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Abstract

Background: Next-Generation Sequencing (NGS) enables large-scale and cost-effective sequencing of genetic
samples in order to detect genetic variants. After successful use in research-oriented projects, NGS is now entering
clinical practice. Consequently, variant analysis is increasingly important to facilitate a better understanding of disease
entities and prognoses. Furthermore, variant calling allows to adapt and optimize specific treatments of individual
patients, and thus is an integral part of personalized medicine.
However, the analysis of NGS data typically requires a number of complex bioinformatics processing steps. A flexible
and reliable software that combines the variant analysis process with a simple, user-friendly interface is therefore
highly desirable, but still lacking.

Results: With AMLVaran (AML Variant Analyzer), we present a web-based software, that covers the complete variant
analysis workflow of targeted NGS samples. The software provides a generic pipeline that allows free choice of variant
calling tools and a flexible language (SSDL) for filtering variant lists. AMLVaran’s interactive website presents
comprehensive annotation data and includes curated information on relevant hotspot regions and driver mutations.
A concise clinical report with rule-based diagnostic recommendations is generated.
An AMLVaran configuration with eight variant calling tools and a complex scoring scheme, based on the somatic
variant calling pipeline appreci8, was used to analyze three datasets from AML and MDS studies with 402 samples in
total. Maximum sensitivity and positive predictive values were 1.0 and 0.96, respectively. The tool’s usability was found
to be satisfactory by medical professionals.

Conclusion: Coverage analysis, reproducible variant filtering and software usability are important for clinical
assessment of variants. AMLVaran performs reliable NGS variant analyses and generates reports fulfilling the
requirements of a clinical setting. Due to its generic design, the software can easily be adapted for use with different
targeted panels for other tumor entities, or even for whole-exome data. AMLVaran has been deployed to a public web
server and is distributed with Docker scripts for local use.

Keywords: Genomics, NGS sequencing, Variant calling, Variant annotation, Variant filtering, Variant interpretation,
Mutation database, Diagnostic report

*Correspondence: c.wuensch@uni-muenster.de
1Institute for Medical Informatics, University of Münster,
Albert-Schweitzer-Campus 1, Building A11, Münster, Germany
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0668-3&domain=pdf
http://orcid.org/0000-0003-4367-3857
mailto: c.wuensch@uni-muenster.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Wünsch et al. BMCMedical Genomics           (2020) 13:17 Page 2 of 17

Background
Next-Generation Sequencing (NGS) enables large-scale
and very cost-effective sequencing of genetic samples for
the detection of mutations. Already being used in research
worldwide, sequencing data is now starting to enter also
routine care settings [1]. It can be a valuable instrument
for a better understanding of the emergence and progno-
sis of a disease [2]. Also, it can help to optimize the type of
treatment for personalized medicine [3].
Implementing NGS into clinical settings imposes a lot of

challenges [4].Most noticeably, analysis of raw sequencing
data is complex due to the large variety of available bioin-
formatics pipelines and associated configuration param-
eters. With rapid development of new analysis pipelines
that tend to produce highly differing result lists (“moving
target”), bioinformatics expertise is required for an opti-
mized analysis. Even sophisticated pipelines suffer from
artifacts caused by immanent weaknesses of the sequenc-
ing technology. Discrimination between polymorphisms
and pathogenic variants is not trivial, either. The type
of tissue to be analyzed is important as well, since rele-
vant variants tend to occur in low frequencies for tumor
probes due to heterogeneous cell mixtures. The variety
of available clinical databases complicates the annotation
of identified variants, and their incompleteness leads to a
high number of variants of unknown significance, calling
for further (manual) inspection.
Clinical use requires software that is able to perform

a complete bioinformatics analysis, while offering a user
interface that can be operated by medical or labora-
tory personnel without a dedicated bioinformatics back-
ground. For clinical usage, it is furthermore critical to
guarantee reproducibility and traceability of the generated
results over long time periods. With ongoing research to
clarify the clinical significance of unknown variants and
increasing development of related systems in the clini-
cal routine, software tools for the automated detection
of disease-specific variants are increasingly relevant for
routine clinical practice.
Acute Myeloid Leukemia (AML) is a myeloid disease

that is particularly well characterized regarding genetic
aberrations. The prognosis for affected patients is sig-
nificantly influenced by certain driver mutations [5, 6].
With NGS-based techniques already being used in AML
routine care, this leukemia entity is a particularly promis-
ing target for the design and evaluation of a flexible,
automated and user-friendly bioinformatics software.

Related work
Available solutions for variant analysis from NGS
sequencing data include commercial products (e.g. the
Qiagen CLC Workbench), which are closed-source and
therefore provide only limited insights into variant call-
ing and filter algorithms and only limited options for

customization. Even more critical, commercial web-based
tools (like VarSome [7]) typically require the sequenc-
ing data to be uploaded to the manufacturer’s servers.
Open-source command line tools are available for a mul-
titude of specialized subtasks of NGS analyses, but require
more in-depth bioinformatics knowledge (e.g. BWA [8]
for sequence alignment, GATK [9], FreeBayes [10], Sam-
Tools [11] for variant calling or SNPeff [12] or AnnoVar
[13] for biological annotations, etc.).WhileMcKerrel et al.
present a complete pipeline optimized for AML specific
source data [14], their software does not provide a graphi-
cal user interface, and therefore requires time-consuming
configuration and adaptation by bioinformaticians. Fur-
thermore, a number of generic graphical tools exist, which
integrate different variant calling pipelines and aim to
automate the variant calling and annotation process (e.g.
Galaxy [15], Chipster [16], CoVaCS [17]). However, since
the main focus of these tools is variant calling, their out-
put is typically presented as basic lists of detected variants,
which have to be further inspected and annotated to yield
applicable information. Annotation tools like VariantDB
[18] or VIS [19] start from a list of detected variants
and can accumulate and manage annotation information
from various sources, but are limited to basic research
contexts. Neither of these tools addresses specific clinical
requirements like reproducibility, long-term data storage
or usability for non-bioinformaticians, and are therefore
of limited use in a clinical setting. The combination of a
complete variant calling pipeline, a management system
for annotation databases and pre-curated literature data,
detailed clinical reports and elaborated, interactive visual-
izations is desirable for use in routine patient care, but not
primarily provided by any of these tools.

Objectives
In this article, we present AMLVaran, the AML Variant
Analyzer. AMLVaran is a web-based software platform
for analysis of somatic variants on targeted NGS data,
addressing the requirements of a clinical setting. This
platform shall cover the complete workflow from raw
sequencing data to interactive clinical reports. It shall pro-
vide a flexible, modular analysis pipeline that can combine
an arbitrary number of variant calling tools, and offer a
generic model for variant filtering through a customizable
scoring scheme. AMLVaran shall include a user-friendly
interface that presents results in form of a structured
clinical report with interactive features, which support
further research. Furthermore, comprehensive curated
data on therapy-relevant hotspot regions shall be incorpo-
rated, and presence, absence, or coverage of known driver
mutations related to a chosen disease entity shall be pro-
vided. AMLVaran shall be tested for use with AML data,
but is intended as a generic system adaptable to other
cancer types. Since the software is designed for clinical
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application, AMLVaran’s focus is the generation of accu-
rate and reliable results. We therefore apply the program
to three AML datasets, and test its recall and precision
to evaluate the software’s performance, 0.95 is targeted
for recall and precision. Results of two user-studies shall
provide evidence for AMLVaran’s practical usability by
medical professionals.

Implementation
System architecture
AMLVaran is composed of three main components. First,
a flexible, generic variant calling pipeline that generates
variant lists from raw sequencing data. Second, an interac-
tive website, which presents the analysis results together
with interactive filter settings and creates a standardized,
rule-based clinical report. A relational database storing
both, results and annotation data, is the third integral part
of AMLVaran.
The workflow consists of the following steps: A web-

form manages the upload of one or more NGS raw
sequencing files for analysis. Acceptable formats include
aligned data in the Binary Alignment Map format (.bam,
[20]) or raw data in fastq format [21]. The input files
are subsequently processed by the variant calling pipeline,
which invokes an adaptable number of variant calling
tools and combines their results according to a customiz-
able scheme.When the analysis is finished, the output can
be inspected on AMLVaran’s web interface.
AMLVaran’s web interface provides four main func-

tions for presenting its results, grouped into separate
views. The first view lists basic information concerning
the patient, and metadata for the sample that is currently
being examined. The second one presents an overview
of the mutation status for the predefined driver muta-
tion sites. For each mutation site, additional information
can be retrieved, such as manually curated information
regarding the significance of the respective variant for the
disease in question. A coverage plot and details about
the detected mutations in the chosen region are inte-
grated as well. Additionally, predefined diagnostic rec-
ommendations are included, which are derived from the
mutation status of known driver mutation sites. The
third view provides an interactive browser, which dis-
plays all detected variants. Results can be dynamically
filtered and sorted by different criteria, e.g. variant allele
frequency or read coverage. The last view features a
genome browser, which allows to inspect the mutation of
interest on the basis of aligned reads from the original
sequence data.
The most important pieces of information from the

dynamic website are composed into a static, clearly struc-
tured clinical report containing the diagnostic and thera-
peutically relevant details. A tracking system is provided,
ensuring, that in case of updated annotation databases,

the previously generated reports remain accessible. The
web-interface is described in detail in the AMLVaran
QuickStart Guide (see Additional file 2).
The architecture of the main system components is

shown in Fig. 1.
Data security aspects have been taken into account

throughout development, details on which are provided in
Additional file 1: Section 2.

Implementation details
Generic variant calling pipeline
A central challenge for AMLVaran as well as related tools
is the generation of reliable and clinically usable variant
lists from a sequenced sample. Different variant call-
ing tools generate highly differing variant lists [22], and
several studies indicate, that none of the available open-
source variant calling algorithms can obtain the sensitivity
and specificity required for clinical usage [17, 23, 24].
It has been shown, that combining several variant call-

ing tools can improve the quality of the resulting variant
lists, but an optimized filtering strategy to remove false
positive calls is equally important for satisfying results
[25]. Chiara et al. [17] showed, that the use of three calling
tools with a majority vote consensus strategy can lead to
a valuable increase in sensitivity. By combining eight vari-
ant callers with a sophisticated score calculation strategy,
Sandmann et al. achieved an even greater increase in sen-
sitivity of up to 0.99 [24]. These improvements in detec-
tion of low frequency mutations, which are clinically rele-
vant, in particular to detect minimal residual disease, now
allow for reliable variant calling, especially with tumor
samples.
Hence, we implemented a generic variant calling

pipeline to support the combination of arbitrary vari-
ant calling tools. It was initialized with the tools used
in CoVaCS [17] and appreci8 [24], but can be equipped
with any other combination of variant callers as well.
The results of the individual tools are then integrated via
Variant Tools [26] and are subsequently filtered using a
flexible, generic score calculation scheme.
The workflow of the generic pipeline is shown in Fig. 2.

A detailed documentation of the employed tools is pro-
vided in Additional file 3.

Storing variants
The Variant Call Format (vcf ) [29] defines a standard for
storage of genetic variants in a text file. However, the
vcf definition allows equivalent variants to be represented
in an ambiguous way. Even widely-used databases like
dbSNP contain up to 14% non-normalized variants, and
4.6% unrecognized duplicates [30].
In order to get a unified, unique representation of

all variants, a number of preprocessing steps is applied
to AMLVaran’s variant lists, as well as the annotation
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Fig. 1 Overview of AMLVaran’s system architecture. Uploaded raw sequencing data are processed by the mutation calling pipeline and the
resulting variants are stored in the database. For display at the web interface, the variants are compared with predefined mutation sites and
combined with the most up-to-date information from annotation tables. Afterwards, the output is presented in form of a dynamic mutation
explorer with comprehensive filter settings. A standardized clinical report is generated from the predefined driver mutation sites as well

databases. The preprocessing is described in Additional
file 1: Section 1.

Variant filtering
The combination of variant callers increases sensitiv-
ity compared to only one tool, but at the expense of
a higher false positive rate, if no additional filters are
employed. Sandmann et al. [24] showed, that a simple
consensus strategy as proposed before [17] cannot pro-
vide satisfactory results with regards to sensitivity and
specificity. Sandmann et al.’s appreci8 therefore employs a
more sophisticated strategy. The output from eight vari-
ant callers is combined, and thoroughly filtered with a
complex score calculation system. An Artifact and Poly-
morphism score (A/P score) is calculated from various cri-
teria [24], which can then be used to classify the variants.
In principle, however, any rule-based filtering process of
variant lists can be described by a criteria-based scoring
scheme.
To further improve the filtering process, a formal lan-

guage for the definition of variant filtering scores was
developed and implemented. This language is flexible
enough to implement complex scoring algorithms like
appreci8, easily adaptable, and customizable by a graphi-
cal interface [31]. A scoring scheme is specified in JSON
and consists of a list of criteria which contribute to the

score by a defined weight. Individual criteria can be linked
by logical operators AND and OR, and can include vari-
able thresholds. The software is able to derive a graphical
interface from the abstract scheme. This enables the end
user to activate and deactivate individual criteria, and to
adjust threshold values and weightings as needed.
The novel Scoring Scheme Definition Language (SSDL)

is universally applicable in the sense that, once created,
scoring schemes can be used not only within the AML-
Varan platform, but also in standalone applications, web-
sites, and in standard applications such as R or Microsoft
Excel. Implementations in JavaScript, R, and Excel VBA
are already publicly available [32]. A formal definition of
the SSDL’s grammar in Backus-Naur-Form is provided in
Fig. 3.
A subset of the features of SSDL, as well as the resulting

graphical user interface, is shown in Fig. 4.
Furthermore, a default scoring scheme for the appreci8

filtering process is available from our website[33] and
from the AMLVaran package.

Gathering annotation data
For adequate biological and clinical interpretation of
variants, annotation with comprehensive and up-to-date
biological information is a necessity. However, clinical
annotation databases are often updated on a regular basis,
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Fig. 2 Flow chart of the generic variant calling pipeline featured in AMLVaran. An uploaded bam-file is processed by an arbitrary number of variant
calling tools (configurable by templates). The resulting variant lists are then normalized and integrated into one common list (in vcf format). For the
resulting list of variants, a functional annotation via SNPeff [12] and a calculation of sample-specific quality parameters (such as allelic frequency,
base quality, etc.) from the bam file is performed via bam-readcount [27]. By means of a basic filter, low quality variants are excluded. For the
remaining ones, an effect prediction using Provean [28] is carried out. The resulting data is stored in a database and then processed by an advanced
filtering strategy

and there are several options to address these changes
[34].
On the one hand, there is a strong medical motivation

to always consider the most recent biological data regard-
ing the detected mutations for both old and new samples.
On the other hand, it is required to reproduce previous
reports based on annotation from the past, for practical as
well as legal reasons.
To meet these requirements, an interactive online

report equipped with the latest available biological anno-
tations is presented to the user. Simultaneously, an archive
of all previously generated reports is stored on AML-
Varan’s server. A report is automatically saved in PDF
format each time the results page is accessed. As proposed
by Cutting et al. [34], references to a set of online anno-
tation sources are integrated, allowing for easy access to
most recent annotation sources.

The technical implementation features stored variant
lists and annotation data in separate tables within the
database. Whenever a sample is retrieved, relevant data
are merged.
Currently, AMLVaran uses dbSNP [35], COSMIC1 [36],

ClinVar [37], dbNSFP [38], 1000Genomes [39], ESP6500
[40], ExAC [41], as well as functional prediction data from
PROVEAN [28] and SIFT [42] for variant annotation.

Identifying diagnostically relevantmutations
For certain cancer types such as AML, specific driver
mutations are known to influence the prognosis of the
patient, as well as the choice of therapy. Several of these
are summarized in the WHO Guidelines of 2017 [43] for
AML. Precise mapping of the detected mutations to the

1COSMIC is not available for public usage due to license restrictions.
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Fig. 3 Formal definition of the SSDL in Backus-Naur-Form. A filter scheme consists of one or more categories, which can hold one or more entries,
each of which is a rule that contributes to the artifact and/or polymorphism score. Entries can be combined by AND- or OR-nodes. Customizable
thresholds can be included as well. The primitive data types (<String>, <Integer>, etc.) are defined canonically. <Function> is an external boolean
function specifying the condition that has to be fulfilled for the rule to be applied. The function can utilize the syntax of the underlying R/JavaScript
programming language. Access to the columns of the variant table is provided by the custom function “x(columnName)”. Other provided functions
like “isEmpty(string)” or “stringContains(haystack, needle)” can be used in order to define language-independent filter schemes

Fig. 4 Generic model for A/P-score calculation. a Visualization of the generic, system-independent description in SSDL format. b The graphical panel
for selecting and adapting the parameters for calculation of artifact and polymorphism scores is derived from the SSDL code shown in a. Elements
such as categories, simple combinations like AND and OR, checkboxes and adjustable thresholds can be freely combined. The thresholds can be
adapted, and the score calculation strategy can be fully customized. By default, a score calculation scheme based on appreci8’s complex filtering
strategy is provided (see Additional file 4)
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listed reference mutations is necessary for an automated
application of these guidelines. This mapping process is
aggravated by differing levels of accuracy regarding muta-
tion positions in the literature. While a point mutation in
DNMT3A at position R882 that is associated with a bad
prognosis in AML [44] is well defined, a 4 bp frameshift
insertion in NPM1 around position 960 (chr5:170837544)
has rather positive effect on therapy response [45], how-
ever its actual position can vary. Similarly, c-KIT inser-
tions/deletions anywhere in exon 8 are associated with an
increased risk of relapse [46].
For the hotspot overview, a clear, unambiguous and

reproducible identification of a mutation site is there-
fore needed, regardless of the different kinds of muta-
tion descriptions. To achieve this, all mutation sites are
stored in AMLVaran’s databases with precise genomic
coordinates. As set of genomic ranges (from 1 bp to
complete exons) can be associated with each mutation.
Additionally, restrictions to certain mutation types like
frameshift insertions can be specified. Any matching,
non-synonymous, not benign variant entry located in the
specified areas is then regarded as driver mutation.
However, it is equally important to reliably rule out

the presence of relevant driver mutations. This requires,
that no relevant mutation was found in the correspond-
ing region, but also that the coverage of the entire region
is sufficiently high. Only then a site is classified as “wild
type” by AMLVaran.

Implications defined in any disease specific treatment
guidelines can be automatically derived on the basis of
the detection or exclusion of these defined driver muta-
tions, and are displayed as diagnostic recommendations.
The rule-based system is stored within the database, and
can be edited by the system’s administrator.

Clinical reports
In interviews with clinical users, a need for a quick and
standardized way of transferring AMLVaran’s results into
electronic healthcare or archiving systems was expressed.
To fulfill this demand, a standardized PDF report as
shown in Fig. 5) is created for each sample, contain-
ing the most relevant information for clinical diagnostics.
In particular, it includes the detected or excluded driver
mutations, the coverage distribution in the stored hotspot
areas, as well as predefined curated information about
clinical implications with references to corresponding
studies. These reports are structured from coarse to fine
[34], starting with an overview of the predefined hotspot
mutation sites and their status, as well as displaying more
detailed information on each of the hotspot areas. In order
to ensure reproducibility of medical results, further details
are provided, e.g. type and version of the analysis.

Interactive variant explorer
In addition to already known clinically relevant driver
mutations, assessment of further mutations can be rele-

Fig. 5 Visualization of a sample clinical report. AMLVaran’s clinical reports consist of an overview of the predefined mutation sites. For each site, a
color-coded area shows one of three states. Red indicates that a relevant mutation was found in the given area, yellow intervals have no associated
mutation, but the coverage is not sufficient to allow a safe exclusion of variants. Finally, the presence of mutations in green areas can reliably be
excluded due to good coverage, and lack of mutation evidence. Based on the mutation status and the stored diagnostic rules, the applicable
diagnostic information is displayed. Furthermore, an assessment summary can be added by the evaluating pathologist. The report can be
augmented with more detailed information for each mutation site, including details on the detected mutations, the coverage in the examined area,
and general information on the function of the considered gene
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vant for certain cancer types [47]. Clinical users expressed
interest in comprehensive and up-to-date information on
these variants, and for interactive overviews in order to
enable quick and accurate interpretation. While AML-
Varan retrieves known clinical information from anno-
tation databases like ClinVar or COSMIC, additional
resources are required for those mutations. Hence, func-
tional prediction tools, conservation scores and mutation
frequency in sequencing projects, such as 1000 genomes,
were integrated into the platform, and provide informa-
tion on the potential pathogenicity of variants. The AML-
Varan software integrates available information for each
detected variant within an interactive variant explorer,
together with adjustable filtering and sorting options
(Fig. 6a). All outputs of the variant explorer, with applied
scoring, filtering and sorting settings, can be exported for
further processing in tabular form.
For each variant, a detailed view with all available anno-

tation can be selected, including eight functional predic-
tion scores. For each functional prediction tool, the Con-
verted Rank Score from dbNSFP [48] is displayed to sup-
port assessment of harmfulness of the current mutation,
compared to predictions of all other non-synonymous
coding SNVs (Fig. 6b).
In addition, it is possible to inspect aligned reads for

each mutation site with the integrated genome browser
(IGV [50]).

Results
AMLVaran was installed on a virtual server with high
performance hardware, and on a standard desktop work-
station. Detailed information regarding hardware configu-
ration and runtime is provided in Additional file 1: Section
5. The software’s performance was evaluated on AML and
MDS datasets, and tested with regards to its sensitivity,
positive predictive value, and general usability.
Three datasets were analyzed with the generic pipeline

in its default appreci8-based configuration, with the fol-
lowing eight variant calling tools: GATK 3.32 [9], Free-
Bayes 1.0.2 [10], SamTools 1.3 [11], LoFreq 2.1.2 [51],
Platypus 0.8.1 [52], SNVer 0.5.3 [53], VarScan 2.4.0 [54],
and VarDict (Java) 1.5.5 [55].
For annotation and variant filtering process, the follow-

ing databases were used: dbSNP v150 (2017-04-03) [35],
ClinVar (2017-12-31) [37], COSMIC v833 (2017-11-07)
[36], 1000Genomes v5b (all, Aug 2015) [39], ExAC 65000
v0.3 (all, 2015-11-29) [41], and ESP6500 (2014-12-22) [40].
Precalculated prediction scores were downloaded from

PROVEAN v1.1 [28].
The test system with results on the described datasets

are available at https://amlvaran.uni-muenster.de [56].
2GATK is only available for public usage from version 4 and higher due to
license restrictions.
3COSMIC is not available for public usage due to license restrictions by the
authors.

Validation of the generic variant calling pipeline
Validation strategy and source data
To validate the generic AMLVaran pipeline in its appreci8-
like configuration, its output was compared to the original
appreci8’s output.
AMLVaran was used to analyze a set of three published

datasets. Two of them were well characterized datasets
from myelo-dysplastic diseases, for which biological vali-
dation data was available (MDS-1 and MDS-2). The third
dataset (AML-1) was taken from routine AML diagnos-
tics, which resembled the intended use case, but only
limited validation data was available.
MDS-1 and MDS-2 were collected and sequenced

within the European MDS Triage project and focused on
patients with MDS. The latter one was provided by the
University Hospital of Halle, and contained a mixed set
of samples (67x AML, 1x AL, 2x t-AML, 2x s-AML after
MDS, 1x MDS/AML unsure diagnosis, 17x MDS, 19x
MPN and 10x unknown diagnosis).
Source data is available for download from the NCBI

SequenceReadArchive (BioProjectID: PRJNA388411 [57]).
The raw variant result tables are provided in Additional
files 5, 6, 7 and 8.

Evaluation on hotspot regions
For clinical use, it is crucial, that existing variants are
detected with very high reliability. No less important,
however, is the pipeline’s ability to safely exclude the
presence of mutations for a chosen position. This is of spe-
cial importance for hotspot regions, which are typically
designed to contain mutations relevant for treatment.
First, we evaluated results within these defined, therapy-

relevant areas for all three datasets. For both MDS and
AML datasets, there was a high overlap between the two
pipelines and the biological truth. In total, 415 out of
419 variant calls matched for AMLVaran and appreci8
and the ground truth, leading to sensitivity ≥ 0.99,
and PPV ≥ 0.99. The only two cases of discrepancy
between AMLVaran and appreci8 were borderline cases
that were reported by only two or three out of eight vari-
ant callers, respectively. Differences between dbSNP ver-
sions changed the ratings of those variants in AMLVaran’s
output.
A detailed comparison of the detected variants within

these regions is provided in Table 1.

Evaluation on the complete target region
Next, we considered the whole sequenced target region of
42 kbp length, which includes segments of 19 genes. The
target region’s average coverage was 1450.
Almost all true positive calls from appreci8’s refer-

ence implementation were confirmed by AMLVaran. For
dataset MDS-1, 395 of 397 true variants were identified,
and all 89 variants of the MDS-2 dataset overlapped in

https://amlvaran.uni-muenster.de
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Fig. 6 Overview of AMLVaran’s variant explorer. aMain view of the variant explorer. The detected variants are presented as a dynamic, customizable,
interactive table that allows for comprehensive, easy-to-use real-time filtering. Variants can be filtered by gene name in the displayed gene panel,
which shows all genes with their number of variants and allows the user to restrict the output to one or more genes. Further filtering options
include the region type (exon, intron, hotspot regions), mutation type (non-synonymous, protein-coding, pathogenous effect prediction), and
filtering by minimum quality values (coverage, variant allelic frequency, base quality). Certain kinds of variants can be excluded, e.g. variants rated as
artifacts or polymorphisms by appreci8. The presented table can be easily adjusted by selecting the columns to be displayed, changing the sorting
order and adding custom filters per column. b Detailed view of all annotation information available in AMLVaran for a variant. Information is divided
into different tabs, which show the affected gene (name, function, pathways), the detected variant (protein effect, allele frequency, base quality), the
effects of the variant in various medical databases, functional prediction scores from eight tools including rank scores with graphical representation,
and a large number of literature references to the chosen gene and variant, retrieved on-the-fly from the constantly updated CiVIC database [49]

both outputs. Likewise, 16 of appreci8’s 17 false positive
calls for datasetMDS-1 and all three false positive calls for
dataset MDS-2 were matching in AMLVaran’s results.
The observed differences can be explained by an

improved normalization procedure and updated reference

databases. Due to these improvements, the sensitivity of
AMLVaran’s pipeline (0.98) was higher than of the refer-
ence implementation (0.95) for MDS-1. For MDS-1, 12
previously filtered true positive variants were correctly
classified by AMLVaran, and another six new high-quality
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Table 1 Accumulated numbers of variants in hotspot regions detected by AMLVaran in comparison with appreci8 reference
implementation

MDS-1 (n=237, #Mut=195) MDS-2 (n=46, #Mut=52) AML-1 (n=119, #Mut=172)

appreci8 AMLVaran appreci8 AMLVaran appreci8 AMLVaran

Called variants 193 194 52 52 172 171

True positives 193 193 52 52 172 171

False positives 0 1 0 0 0 0

Sensitivity 0.9897 0.9897 1.0000 1.0000 1.0000 0.9942

PPV 1.0000 0.9948 1.0000 1.0000 1.0000 1.0000

candidate variants were identified, for which validation is
pending.
In general, AMLVaran’s pipeline was slightly more sen-

sitive than the original appreci8 implementation, resulting
in 12 additional false positive calls that were reported by
AMLVaran. These differences were caused by changes in
the updated dbSNP version (10 variants), and a corrected
bug in appreci8’s method for the counting of samples (2x).
For dataset MDS-2, AMLVaran recognized all 89 vali-

dated mutations. Another promising candidate mutation
as well as five additional false positive calls were reported.
Reasons for the differences were differing PM flag due
to newer dbSNP version (three variants), an update to
the integrated COSMIC version (2x), and improved InDel
normalization (1x).
In total, AMLVaran’s variant lists showed high concor-

dance with the reference results for both MDS datasets.
A detailed comparison of the results of both pipelines and
the biological ground truth is shown in Fig. 7.

Evaluation of dataset AML-1
For dataset AML-1, the investigated target regions were
much larger. In total, 523 kbp in 112 genes were ana-
lyzed, with an average coverage of 570 and over 90% of
the unfiltered calls were artifacts/polymorphisms. Since
this dataset originated from routine diagnostics, biologi-
cal validation data was limited to a part of the samples and
to the genes NPM1 (n = 75), JAK2 (n = 10), FLT3_TKD
(n = 50), and CEBPA (n = 30).
For these biologically validated sites, AMLVaran

detected 51 out of 55 variants. In addition, AMLVaran
did not report a single false positive call for any of the 110
validated wild-type alleles. While the program did report
two unexpected calls for FLT3-TKD, these two variants
were also reported by appreci8 and validated by expert
inspection afterwards.
Compared to the biological truth, AMLVaran achieved

a high number of overlapping variants, resulting in high
sensitivities of 0.95 resp. 1.00 for theNPM1 and JAK2 vari-
ants. For FLT3-TKD, one variant was missed. A sensitivity
of 0.67 or higher was achieved for CEBPA, a gene that is
typically correlated to coverage issues and high numbers

of false positive and false negative variants [58]. Detailed
results for all groups of validated mutations are shown in
Fig. 8.
In total, AMLVaran reported 504 variants in 119 sam-

ples for dataset AML-1, ranging from 0 to 13 variants per
sample, and with an average of 4.2 calls per sample. In
contrast to datasets MDS-1 and MDS-2, more differences
betweenAMLVaran and appreci8 were noticeable. A set of
426 variants matched between AMLVaran and appreci8,
however 78 variants were called by appreci8 only, and
162 additional variants were specific for AMLVaran. It
stands to reason, that these differences are caused by the
same effects that were discovered for datasets MDS-1 and
MDS-2 (database updates and improvements to normal-
ization technique). Results for validated variants indicated
that deviations preferentially affected cases of high ambi-
guity. Hotspot mutations with high coverage or other
unambiguous variants were rarely affected.

Evaluation of the system’s usability
The development of AMLVaran was driven by a focus
group, consisting of computer scientists as well as sev-
eral clinical domain experts and medical professionals.
The involvement of clinical experts was especially valu-
able to identify and prioritize user requirements. Two user
studies were conducted during the development process
to ensure that the software met critical requirements and
offered good usability. In the first user study, a prototype
of the software [59] was evaluated, while the final AML-
Varan program was examined in the second study. 9 and
14 independent medical professionals were asked to fulfill
application-related tasks using AMLVaran, respectively.
Afterwards, participants were asked to rate their experi-
ence with regards to the software’s general performance,
functionality, and user-friendliness.
During the first test of the prototype, all 9 users had dif-

ficulties with the interpretation of the presence or severity
of given hotspot mutations. On average only 4.3 of 8
test cases were solved correctly. None of the participants
was able to answer all 8 cases correctly. Three persons
achieved 6 of 8 points, and three persons 3 points. From
these test results and unstructured interviews with the
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Fig. 7 Classification of variant calls per dataset. The counts for true positive and false positive detections are shown for all three test datasets. For all
subplots, a black outline shows the variants validated as true positives (ground truth). Of these, the number of detected true positives for the
appreci8 reference and AMLVaran’s results are visualized as blue bars. A horizontal line indicates the number of variants that overlap in both
pipelines. Further to the right side, the number of false positive calls from appreci8 and AMLVaran is displayed in red. False positives reported
concordantly by both pipelines are indicated by a darker shade of color. aMDS-1: n = 237, #Mut=417, #TruePos=407, #FalsePos=28, Sens=0.9760,
PPV=0.9563. bMDS-2: n = 46, #Mut= 89, #TruePos= 89, #FalsePos= 8, Sens= 1.0000, PPV= 0.9175. c AML-1: n = 119, #Mut= 586*,
#TruePos= 422 (*) no biological validation data available

Fig. 8 Results for validated mutations in the AML-1 dataset. The graphic shows the total number of validated samples per variant as a black outline.
The number of true positive detections by AMLVaran is visualized in green, and the number of validated true variants that were missed by the
program are indicated in pale red. The remaining white part of the bar charts indicate positions without calls in AMLVaran, which were confirmed to
be wild-type alleles. There were no false positive detections. a NPM1: n = 75, Detected= 40/42, Sensitivity= 0.9524, PPV= 1.0000. b JAK2: n = 10,
Detected= 6/6, Sensitivity= 1.0000, PPV= 1.0000. c FLT3_TKD: n = 50, Detected= 5/6, Sensitivity= 0.8333, PPV= 1.0000. d CEBPA: n = 30,
Detected= 2/3, Sensitivity= 0.6667, PPV= 1.0000
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test candidates, six major usability issues were identified,
which are described in Additional file 1: Section 3.
Detailed feedback from the study was used to address

the mentioned key factors and to optimize a number
of features during the continued development of the
software. Data presentation was improved by a new,
clear structuring of related views. A detailed view for
each variant was composed and grouped by categories
(Fig. 6b). The use of more intuitive headings, tool-tips,
additional explanatory texts and improved predefined fil-
tering options helped to increase the interpretability of
AMLVaran’s results. A major improvement was the intro-
duction of the central overview of the mutation status
for known driver mutations (Fig. 5). In this overview,
both detection and exclusion of these mutations were
represented as intuitive traffic light color codes.
After these improvements, a second user study was car-

ried out with a different user group of 14 experts, and
updated tasks. Regarding the interpretation of hotspot
mutations, 5 out of 6 test cases were now correctly inter-
preted by all 14 participants. The sixth test case was
excluded due to ambiguity of the data. In addition to the
improved performance, the second group of users also
reported a higher degree of confidence while using the
software during the interviews.
Finally, the perceived usability of the program was rated

by participants of both studies with the help of a standard-
ized questionnaire (System Usability Scale [60]), which
provides a score between 0 and 100 (100 = best usabil-
ity). AMLVaran’s prototype achieved an average score of
69 (median: 67, interquartile range: 14). The final version
of the software reached an average score of 74 (median:
80, IQR: 28), which indicated a notable increase in user-
friendliness. For the second study, 2 out of 14 test persons
had to be excluded from the SUS rating, because they did
not fully complete the test.
According to a study of Bangor et al. [61], scores

between 60 and 80 are typical results for average software
systems. Systems with scores of 73 or above are consid-
ered as “good”, 85 or greater signals “excellent” usability.
It should be noted, that users received no training before
carrying out the study. Figure 9 shows the distribution of
scores assigned by the participants of both user studies.
While the increase of the usability score was only mod-

erate, the overall complexity of the software and the dif-
ficulty of tasks increased in the final version. Since these
tasks required a higher degree of coordination from the
users, the results indicate, that the second system version
was more usable.

Discussion
High sensitivity and precision of variant calling are basic,
but critical requirements for a successful application to
clinical diagnostics. In the presented setting, sensitivity

Fig. 9 Rating of AMLVaran’s usability (SUS) by test persons. The
graphic shows the comparison of the prototype’s performance with
the final version of the software. The bars indicate the percentage of
users who rated the software with a SUS score corresponding to
categories “excellent”, “good”, “average” or “poor”. The final version
was rated with “good” or better by 62% of the participants, while only
33% of the prototype users gave this judgement. A full third of the
users considered the final system to be “excellent”. For both user
studies, one user rated the system as “poor”

≥ 0.98 and PPV ≥ 0.92 (≥ 0.99 for hotspot regions)
were reached for validated datasets, which should be gen-
erally sufficient for clinical use. However, the signal quality
and the incidence of mutations per gene needs to be
considered for a thorough interpretation.
Considerable differences between AMLVaran and the

appreci8 reference implementation were limited to
dataset AML-1, and were largely caused by an improved
normalization method and different versions of anno-
tation databases. For updated versions of appreci8, we
therefore expect smaller differences between this pipeline
and AMLVaran.
Normalization of the different callers’ variant lists

before combination, as well as the use of newer annota-
tion databases, had a relevant influence on the outcome
of the filtering process. In particular, the PM flag in the
dbSNP database, which plays a crucial role in the appreci8
filtering scheme, is subjected to frequent changes, making
the pipeline sensitive to database updates. Although bio-
logical validation was lacking for the AML-1 dataset, we
assume, that the pipeline optimizations led to improved
precision in comparison to the original appreci8 output
due to the apparent improvements in the newer dbSNP
version.
The deviations on dataset AML-1 show, that the out-

put of individual callers and different pipelines can differ
greatly, even for low-volume targeted sequencing data.
We demonstrated, that existing variant calling pipelines
are very sensitive to small adjustments of analysis param-
eters, an effect that is most notable in regions with lower
data quality. It is therefore important, that these param-
eters are chosen based on a sufficient amount of valida-
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tion data for each dataset to account for differences in
sequencing depth, differences in sample preparation, and
other parameters of data generation. This is especially
important for the design of a complete variant calling
pipeline, which combines several variant calling tools to
achieve optimal results.
In general, the performance of the presented pipeline

can be improved through the incorporation of addi-
tional information regarding disease type and hotspot
data. AMLVaran’s default appreci8-like analysis pipeline
takes such information into account. In our datasets, the
sensitivity and precision of variant calling was higher
for hotspots than on the whole target region. Even
with dataset AML-1, 171 of 172 calls in hotspot areas
were matching between both pipelines. This might be
explained by the fact, that some regions of the genome
are difficult to sequence in general and therefore the
knowledge about these regions has limitations.
For clinical use, not all detectable mutations are of the

same relevance. In this scenario, it is oftenmore important
to identify or exclude therapy-relevant mutations than
finding variants of unknown significance. Whole-genome
sequencing with lower coverage and without special con-
sideration of hotspots is therefore expected to yield data
that is less suited for highly sensitive variant calling in
regions of therapeutic interest. Consequently, at present,
targeted sequencing appears to be the best choice for
clinical diagnostics.

Strengths
To the best of our knowledge, AMLVaran is the first freely
available web-based software that combines a sophisti-
cated but generic variant calling pipeline, a complex fil-
ter strategy, and disease-specific evaluation of predefined
mutations in a form that is suitable for clinical application.
The novel Scoring Scheme Definition Language (SSDL)

allows a standardized, reproducible, cross-platform defi-
nition of complex variant filtering systems.
Both, sensitivity and precision of the variant calling

reach the specified goal of 0.95 or higher for hotspot
regions in all three evaluated datasets.
The software not only supports confirmation, but also

exclusion of predefined driver mutations by means of an
integrated coverage analysis. This aspect is often lacking
in common variant calling pipelines.
Since personalized medicine and genetic diagnostics is

a moving target, frequent changes and updates of medi-
cal knowledge have to be taken into account to guarantee
optimal variant filtering and interpretation. AMLVaran
stores variants and annotation data separately. This flexi-
ble annotation approach enables to add, update or remove
complete annotation databases at any time. There is no
need to explicitly re-annotate previously analyzed samples
after a database update.

The databases stored on AMLVaran’s server can also be
used for independent real-time annotation without a full
AMLVaran analysis [32].
In addition to the functionality, usability of a software

system is a key success factor with regards to its practi-
cal use. We therefore assessed the usability of AMLVaran
with medical experts, and refined the software iteratively.
The proportion of users which rated the software with
“good” or better increased from 33% to 62%. This clearly
demonstrates the need for usability studies in clinical NGS
software.
It stands to reason, whether a probabilistic approach of

variant prediction could be employed instead of binary
classification, in order to further improve prediction qual-
ity, especially for borderline variants. A detailed discus-
sion of this idea is included in Additional file 1: Section 4.

Limitations
The distinction between somatic mutations and arti-
facts or polymorphisms is a complex challenge, especially
for tumor samples with potential subclones and lower
expected variant allele frequencies. We chose a combina-
tion approach of several variant callers and demonstrated,
that AMLVaran’s results had a high overlap with the refer-
ence pipeline’s variant lists. However, a productive imple-
mentation of AMLVaran into a clinical routine setting
requires further validation through established sequenc-
ing methods (e.g. Sanger sequencing [62]).
Currently, AMLVaran can detect only SNVs and small

InDels at the required precision rate for clinical use. Gene
fusions or larger tandem duplications, such as FLT3-ITD,
are much more difficult to detect by targeted data. How-
ever, McKerrel et al. have shown, that it is technically
possible to detect structural variants from targeted NGS
data, as long as a suitable sequencing panel is used [14].
With appropriate data and choice of precise detection
tools, AMLVaran can be extended to detect those variants
as well.
AMLVaran has been designed with a clear focus on

analyzing single samples for certain diagnostically rele-
vant mutations. Family-based analyses or investigation of
new mutations in a cohort of samples are not in focus of
this tool. The variant calling algorithms have been opti-
mized for and tested with tumor data only, which requires
special care due to mixture of cell material and high intra-
tumor heterogeneity. Especially, somatic mutations may
be observed at arbitrary low frequencies in tumor probes
[63–65]. This is, why a highly optimized cancer-pipeline
(appreci8) has been selected for AMLVaran, that utilizes
eight callers to provide best sensitivity at the cost of a
higher runtime.
AMLVaran might be applied for germline studies as

well, but the variant calling and filtering algorithms should
be adapted for this purpose.
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Transferability / universality
AMLVaran is a generic application for NGS variant anal-
ysis, as it offers a freely customizable scoring scheme
interface, which can be used to define a multitude of
score calculation and filter schemes. Furthermore, it can
be equipped with any variant calling tools, and differ-
ent targeted sequencing panels are available for selection.
Custom panels can be imported via the web interface as
well.
To adapt AMLVaran for other diseases, predefined

driver mutation sites have to be changed and the rule
system for treatment guidelines is to be adapted in the
database.
AlthoughAMLVaran has been developed and optimized

for targeted NGS sequencing, it may be used for whole-
exome (WES) data as well. Some notes on recommended
adjustments, as well as a comparison of runtimes and
number of detections when used with a WES germline
sample can be found in Additional file 1: Section 6.

Future work
In a pre-clinical user study, AMLVaran was well accepted
by medical experts. The next step towards clinical use
would be prospective evaluation and validation in a suit-
able clinical setting. At a later stage, integration in the
Electronic Health Record system would be advantageous.

Conclusions
With AMLVaran, we have developed a software system
that enables variant analysis on NGS sequencing data and
fulfills central requirements for the utilization in clinical
routine care.
The presented software platform performs highly reli-

able variant calling, and achieves sensitivities of at least
0.95 on several datasets, as well as precision scores of at
least 0.92, with a minimum precision of 0.99 on hotspot
regions. None of the eight variant callers was able to
achieve such high values on the tested datasets, when
applied alone. This underlines the need for validation of
present NGS pipelines before use.
AMLVaran is flexible enough to employ and com-

bine arbitrary variant calling tools, and provides a
user-friendly interface that has been evaluated in order
to facilitate use by medical staff. The system’s per-
formance is sufficient to perform analyses on stan-
dard desktop personal computers within less than one
hour for targeted data, and within 24 hours for WES
data.
From our perspective, the approach of AMLVaran can

be a valuable contribution for use of NGS data in a clin-
ical context. We demonstrated that fine-tuning of NGS
pipelines with reproducible filtering of NGS results and
usability analysis is needed to provide valid variant calling
results which are comprehensible for medical users.

Availability and requirements
Project Name: AMLVaran
Project homepage: https://amlvaran.uni-muenster.de [56]
Source code repository: https://github.com/cwuensch/
AMLVaran [66]
Operating system(s): Linux
Programming language: PHP, JavaScript, Python
Other requirements: Apache web server, MySQL,
Java 1.8, Python 2.7, VariantTools 2.7.0, samtools 1.3,
vcftools 0.1.15, SNPeff 4.2, bam-readcount 0.8.0, reference
genomes and the variant calling tools
License: GNU GPL v3
Any restrictions to use by non-academics: none
The presented web platform AMLVaran is available for
demonstration purposes at https://amlvaran.uni-muenster.de
[56].
The following credentials can be used to view the pub-

lished test datasets:
MDS-1: user: “test1”, password: “Sweden2017”.
MDS-2: user: “test2”, password: “Sweden2017”.
AML-1: user: “test3”, password: “Halle2015”.
(Upload and analysis of own samples is purely for

research purposes and only possible after contact with the
corresponding author.)
The source code is freely available from GitHub at

https://github.com/cwuensch/AMLVaran [66], and can
be adapted for new projects under the provided license.
A Docker installation script is available that guides a

bioinformatician through the process of assembling and
configuration of the software components.
A QuickStart Guide that helps with setup and usage of

the software is provided in Additional file 2.

Notice: This is open source test code. The software com-
ponents need to be adapted to local requirements. Espe-
cially the variant calling parameters are to be adapted for
the type of data to be used. Importantly, the system needs
to be assembled and validated locally before use! This code
is provided “AS IS” and any express or implied warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are
disclaimed.

Datasets: The datasets used for validation of the software
are available for download from the NCBI Sequence Read
Archive (BioProjectID: PRJNA388411; https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA388411 [57]).

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12920-020-0668-3.

Additional file 1: A PDF document with additional detailed information.

Additional file 2: A PDF document, giving basic installation and usage
instructions for the software.

https://amlvaran.uni-muenster.de
https://github.com/cwuensch/AMLVaran
https://github.com/cwuensch/AMLVaran
https://amlvaran.uni-muenster.de
https://github.com/cwuensch/AMLVaran
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411
https://doi.org/10.1186/s12920-020-0668-3
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Additional file 3: The variant calling tools and parameters, as well as filter
scheme used to generate the described results.

Additional file 4: AMLVaran’s default variant scoring and filter scheme
which resembles the appreci8 algorithm.

Additional file 5: Variant calling results from dataset MDS-1 (MS Excel)

Additional file 6: Variant calling results from dataset MDS-2 (MS Excel)

Additional file 7: Variant calling results from dataset AML-1 (MS Excel)

Additional file 8: Variants and validation for dataset AML-1 (MS Excel)
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Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A,
Hillman-Jackson J, von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor
J, Nekrutenko A, Goecks J. The Galaxy platform for accessible,

https://doi.org/10.1111/ijlh.12709
https://doi.org/10.1111/ijlh.12361
https://doi.org/10.1016/j.jbi.2015.10.003
https://doi.org/10.1038/s41408-018-0148-6
https://doi.org/10.1016/j.blre.2012.11.001
https://doi.org/10.1016/j.blre.2012.11.001
https://doi.org/10.1111/bjh.12750
https://doi.org/10.1093/bioinformatics/bty897
https://doi.org/10.1093/bioinformatics/bty897
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
http://arxiv.org/pdf/1207.3907v2
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1182/blood-2015-11-683334
https://doi.org/10.1182/blood-2015-11-683334


Wünsch et al. BMCMedical Genomics           (2020) 13:17 Page 16 of 17

reproducible and collaborative biomedical analyses: 2016 update. Nucleic
Acids Res. 2016;44(W1):3–10. https://doi.org/10.1093/nar/gkw343.

16. Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin I,
Koski M, Käki J, Korpelainen EI. Chipster: User-friendly analysis software
for microarray and other high-throughput data. BMC genomics. 2011;12:
507. https://doi.org/10.1186/1471-2164-12-507.

17. Chiara M, Gioiosa S, Chillemi G, D’Antonio M, Flati T, Picardi E, Zambelli
F, Horner DS, Pesole G, Castrignanò T. CoVaCS: A consensus variant
calling system. BMC genomics. 2018;19(1):120. https://doi.org/10.1186/
s12864-018-4508-1.

18. Vandeweyer G, van Laer L, Loeys B, van den Bulcke T, Kooy RF.
VariantDB: A flexible annotation and filtering portal for next generation
sequencing data. Genome Med. 2014;6(10):74. https://doi.org/10.1186/
s13073-014-0074-6.

19. Starlinger J, Pallarz S, Ševa J, Rieke D, Sers C, Keilholz U, Leser U. Variant
information systems for precision oncology. BMC Med Informa Decision
Making. 2018;18(1):107. https://doi.org/10.1186/s12911-018-0665-z.

20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. The Sequence Alignment/Map format and
SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078–9. https://
doi.org/10.1093/bioinformatics/btp352.

21. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res. 2010;38(6):1767–71. https://doi.org/10.1093/
nar/gkp1137.

22. Sandmann S, de Graaf AO, Karimi M, van der Reijden BA,
Hellström-Lindberg E, Jansen JH, Dugas M. Evaluating Variant Calling
Tools for Non-Matched Next-Generation Sequencing Data. Sci Rep.
2017;7:43169. https://doi.org/10.1038/srep43169.

23. Trubetskoy V, Rodriguez A, Dave U, Campbell N, Crawford EL, Cook EH,
Sutcliffe JS, Foster I, Madduri R, Cox NJ, Davis LK. Consensus Genotyper
for Exome Sequencing (CGES): Improving the quality of exome variant
genotypes. Bioinformatics (Oxford, England). 2015;31(2):187–93. https://
doi.org/10.1093/bioinformatics/btu591.

24. Sandmann S, Karimi M, de Graaf AO, Rohde C, Göllner S, Varghese J,
Ernsting J, Walldin G, van der Reijden BA, Müller-Tidow C, Malcovati L,
Hellström-Lindberg E, Jansen JH, Dugas M. appreci8: A Pipeline for
Precise Variant Calling Integrating 8 Tools. Bioinformatics (Oxford,
England). 2018. https://doi.org/10.1093/bioinformatics/bty518.

25. Field MA, Cho V, Andrews TD, Goodnow CC. Reliably Detecting Clinically
Important Variants Requires Both Combined Variant Calls and Optimized
Filtering Strategies. PloS one. 2015;10(11):0143199. https://doi.org/10.
1371/journal.pone.0143199.

26. San Lucas FA, Wang G, Scheet P, Peng B. Integrated annotation and
analysis of genetic variants from next-generation sequencing studies
with variant tools. Bioinformatics (Oxford, England). 2012;28(3):421–2.
https://doi.org/10.1093/bioinformatics/btr667.

27. The McDonnell Genome Institute. bam-readcount. (Mar. 9, 2017). https://
github.com/genome/bam-readcount. Accessed 15 Jul. 2019.

28. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional
effect of amino acid substitutions and indels. PloS one. 2012;7(10):46688.
https://doi.org/10.1371/journal.pone.0046688.

29. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R. The
variant call format and VCFtools. Bioinformatics (Oxford, England).
2011;27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330.

30. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants.
Bioinformatics (Oxford, England). 2015;31(13):2202–4. https://doi.org/10.
1093/bioinformatics/btv112.

31. Wünsch C, Sandmann S, Windau S, Dugas M. AML-Varan – a generic
approach to integrate a multi-tool-combination based NGS variant
calling pipeline into a web-based diagnostics platform. https://doi.org/
10.7490/F1000RESEARCH.1114839.1.

32. Wünsch C, Dugas M. REST-based annotation and filtering of
Next-Generation Sequencing variant lists with integration into standard
office tools. https://doi.org/10.7490/F1000RESEARCH.1116119.1.

33. Annoserv. http://annoserv.uni-muenster.de. Accessed 05 Dec. 2019.
34. Cutting E, Banchero M, Beitelshees AL, Cimino JJ, Fiol GD, Gurses AP,

Hoffman MA, Jeng LJB, Kawamoto K, Kelemen M, Pincus HA, Shuldiner
AR, Williams MS, Pollin TI, Overby CL. User-centered design of
multi-gene sequencing panel reports for clinicians. J Biomed Informa.
2016;63:1–10. https://doi.org/10.1016/j.jbi.2016.07.014.

35. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM,
Sirotkin K. dbSNP: The NCBI database of genetic variation. Nucleic Acids
Res. 2001;29(1):308–11.

36. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG,
Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M,
Jubb H, Sondka Z, Thompson S, De T, Campbell PJ. COSMIC: Somatic
cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):
777–83. https://doi.org/10.1093/nar/gkw1121.

37. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B,
Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z,
Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB,
Kattman BL, Maglott DR. ClinVar: Improving access to variant
interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):
1062–7. https://doi.org/10.1093/nar/gkx1153.

38. Liu X, Jian X, Boerwinkle E. dbNSFP: A lightweight database of human
nonsynonymous SNPs and their functional predictions. Human Mutation.
2011;32(8):894–9. https://doi.org/10.1002/humu.21517.

39. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO,
Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for
human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/
10.1038/nature15393.

40. Exome Variant Server: NHLBI GO Exome Sequencing Project (ESP). Seattle,
WA. (Nov. 3, 2014). http://evs.gs.washington.edu/EVS/. Accessed 15 Jul.
2019.

41. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T,
O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T,
Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J,
Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R,
Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D,
Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM,
Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K,
Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B,
Won H.-H., Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J,
Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman
CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D,
McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM,
Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG,
Daly MJ, MacArthur DG. Analysis of protein-coding genetic variation in
60,706 humans. Nature. 2016;536(7616):285–91. https://doi.org/10.1038/
nature19057.

42. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein
function. Nucleic Acids Res. 2003;31(13):3812–4.

43. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T,
Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe
T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien
H-F, Wei AH, Löwenberg B, Bloomfield CD. Diagnosis and management
of AML in adults: 2017 ELN recommendations from an international
expert panel. Blood. 2017;129(4):424–47. https://doi.org/10.1182/blood-
2016-08-733196.

44. El Ghannam D, Taalab MM, Ghazy HF, Eneen AF. DNMT3A R882
mutations in patients with cytogenetically normal acute myeloid
leukemia and myelodysplastic syndrome. Blood cells, molecules &
diseases. 2014;53(1-2):61–6. https://doi.org/10.1016/j.bcmd.2014.01.004.

45. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza
R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A,
Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F,
Lo-Coco F, Pelicci P-G, Martelli MF. Cytoplasmic nucleophosmin in acute
myelogenous leukemia with a normal karyotype. New Engl J Med.
2005;352(3):254–66. https://doi.org/10.1056/NEJMoa041974.

46. Care RS, Valk PJM, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort
WMC, Wilson GA, Gari MA, Peake IR, Lowenberg B, Reilly JT. Incidence
and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF)
acute myeloid leukaemias. Brit J Hematol. 2003;121(5):775–7.

47. Chern JY, Lee SS, Frey MK, Lee J, Blank SV. The influence of BRCA variants
of unknown significance on cancer risk management decision-making. J
Gynecol Oncol. 2019;30(4):60. https://doi.org/10.3802/jgo.2019.30.e60.

48. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of
Functional Predictions and Annotations for Human Nonsynonymous and
Splice-Site SNVs. Human mutation. 2016;37(3):235–41. https://doi.org/10.
1002/humu.22932.

49. Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM,
Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, Barnell EK, Wagner AH,

https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1186/1471-2164-12-507
https://doi.org/10.1186/s12864-018-4508-1
https://doi.org/10.1186/s12864-018-4508-1
https://doi.org/10.1186/s13073-014-0074-6
https://doi.org/10.1186/s13073-014-0074-6
https://doi.org/10.1186/s12911-018-0665-z
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1038/srep43169
https://doi.org/10.1093/bioinformatics/btu591
https://doi.org/10.1093/bioinformatics/btu591
https://doi.org/10.1093/bioinformatics/bty518
https://doi.org/10.1371/journal.pone.0143199
https://doi.org/10.1371/journal.pone.0143199
https://doi.org/10.1093/bioinformatics/btr667
https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btv112
https://doi.org/10.1093/bioinformatics/btv112
https://doi.org/10.7490/F1000RESEARCH.1114839.1
https://doi.org/10.7490/F1000RESEARCH.1114839.1
https://doi.org/10.7490/F1000RESEARCH.1116119.1
http://annoserv.uni-muenster.de
https://doi.org/10.1016/j.jbi.2016.07.014
https://doi.org/10.1093/nar/gkw1121
https://doi.org/10.1093/nar/gkx1153
https://doi.org/10.1002/humu.21517
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
http://evs.gs.washington.edu/EVS/
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
https://doi.org/10.1182/blood-2016-08-733196
https://doi.org/10.1182/blood-2016-08-733196
https://doi.org/10.1016/j.bcmd.2014.01.004
https://doi.org/10.1056/NEJMoa041974
https://doi.org/10.3802/jgo.2019.30.e60
https://doi.org/10.1002/humu.22932
https://doi.org/10.1002/humu.22932


Wünsch et al. BMCMedical Genomics           (2020) 13:17 Page 17 of 17

Skidmore ZL, Wollam A, Liu CJ, Jones MR, Bilski RL, Lesurf R, Feng Y-Y,
Shah NM, Bonakdar M, Trani L, Matlock M, Ramu A, Campbell KM, Spies
GC, Graubert AP, Gangavarapu K, Eldred JM, Larson DE, Walker JR,
Good BM, Wu C, Su AI, Dienstmann R, Margolin AA, Tamborero D,
Lopez-Bigas N, Jones SJM, Bose R, Spencer DH, Wartman LD, Wilson RK,
Mardis ER, Griffith OL. CIViC is a community knowledgebase for expert
crowdsourcing the clinical interpretation of variants in cancer. Nature
Genet. 2017;49(2):170–4. https://doi.org/10.1038/ng.3774.

50. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer
(IGV): High-performance genomics data visualization and exploration.
Brief Bioinforma. 2013;14(2):178–92. https://doi.org/10.1093/bib/bbs017.

51. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC,
Petric R, Hibberd ML, Nagarajan N. LoFreq: A sequence-quality aware,
ultra-sensitive variant caller for uncovering cell-population heterogeneity
from high-throughput sequencing datasets. Nucleic Acids Res.
2012;40(22):11189–201. https://doi.org/10.1093/nar/gks918.

52. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Wilkie AOM,
McVean G, Lunter G. Integrating mapping-, assembly- and haplotype-
based approaches for calling variants in clinical sequencing applications.
Nature Genet. 2014;46(8):912–8. https://doi.org/10.1038/ng.3036.

53. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: A statistical tool
for variant calling in analysis of pooled or individual next-generation
sequencing data. Nucleic Acids Res. 2011;39(19):132. https://doi.org/10.
1093/nar/gkr599.

54. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER,
Weinstock GM, Wilson RK, Ding L. VarScan: Variant detection in massively
parallel sequencing of individual and pooled samples. Bioinformatics
(Oxford, England). 2009;25(17):2283–5. https://doi.org/10.1093/
bioinformatics/btp373.

55. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R,
Johnson J, Dougherty B, Barrett JC, Dry JR. VarDict: A novel and versatile
variant caller for next-generation sequencing in cancer research. Nucleic
Acids Res. 2016;44(11):108. https://doi.org/10.1093/nar/gkw227.

56. AMLVaran. https://amlvaran.uni-muenster.de. Accessed 05 Dec. 2019.
57. NCBI Sequence Read Archive: BioProjectID: 388411. https://www.ncbi.

nlm.nih.gov/bioproject/PRJNA388411. Accessed 10 Dec. 2019.
58. Yan B, Hu Y, Ng C, Ban KHK, Tan TW, Huan PT, Lee P-L, Chiu L, Seah E,

Ng CH, Koay ES-C, Chng W-J. Coverage analysis in a targeted amplicon-
based next-generation sequencing panel for myeloid neoplasms. J Clin
Pathol. 2016;69(9):801–4. https://doi.org/10.1136/jclinpath-2015-203580.

59. Wünsch C, Banck H, Stenner J, Dugas M. AML-Varan – a web-based
platform to display and analyze genomic variants from targeted NGS
sequencing data. https://doi.org/10.7490/F1000RESEARCH.1113145.1.

60. Brooke J. Usability Evaluation in Industry. In: Jordan PW, Thomas B,
Weerdmeester BA, McClelland IL, editors. London: Taylor and Francis;
1996. p. 189–94.

61. Bangor A, Kortum PT, Miller JT. An Empirical Evaluation of the System
Usability Scale. Int J Human–Comput Interaction. 2008;24(6):574–94.
https://doi.org/10.1080/10447310802205776.

62. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating
inhibitors. Proc National Acad Sci USA. 1977;74(12):5463–7.

63. Xu C. A review of somatic single nucleotide variant calling algorithms for
next-generation sequencing data. Comput Struct Biotechnol J. 2018;16:
15–24. https://doi.org/10.1016/j.csbj.2018.01.003.

64. Josephidou M, Lynch AG, Tavaré S. multiSNV: A probabilistic approach
for improving detection of somatic point mutations from multiple related
tumour samples. Nucleic Acids Res. 2015;43(9):61. https://doi.org/10.
1093/nar/gkv135.

65. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, Yoshida K, Shiba N,
Hayashi Y, Kume H, Homma Y, Sanada M, Ogawa S, Miyano S. An
empirical Bayesian framework for somatic mutation detection from
cancer genome sequencing data. Nucleic Acids Res. 2013;41(7):89.
https://doi.org/10.1093/nar/gkt126.

66. GitHub: Project AMLVaran. https://github.com/cwuensch/AMLVaran.
Accessed 05 Dec. 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1038/ng.3774
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1038/ng.3036
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1093/bioinformatics/btp373
https://doi.org/10.1093/bioinformatics/btp373
https://doi.org/10.1093/nar/gkw227
https://amlvaran.uni-muenster.de
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411
https://doi.org/10.1136/jclinpath-2015-203580
https://doi.org/10.7490/F1000RESEARCH.1113145.1
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1016/j.csbj.2018.01.003
https://doi.org/10.1093/nar/gkv135
https://doi.org/10.1093/nar/gkv135
https://doi.org/10.1093/nar/gkt126
https://github.com/cwuensch/AMLVaran

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Related work
	Objectives

	Implementation
	System architecture
	Implementation details
	Generic variant calling pipeline
	Storing variants
	Variant filtering
	Gathering annotation data
	Identifying diagnostically relevant mutations
	Clinical reports
	Interactive variant explorer


	Results
	Validation of the generic variant calling pipeline
	Validation strategy and source data
	Evaluation on hotspot regions
	Evaluation on the complete target region
	Evaluation of dataset AML-1

	Evaluation of the system's usability

	Discussion
	Strengths
	Limitations
	Transferability / universality
	Future work

	Conclusions
	Availability and requirements
	Notice:
	Datasets:


	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12920-020-0668-3.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

