Six different data sets were used to evaluate the performance of the
proposed method, four of which are generated using normal, left-skewed, right-skewed, and
uniform distribution presented as S1, S2, S3 and S4 Datasets respectively. Uniform distribution
depicts medium size tasks, and fewer small and large size tasks. Left-skewed represents fewer
small size tasks and more large size tasks while right-skewed is the opposite. Uniform distribu-
tion depicts equal number of large, medium, and small size tasks. For each distribution, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000 instances were generated. The larger instances will
enable us gain insight into the scalability of performance of the algorithms with large problem
sizes. The parallel workloads used for evaluation are NASA Ames iPSC/860 [43] and HPC2N
[44] presented as S5 and S6 Datasets respectively. NASA Ames iPSC/860 and HPC2N set log
are some of the popular standard formatted workloads for evaluating the performance of dis-
tributed systems. NASA Ames iPSC/860 set log contains information of 14,794 tasks while
HPC2N set log contains information of 527, 371 tasks. The simulation was run 30 times for
each algorithm. The parameter settings of the algorithms are shown in Table 1.

Results: In order to exhibit the performance of SASOS against SOS, graphs of solution qual-
ity are plotted against number of iterations for the task sizes of 100, 500, and 1000 for the six
data sets as shown in Figs 1–18. These graphs indicate variation in fitness values with respect to
number of iterations. The plots depict the rate of convergence and speed at which the algo-
rithms attain the optimal solution. To evaluate the algorithm that produces better solution,
makespan, response time, and degree of imbalance are obtained using each algorithm. The val-
ues for these evaluation metrics are determined when applied to six different data sets as
reported in Tables 2–18. The first column of each table indicates the number of tasks sched-
uled, the columns named “Average”, “Best”, and “Worst” reports the average, the best, and
worst values obtained by each algorithm. The last column of each table record the improve-
ment in average values obtained by SASOS with respect to SOS. For makespan, it can be
observed that SASOS has better average makespan for all the six data sets as shown in Tables
2–7. For the response time, SASOS outperforms SOS in most cases of data sizes and data sets
as shown in Tables 8–13. For degree of imbalance, SASOS produced better degree of imbalance
among VMs as compared to SOS for all the task sizes and data sets as shown in Tables 14–19.

From the convergence curve of normal distributed data sets shown in Figs 1–3, SOS con-
verges faster to a stable state than SASOS for 100 tasks. SOS converges slower than SASOS for
500 tasks, while for 1000 tasks, both SOS and SASOS converges at the same rate. The conver-
gence curves of left normal distributed data sets, Figs 4 and 5 indicate that SOS converges faster
than SASOS but SOS is only able to locate local optima. For 1000 tasks SASOS converges faster
than SOS as shown in Fig 6. SASOS converge faster than SOS for 100 and 1000 task sizes for
right normal distributed data set as shown in Figs 7 and 9. Both SOS and SASOS converges at

Table 1. Parameter Settings of the Algorithms.

Algorithm Parameter Value

SOS Number of Organisms 100

Number of Iterations 1,000

SA Initial temperature, Finit 10

Final temperature, Ffinal 0.001

Cooling rate, δ 0.9

doi:10.1371/journal.pone.0158229.t001

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 10 / 29

Fig 1. Convergence curve - Normal Dist - 100 Tasks.

doi:10.1371/journal.pone.0158229.g001

Fig 2. Convergence curve - Normal Dist - 500 Tasks.

doi:10.1371/journal.pone.0158229.g002

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 11 / 29

Fig 3. Convergence curve - Normal Dist - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g003

Fig 4. Convergence curve - Left Normal Dist - 100 Tasks.

doi:10.1371/journal.pone.0158229.g004

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 12 / 29

Fig 5. Convergence curve - Left Normal Dist - 500 Tasks.

doi:10.1371/journal.pone.0158229.g005

Fig 6. Convergence curve - Left Normal Dist - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g006

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 13 / 29

Fig 7. Convergence curve - Right Normal Dist - 100 Tasks.

doi:10.1371/journal.pone.0158229.g007

Fig 8. Convergence curve - Right Normal Dist - 500 Tasks.

doi:10.1371/journal.pone.0158229.g008

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 14 / 29

Fig 9. Convergence curve - Right Normal Dist - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g009

Fig 10. Convergence curve - Uniform Dist - 100 Tasks.

doi:10.1371/journal.pone.0158229.g010

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 15 / 29

Fig 11. Convergence curve - Uniform Dist - 500 Tasks.

doi:10.1371/journal.pone.0158229.g011

Fig 12. Convergence curve - Uniform Dist - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g012

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 16 / 29

Fig 13. Convergence curve - HPC2N - 100 Tasks.

doi:10.1371/journal.pone.0158229.g013

Fig 14. Convergence curve - HPC2N - 500 Tasks.

doi:10.1371/journal.pone.0158229.g014

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 17 / 29

Fig 15. Convergence curve - HPC2N - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g015

Fig 16. Convergence curve - NASA Ames iPSC/860 - 100 Tasks.

doi:10.1371/journal.pone.0158229.g016

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 18 / 29

Fig 17. CConvergence curve - NASA Ames iPSC/860 - 500 Tasks.

doi:10.1371/journal.pone.0158229.g017

Fig 18. Convergence curve - NASA Ames iPSC/860 - 1000 Tasks.

doi:10.1371/journal.pone.0158229.g018

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 19 / 29

Table 2. Makespan - Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 340.84 543.51 233.77 308.96 335.93 200.13 9.35

200 855.22 1154.44 513.55 833.60 936.26 618.87 2.53

300 1594.80 2195.89 934.64 1451.35 1533.16 1154.17 8.99

400 2485.28 3160.43 1767.26 2314.53 2408.34 1885.51 6.87

500 3392.88 4818.32 1907.79 3156.22 3397.93 1640.25 6.98

600 4566.58 5804.35 2704.00 4049.74 4175.89 3307.72 11.32

700 5402.63 7002.00 3585.27 4948.34 5262.50 3840.99 8.41

800 6762.20 8324.86 5193.88 6007.49 6326.44 4569.10 11.16

900 7775.22 9145.98 6132.36 7299.38 7614.49 5962.33 6.12

1000 9005.29 10666.64 6678.40 8116.80 8566.45 6754.41 9.87

305.0964857 273.791515 4172.53081 3007.850467 11049.81308 10339.47494

doi:10.1371/journal.pone.0158229.t002

Table 3. Makespan - Left Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 300.58 384.09 189.87 277.58 292.68 208.50 7.65

200 922.10 1337.91 605.07 862.92 939.22 552.30 6.42

300 1369.58 2031.05 940.35 1213.79 1316.38 943.04 11.38

400 2056.43 2861.88 1230.52 1966.89 2180.72 1351.94 4.35

500 3136.91 4196.15 2327.13 2905.63 3159.70 1974.60 7.37

600 4231.61 5452.52 2701.55 3819.96 4014.23 3179.25 9.73

700 4820.95 5804.18 3267.56 4398.35 4719.80 3603.35 8.77

800 6041.50 7622.91 3949.37 5454.02 5651.70 4495.87 9.72

900 6769.88 8227.34 4753.56 6526.76 6835.90 5663.86 3.59

1000 8105.26 9414.20 6242.02 7666.44 7940.73 6426.48 5.41

doi:10.1371/journal.pone.0158229.t003

Table 4. Makespan - Right Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 235.55 384.35 174.40 212.25 222.24 168.98 9.89

200 601.06 824.09 369.42 538.64 581.53 340.50 10.38

300 1190.98 1609.64 754.42 1071.18 1198.71 661.88 10.06

400 1735.90 2357.59 1152.43 1590.70 1727.16 1034.12 8.36

500 2487.28 3206.15 1652.03 2318.91 2482.31 1938.34 6.77

600 3283.42 4236.51 2347.23 2927.33 3132.88 2390.28 10.85

700 3871.93 4648.77 2334.26 3549.22 3757.03 2846.19 8.33

800 4871.12 5899.74 3000.00 4477.02 4718.91 3395.64 8.09

900 5516.24 6617.94 4034.83 4994.98 5167.92 4262.64 9.45

1000 6402.55 7889.11 5331.20 6037.42 6244.33 5207.99 5.70

doi:10.1371/journal.pone.0158229.t004

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 20 / 29

Table 5. Makespan - Uniform Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 312.21 438.57 215.73 278.02 297.00 196.12 10.95

200 807.07 1115.35 507.72 734.91 817.32 522.65 8.94

300 1470.53 1904.61 859.45 1375.71 1484.38 1035.98 6.45

400 2334.28 3309.66 1654.35 1976.99 2168.68 1423.27 15.31

500 3263.91 4396.75 2244.82 2926.87 3099.04 2092.69 10.33

600 4201.65 5391.53 3094.80 3698.41 3847.80 2893.99 11.98

700 5023.15 6118.88 3561.55 4679.92 4956.90 3744.04 6.83

800 6157.11 8487.05 4369.69 5430.88 5800.05 3501.86 11.79

900 7106.45 8446.11 4874.59 6494.58 6825.56 5381.45 8.61

1000 8095.45 9880.74 6171.13 7641.47 7942.74 6680.93 5.61

doi:10.1371/journal.pone.0158229.t005

Table 6. Makespan - HPC2N Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 2457.49 4206.35 1221.64 2070.16 2426.97 977.22 15.76

200 3920.99 6815.86 2520.10 3343.18 3671.80 2306.85 14.74

300 5705.85 10740.00 3850.24 5212.02 5625.56 3562.99 8.65

400 9600.07 18569.45 4629.71 6763.61 7696.66 4109.96 29.55

500 15661.89 29745.68 9872.91 11276.64 12011.90 6283.30 28.00

600 16635.51 36649.05 8877.67 14323.00 15345.44 8896.67 13.90

700 18989.38 33437.80 9515.80 14867.05 16777.16 8279.48 21.71

800 20871.05 30514.99 14058.66 18186.87 20535.14 10674.40 12.86

900 23508.46 41931.84 14683.98 20069.85 22081.20 11790.67 14.63

1000 26923.49 47122.40 15284.23 21631.11 23525.46 14043.55 19.66

doi:10.1371/journal.pone.0158229.t006

Table 7. Makespan - NASA Ames iPSC/860 Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 400.09 848.48 291.07 368.51 385.74 296.79 7.89

200 471.03 891.53 292.80 387.81 421.73 292.29 17.67

300 1017.80 1699.46 459.23 854.96 906.35 523.83 16.00

400 1148.54 1845.14 561.17 997.83 1128.25 614.51 13.12

500 1379.16 2644.29 576.68 1209.09 1360.93 715.18 12.33

600 1659.51 2956.01 806.58 1372.54 1560.35 888.95 17.29

700 2015.81 3962.73 1124.88 1559.20 1838.23 966.60 22.65

800 2173.10 3547.90 804.46 1645.06 1824.72 1049.74 24.30

900 2672.28 5665.10 1399.80 2160.63 2456.35 1224.57 19.15

1000 2874.95 6116.32 1349.54 2332.00 2540.76 1266.85 18.89

doi:10.1371/journal.pone.0158229.t007

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 21 / 29

Table 8. Response Time - Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 3.36 4.42 2.75 3.23 3.76 2.46 4.06

200 4.02 4.77 2.71 4.13 5.43 3.09 -2.9

300 4.68 6.04 3.03 4.52 5.67 3.56 3.33

400 5.27 6.33 3.88 5.19 6.14 4.2 1.59

500 5.6 7.08 3.54 5.59 6.92 3.04 0.1

600 6.06 7.21 4.02 5.83 7 4.73 3.78

700 6.18 7.25 4.44 5.99 7.29 4.81 3.06

800 6.63 7.4 5.54 6.29 7.44 4.94 5.07

900 6.69 7.46 5.59 6.59 7.46 5.55 1.47

1000 6.86 7.57 5.31 6.58 7.64 5.4 4.02

doi:10.1371/journal.pone.0158229.t008

Table 9. Response Time - Left Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 3.38 4.36 2.72 3.24 3.74 2.78 4.03

200 4.23 5.39 3.06 4.19 5.74 2.84 1

300 4.62 5.84 3.25 4.46 5.84 3.37 3.32

400 5.02 6.29 3.57 5.11 6.04 3.59 -1.83

500 5.63 6.56 4.3 5.55 6.7 3.82 1.41

600 5.97 7.11 4.28 5.81 7.3 4.7 2.77

700 6.16 6.97 4.67 5.88 6.86 4.71 4.6

800 6.46 7.62 4.59 6.27 7.32 5.26 2.85

900 6.7 7.39 5.16 6.62 7.59 5.66 1.11

1000 6.82 7.53 5.54 6.69 7.57 5.66 1.91

doi:10.1371/journal.pone.0158229.t009

Table 10. Response Time - Right Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 3.18 4.24 2.44 3.03 4.04 2.4 4.59

200 3.87 4.81 2.55 3.85 5.16 2.69 0.68

300 4.64 5.78 3.25 4.58 5.61 3.1 1.13

400 5.11 6.21 3.65 5.02 6.41 3.39 1.8

500 5.6 6.68 4.09 5.53 6.7 4.54 1.29

600 5.91 6.9 4.42 5.72 6.81 4.63 3.29

700 6.04 7.31 4.17 6.07 7.49 4.78 -0.51

800 6.52 7.37 4.4 6.32 7.5 4.84 3

900 6.68 7.37 5.2 6.4 7.46 5.36 4.23

1000 6.78 7.76 5.91 6.67 7.52 5.71 1.55

doi:10.1371/journal.pone.0158229.t010

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 22 / 29

Table 11. Response Time - Uniform Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 3.31 4.11 2.47 3.19 3.92 2.62 3.61

200 4.03 5.27 2.78 4.04 5.15 2.9 -0.37

300 4.61 5.57 2.84 4.66 5.66 3.46 -1.03

400 5.3 6.46 3.99 4.86 6.14 3.49 8.3

500 5.65 6.6 4.26 5.42 6.67 3.9 4.13

600 6.12 7.05 4.86 5.81 6.94 4.46 5.06

700 6.24 7.03 4.84 6.06 7.49 4.79 2.97

800 6.45 7.48 4.91 6.15 7.1 4.24 4.6

900 6.59 7.59 4.82 6.42 7.51 5.33 2.59

1000 6.77 7.71 5.5 6.68 7.5 5.8 1.38

doi:10.1371/journal.pone.0158229.t011

Table 12. Response Time - HPC2N Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 3.04 3.63 2.41 3.02 3.55 2.56 0.77

200 2.89 3.53 2.16 2.85 3.67 2.29 1.48

300 2.93 3.67 2.26 2.96 3.76 2.31 -1.02

400 3.21 4.15 2.37 2.95 4.48 1.98 8.26

500 3.36 4.19 2.57 3.22 4.13 2.27 3.97

600 3.54 4.37 2.42 3.34 4.69 2.58 5.5

700 3.62 4.84 2.54 3.47 4.71 2.14 4.19

800 3.71 4.7 2.4 3.66 5.13 2.45 1.41

900 3.95 4.97 2.65 3.87 4.83 2.48 1.95

1000 4.05 4.94 3.04 3.91 4.83 3.02 3.54

doi:10.1371/journal.pone.0158229.t012

Table 13. Response Time - NASA Ames iPSC/860 Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 4.06 5.37 2.92 4.09 6.07 3.18 -0.6

200 3.55 5.01 1.98 3.35 4.53 2.11 5.72

300 3.01 3.81 2.15 3.03 3.81 2.35 -0.82

400 2.92 3.79 2.18 2.96 3.77 2.27 -1.55

500 3.07 3.93 2.2 3.02 4.63 2.36 1.78

600 3.22 3.77 2.12 3.03 3.99 2.3 5.92

700 3.18 4.14 2.52 3.03 3.68 2.29 4.65

800 3.33 4.39 2.3 3.23 4.1 2.76 2.85

900 3.36 4.25 2.43 3.27 4.53 2.53 2.61

1000 3.55 4.89 2.38 3.36 4.33 2.29 5.32

doi:10.1371/journal.pone.0158229.t013

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 23 / 29

Table 14. Degree of Imbalance - Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 12.77 26.04 12.59 9.53 29.18 12.89 25.43

200 28.63 47.48 29.4 14.57 50.67 22.59 49.11

300 45.6 68.71 49.79 34.37 77.64 49.79 24.62

400 64.19 106.52 70.7 47.67 113.28 68.34 25.74

500 80.84 138.79 88.59 53.19 124.66 76.54 34.21

600 96.35 149.99 101.25 68.74 145.43 87.87 28.65

700 129.81 203.91 143.26 88.16 186.14 131.16 32.08

800 147.12 216.53 158.24 98.06 196.59 137.63 33.35

900 161.53 232.68 170.1 125.46 248.74 180.34 22.33

1000 153.19 251.79 149.53 119.7 238.23 170.61 21.86

doi:10.1371/journal.pone.0158229.t014

Table 15. Degree of Imbalance - Left Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 10.7 23.22 9.42 7.68 21.7 9.31 28.25

200 25.92 51.61 24.6 16.93 49.51 25.99 34.67

300 35.65 71.01 35.79 24.96 68.93 43.54 29.98

400 52.27 98.96 55.29 34.77 89.51 51.63 33.49

500 79.92 123.28 85.92 57.27 124.41 86.06 28.35

600 107.35 158.83 112.95 65.36 157.88 96.54 39.11

700 107.81 169.17 105.38 86.1 162.52 124.69 20.13

800 145.88 214.83 152.11 98.21 197.23 144.29 32.67

900 150.59 244.38 161.7 95.53 217.15 149.38 36.56

1000 163.55 233.29 162.37 106.25 250.83 164.11 35.03

doi:10.1371/journal.pone.0158229.t015

Table 16. Degree of Imbalance - Right Normal Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 8.47 16.56 8.26 6.5 17.93 8.86 23.34

200 18.1 31.88 17.71 11.98 28.66 16.67 33.83

300 26.73 45.38 25.82 19.87 48.63 30.86 25.69

400 40.67 63.54 41.1 31.97 67.24 42.66 21.39

500 47.51 75.74 50.87 34.19 85.33 54.36 28.04

600 59.57 93.72 60.89 48.76 100.72 67.57 18.13

700 74.53 111.89 79.11 55.93 102.1 80.99 24.95

800 84.58 133.52 88.72 64.47 130.93 100.34 23.78

900 99.25 158 107.79 65.14 144.16 99.28 34.37

1000 119.15 168.09 129.98 76.8 159.12 124.48 35.55

doi:10.1371/journal.pone.0158229.t016

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 24 / 29

Table 17. Degree of Imbalance - Uniform Distributed Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 10.94 17.58 10.71 8.47 20.08 11.04 22.61

200 22 43.28 22.71 14.81 41.38 21.59 32.67

300 38.45 66.91 41.26 28.7 62.57 40.68 25.37

400 50.24 86.57 53.19 31.19 86.84 52.58 37.91

500 67.13 103.88 73.45 54.62 112.19 77.6 18.64

600 76.1 120.36 80.93 53.28 121.42 80.47 29.99

700 103.03 148.15 108.92 66.26 150.92 104.74 35.69

800 111.35 167.11 121.6 70.69 174.31 101.93 36.51

900 133.56 191.2 139.55 98.65 181.62 143.7 26.14

1000 139.3 196.2 149.77 120.5 218.16 163.06 13.49

doi:10.1371/journal.pone.0158229.t017

Table 18. Degree of Imbalance - HPC2NDataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 0.6218 2.1045 0.5437 0.3726 2.2741 0.6853 40.0763

200 0.1006 0.1208 0.1100 0.0818 0.1207 0.1100 18.6708

300 0.1105 0.1209 0.1100 0.1031 0.1208 0.1100 6.6970

400 0.1072 0.1209 0.1100 0.1065 0.1207 0.1100 0.6576

500 0.1098 0.1208 0.1100 0.1069 0.1194 0.1100 2.6107

600 0.1122 0.2200 0.1100 0.1074 0.2116 0.1100 4.2359

700 0.1144 0.2149 0.1100 0.1068 0.2200 0.1100 6.6075

800 0.1320 0.2208 0.1100 0.1080 0.2200 0.1100 18.1776

900 0.1635 0.2260 0.2067 0.1213 0.2233 0.2105 25.8238

1000 0.1899 0.2225 0.2139 0.1737 0.2268 0.2142 8.5132

doi:10.1371/journal.pone.0158229.t018

Table 19. Degree of Imbalance - NASA Ames iPSC/860 Dataset.

Number of Tasks SOS SASOS Improvement(%)

Average Worst Best Average Worst Best

100 0.0378 0.1121 0.0054 0.0022 0.1127 0.0040 94.2187

200 0.0742 0.1123 0.1100 0.0088 0.1154 0.1058 88.1108

300 0.1066 0.2221 0.1100 0.0760 0.2242 0.1100 28.7243

400 0.0020 0.0038 0.0020 0.0015 0.0044 0.0019 24.1417

500 0.0021 0.0070 0.0020 0.0014 0.0039 0.0018 32.1536

600 0.0020 0.0050 0.0019 0.0016 0.0043 0.0020 21.3347

700 0.0020 0.0060 0.0019 0.0014 0.0034 0.0019 27.3566

800 0.0020 0.0033 0.0019 0.0015 0.0033 0.0019 25.4827

900 0.0020 0.0034 0.0019 0.0015 0.0044 0.0019 24.0295

1000 0.0020 0.0033 0.0019 0.0017 0.0069 0.0020 14.4083

doi:10.1371/journal.pone.0158229.t019

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 25 / 29

the same rate as shown in Fig 8. For uniform distributed data set, SOS algorithm converges
faster than SASOS for 100, 500, and 1000 task sizes as shown in Figs 10–12. For HPC2N, SOS
converges faster than SASOS for 100 and 1000 task sizes as depicted in Figs 13 and 15, while
for 500 tasks SASOS converges faster than SOS as shown in Fig 11. For NASA Ames iPSC/860,
SASOS converges faster than SOS for 100 tasks as shown in Fig 16, whereas SOS and SASOS
converges at virtually the same point.

Furthermore, the search direction of SASOS algorithm converges to stable in less than 100
iterations in all cases except in one scenario as depicted in Fig 4 where the algorithm converges
in about 300 iterations. SOS algorithm converges in most situations except few cases as shown
in Figs 9, 11, 14 and 16. Fig 9 indicates that SOS converges after 900 iterations while Fig 11
showed that SOS converges at about 750 iterations. The search direction of SOS converges at
about 400 iterations in the case of Fig 14, SOS converges at about 700 iterations in Fig 16 sce-
nario. Moreover, the quality solutions obtained by SASOS algorithms are better than those of
SOS, and SASOS search direction of SASOS tends to converge to a stable point in a lesser num-
ber of iterations. This performance could be attributed to the local search ability of SA
employed into SOS. In addition, SOS has shown that it can improve its quality of solutions
even at latter stage of search procedure as demonstrated in Figs 9, 11, 14 and 16. This could be
attributed to parasitism phase of the algorithm which perturb the solution space eliminating
inactive solution and introducing the active ones.

Conclusion
This study presents a hybrid Symbiotic Organisms Search (SOS) algorithm named SASOS to
obtain optimal schedule of tasks in cloud computing environment. The proposed algorithm
employs local search search ability of Simulated Annealing (SA) in order to improve the speed
of convergence and quality of solution obtained by SOS algorithm in terms of makespan,
response time, and degree of imbalance. The simulation results show that SASOS outperforms
SOS in terms of convergence rate and quality of solution. The proposed method can be used to
solve other optimization issues in the cloud computing system and other discrete optimization
problems in different domains. In the future, we intend focus on hybridizing SOS with other
effective local search and metaheuristic techniques.

Supporting Information
S1 Dataset. Normal.
(ZIP)

S2 Dataset. Left-skewed.
(ZIP)

S3 Dataset. Right-skewed.
(ZIP)

S4 Dataset. Uniform.
(ZIP)

S5 Dataset. NASA Ames iPSC-860.
(ZIP)

S6 Dataset. HPC2N.
(ZIP)

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 26 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158229.s006

Acknowledgments
The authors wish acknowledge the use of the facilities and services of Universiti Teknologi
Malaysia.

Author Contributions
Conceived and designed the experiments: MAMAN. Performed the experiments: MAMAN.
Analyzed the data: MAMAN. Contributed reagents/materials/analysis tools: MAMAN.
Wrote the paper: MAMAN.

References
1. Pop Florin and Potop-Butucaru Maria. ARMCO: Advanced topics in resource management for ubiqui-

tous cloud computing: An adaptive approach. Future Generation Computer Systems. 2016; 54:79–81.
doi: 10.1016/j.future.2015.07.016

2. Mezmaz Mohand and Melab Nouredine and Kessaci Yacine and Lee Young Choon and Talbi E-G and
Zomaya Albert Y and Tuyttens Daniel. A parallel bi-objective hybrid metaheuristic for energy-aware
scheduling for cloud computing systems. Journal of Parallel and Distributed Computing. 2011; 71
(11):1497–1508. doi: 10.1016/j.jpdc.2011.04.007

3. Jadeja, Yaju and Modi, Kavan. Cloud computing-concepts, architecture and challenges. In: 2012 Inter-
national Conference on Computing, Electronics and Electrical Technologies (ICCEET). IEEE; 2012.
p. 877–880.

4. Mell, Peter and Grance, Tim. The NIST definition of cloud computing. 2011.

5. Garey Michael R and Johnson David S. A Guide to the Theory of NP-Completeness. WH Freemann,
New York. 2016;.

6. Kaur Kamaljit and Chhabra Amit and Singh Gurvinde. Heuristics based genetic algorithm for scheduling
static tasks in homogeneous parallel system. International Journal of Computer Science and Security
(IJCSS). 2010; 4(2):183–198.

7. Ming Gao and Li Hao. An improved algorithm based on max-min for cloud task scheduling. Recent
Advances in Computer Science and Information Engineering. 2012; 125:217–223. doi: 10.1007/978-3-
642-25789-6_32

8. Bhoi Upendra and Ramanuj Purvi N. Enhanced max-min task scheduling algorithm in cloud computing.
International Journal of Application or Innovation in Engineering and Management. 2013; 2(4):259–
264.

9. Munir E Ullah and Li Jianzhong and Shi Shengfe. QoS sufferage heuristic for independent task sched-
uling in grid. Information Technology Journal. 2007; 6(8):1166–1170. doi: 10.3923/itj.2007.1166.1170

10. Abdullahi Mohammed and Ngadi Md Asri and Abdulhamid Shafi’i Muhammad. Symbiotic Organism
Search optimization based task scheduling in cloud computing environment. Future Generation Com-
puter Systems. 2016; 56:640–650. doi: 10.1016/j.future.2015.08.006

11. Abdulhamid Shafii Muhammad and Latiff Muhammad Shafie Abd and Idris Ismaila. Tasks Scheduling
Technique Using League Championship Algorithm for Makespan Minimization in IaaS Cloud. ARPN
Journal of Engineering and Applied Sciences. 2014; 9(12):2528–2533.

12. Yu Jia and Buyya Rajkumar and Ramamohanarao Kotagiri. Workflow scheduling algorithms for grid
computing. Metaheuristics for scheduling in distributed computing environments. 2008; 16(3):173–214.
doi: 10.1007/978-3-540-69277-5_7

13. Zhao, Chenhong and Zhang, Shanshan and Liu, Qingfeng and Xie, Jian and Hu, Jicheng. Independent
tasks scheduling based on genetic algorithm in cloud computing. In: 5th International Conference on,
Wireless Communications, Networking and Mobile Computing, 2009. WiCom’09. IEEE; 2009. p. 1–4.

14. Pandey, Suraj andWu, Linlin and Guru, Siddeswara Mayura and Buyya, Rajkumar. A particle swarm
optimization-based heuristic for scheduling workflow applications in cloud computing environments. In:
2010 24th IEEE international conference on, Advanced information networking and applications
(AINA). IEEE; 2010. p. 400–407.

15. Xue Shengjun and Li Mengying and Xu Xiaolong and Chen Jingyi and Xue Shengjun. An ACO-LB algo-
rithm for task scheduling in the cloud environment. Journal of Software. 2014; 9(2):466–473. doi: 10.
4304/jsw.9.2.466-473

16. Shengjun Xue and Jie Zhang and Xiaolong Xu. An Improved Algorithm Based on ACO for Cloud Ser-
vice PDTs Scheduling. Advances in Information Sciences & Service Sciences. 2012; 4(18):.

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 27 / 29

http://dx.doi.org/10.1016/j.future.2015.07.016
http://dx.doi.org/10.1016/j.jpdc.2011.04.007
http://dx.doi.org/10.1007/978-3-642-25789-6_32
http://dx.doi.org/10.1007/978-3-642-25789-6_32
http://dx.doi.org/10.3923/itj.2007.1166.1170
http://dx.doi.org/10.1016/j.future.2015.08.006
http://dx.doi.org/10.1007/978-3-540-69277-5_7
http://dx.doi.org/10.4304/jsw.9.2.466-473
http://dx.doi.org/10.4304/jsw.9.2.466-473

17. Xiaolei Zhang and Congan Ma and Chen Shen. Task scheduling based on improved bat algorithm
under logistics cloud service. Application Research of Computers. 2015; 6:017.

18. Raghavan, S and Marimuthu, C and Sarwesh, P and Chandrasekaran, K. Bat algorithm for scheduling
workflow applications in cloud. In: 2015 International Conference on, Circuit, Electronic Design, Com-
puter Networks & Automated Verification (EDCAV). IEEE; 2015. p. 139–144.

19. Cheng Min-Yuan and Prayogo Doddy. Symbiotic Organisms Search: A newmetaheuristic optimization
algorithm. Computers & Structures. 2014; 139:98–112. doi: 10.1016/j.compstruc.2014.03.007

20. Rajathy, R and Taraswinee, B and Suganya, S. A novel method of using symbiotic organism search
algorithm in solving security-constrained economic dispatch. In: 2015 International Conference on, Cir-
cuit, Power and Computing Technologies (ICCPCT). IEEE; 2015. p. 1–8.

21. Talatahari S. Symbiotic Organisms Search for OptimumDesign of Frame and Grillage Systems. Asian
Journal of Civil Engineering (BHRC). 2015; 17(3):299–313.

22. Tran Duc-Hoc and ChengMin-Yuan and Prayogo Doddy. A novel Multiple Objective Symbiotic Organ-
isms Search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowledge-Based Systems.
2016; 94:132–145. doi: 10.1016/j.knosys.2015.11.016

23. Prasad Dharmbir and Mukherjee V. A novel symbiotic organisms search algorithm for optimal power
flow of power system with FACTS devices. Engineering Science and Technology, an International
Journal. 2015; 19(1):79–89. doi: 10.1016/j.jestch.2015.06.005

24. Eki Ruskartina and Vincent F Yu and Budi Santosa and Redi AAN Perwira. Symbiotic Organism Search
(SOS) for Solving the Capacitated Vehicle Routing Problem. World Academy of Science, Engineering
and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and
Manufacturing Engineering. 2015; 9(5):850–854.

25. Cheng Min-Yuan and Prayogo Doddy and Tran Duc-Hoc. Optimizing Multiple-Resources Leveling in
Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineer-
ing. 2015;:04015036.

26. Kalra Mala and Singh Sarbjeet. A review of metaheuristic scheduling techniques in cloud computing.
Egyptian Informatics Journal. 2015; 16(3):275–295. doi: 10.1016/j.eij.2015.07.001

27. Hwang Chii-Ruey. Simulated annealing: theory and applications. Acta ApplicandaeMathematicae.
1988; 12(1):108–111.

28. Meihong, Wang andWenhua, Zeng. A comparison of four popular heuristics for task scheduling prob-
lem in computational grid. In: 2010 6th International Conference on, Artificial Intelligence, Knowledge
Engineering and Data Bases (AIKED’07).; 2007. p. 206–210.

29. Wu, Zhangjun and Ni, Zhiwei and Gu, Lichuan and Liu, Xiao. A revised discrete particle swarm optimi-
zation for cloud workflow scheduling. In: 2010 International Conference on, Computational Intelligence
and Security (CIS). IEEE; 2010. p. 184–188.

30. Sivanandam SN and Visalakshi P. Scheduling workflow in cloud computing based on hybrid particle
swarm algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(7):1560–1566.

31. Tao, Qian and Chang, Huiyou and Yi, Yang and Gu, Chunqin and Yu, Yang. QoS constrained grid
workflow scheduling optimization based on a novel PSO algorithm. In: Eighth International Conference
on, Grid and Cooperative Computing, 2009. GCC’09. IEEE; 2009. p. 153–159.

32. Yin Peng-Yeng and Yu Shiuh-Sheng andWang Pei-Pei andWang Yi-Te. Multi-objective task allocation
in distributed computing systems by hybrid particle swarm optimization. Applied Mathematics and Com-
putation. 2007; 184(2):407–420. doi: 10.1016/j.amc.2006.06.071

33. Sivanandam SN and Visalakshi P. Dynamic task scheduling with load balancing using parallel orthogo-
nal particle swarm optimisation. International Journal of Bio-Inspired Computation. 2009; 1(4):276–286.
doi: 10.1504/IJBIC.2009.024726

34. CHEN Jing and PAN Quan-ke. Discrete Particle Swarm Optimization Algorithm for Solving Indepen-
dent Task Scheduling. Computer Engineering. 2008; 6:080.

35. Yin Peng-Yeng and Yu Shiuh-Sheng andWang Pei-Pei andWang Yi-Te. Task allocation for maximiz-
ing reliability of a distributed system using hybrid particle swarm optimization. Journal of Systems and
Software. 2007; 80(5):724–735. doi: 10.1016/j.jss.2006.08.005

36. Visalakshi P and Sivanandam SN. Dynamic task scheduling with load balancing using hybrid particle
swarm optimization. Int. J. Open Problems Compt. Math. 2009; 2(3):475–488.

37. Cerny V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algo-
rithm. Journal of Optimization Theory and Applications. 1985; 45(1): 41–51. doi: 10.1007/BF00940812

38. Kirkpatrick S. and Gelatt C.D Jr. and Vecchi M.P. Optimization by simulated annealing. Science. 1983;
220(4598): 671–680. doi: 10.1126/science.220.4598.671 PMID: 17813860

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 28 / 29

http://dx.doi.org/10.1016/j.compstruc.2014.03.007
http://dx.doi.org/10.1016/j.knosys.2015.11.016
http://dx.doi.org/10.1016/j.jestch.2015.06.005
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.1016/j.amc.2006.06.071
http://dx.doi.org/10.1504/IJBIC.2009.024726
http://dx.doi.org/10.1016/j.jss.2006.08.005
http://dx.doi.org/10.1007/BF00940812
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860

39. Strobl Maximilian AR and Barker Daniel. On Simulated Annealing Phase Transitions in Phylogeny
Reconstruction. Molecular Phylogenetics and Evolution. 2016; 101:46–55. doi: 10.1016/j.ympev.2016.
05.001 PMID: 27150349

40. Ali, Shady and Siegel, Howard Jay and Maheswaran, Muthucumaru and Hensgen, Debra. Task execu-
tion time modeling for heterogeneous computing systems. In: (HCW 2000) Proceedings. 9th, Heteroge-
neous ComputingWorkshop. IEEE; 2000. p. 185–199.

41. Maheswaran, Muthucumaru and Ali, Shoukat and Siegal, HJ and Hensgen, Debra and Freund, Richard
F. Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing
systems. In: (HCW’99) Proceedings. Eighth, Heterogeneous Computing Workshop. IEEE; 1999. p. 30–
44.

42. Calheiros Rodrigo N and Ranjan Rajiv and Beloglazov Anton and De Rose César AF and Buyya Rajku-
mar. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and Experience. 2011; 41(1):23–50.

43. NASA Ames iPSC/860. The NASA Ames iPSC/860 log; 2016. Available from: http://www.cs.huji.ac.il/
labs/parallel/workload/l_nasa_ipsc/

44. HPC2N. The HPC2N Seth log; 2016. Available from: http://www.cs.huji.ac.il/labs/parallel/workload/l_
hpc2n/index.html

Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing

PLOS ONE | DOI:10.1371/journal.pone.0158229 June 27, 2016 29 / 29

http://dx.doi.org/10.1016/j.ympev.2016.05.001
http://dx.doi.org/10.1016/j.ympev.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27150349
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html

