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Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory.
However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is
limited. We recently reported that cyclin-dependent kinase 5 (Cdk5) is required for the development and maintenance of dendritic
spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the
formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5
phosphorylates collapsin response mediator protein 2 (CRMP2) in the dendritic spines of cultured hippocampal neurons and in
vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines
significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of
CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

1. Introduction

For the development of functional neural circuitry, the for-
mation of synapses between appropriate partners is a critical
step.Themajority of excitatory synapses of postsynaptic neu-
rons are localized in specialized cellular structures called den-
dritic spines. The formation, maturation, and maintenance
of dendritic spines are tightly regulated by different extracel-
lular signals including semaphorin 3A (Sema3A). Collapsin
response mediator proteins (CRMPs), initially identified as
a signaling molecule of Sema3A [1], are composed of five
homologous cytosolic phosphoproteins (CRMP1–5) and are
highly expressed in developing and adult nervous systems
[2–5]. CRMPs bind with tubulin heterodimers, whereas the
sequential phosphorylation of CRMPs lowers their binding
affinity to tubulin [6]. CRMP2 also colocalizes with the actin
cytoskeleton [7] and coimmunoprecipitates with actin [8, 9].

Phosphorylation of CRMP1 and CRMP2 by Cdk5 and
sequential phosphorylation of CRMP2 by GSK-3𝛽 are crucial
for Sema3A-induced growth cone collapse response in dorsal
root ganglia (DRG) neurons [10, 11].

Recently, we demonstrated that Cdk5/p35 is necessary
for dendritic spine development and maintenance [12].
Additionally, we previously showed that Sema3A-induced
spine development is mediated through phosphorylation
of CRMP1 by Cdk5 [13] and that CRMP1 and CRMP2
have functional redundancy in neuronal development [14].
Therefore, we hypothesized that phosphorylation of CRMP2
by Cdk5 is also important for the development of dendritic
spines in vivo. To test this, we first analyzed the localization
of phosphorylated forms of CRMP2 in the synapses of
cultured hippocampal neurons and in vivo in the mouse
hippocampus. We observed phosphorylation of CRMP2 by
Cdk5 in the dendritic spines of hippocampal neurons in vitro
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and in vivo. We then analyzed spine densities of hippocampal
CA1 pyramidal neurons in CRMP2KI/KI mice in which the
Cdk5 phosphorylation site of CRMP2 at amino acid 522 was
changed from Ser to Ala [14]. We found reduced dendritic
spine densities in hippocampal neurons in CRMP2KI/KI mice.
These results indicate that CRMP2 phosphorylation by Cdk5
is important for the development of dendritic spines in
hippocampal neurons in vivo.

2. Materials and Methods

2.1. Mice. The mice used in our experiments were housed
in accordance with protocols approved by the Institu-
tional Animal Care and Use Committee at Waseda Uni-
versity. CRMP2KI/KI mice were generated and genotyped as
described previously [14]. GFP-M mice, a gift from J. Sanes
[15], were crossed with these mutant mice for the present
study.

2.2. Neuronal Culture and Immunocytochemistry. Primary
cultures of hippocampal neurons were prepared from E18
Wistar rats as described previously [16], with the follow-
ing modifications: cells were plated at a density of 5.0 ×
104 cells/well on coverslips coated with 200𝜇g/mL poly-L-
lysine (Sigma Japan, Tokyo) in 24-well plates. Neurobasal-
A (Life Technologies Japan, Tokyo), B27-supplement (Mil-
tenyi Biotec, Tokyo), 2mM L-glutamine (Life Technologies
Japan), and penicillin/streptomycin (Nacalai Tesque, Kyoto)
were used as culture medium. Immunocytochemistry was
performed as previously described [17]. Briefly, after washing
with phosphate-buffered saline (PBS), cells were fixed with
4% paraformaldehyde (PFA) for 15min at room temperature
(RT). After washing with PBS, cells were incubated with
primary antibodies, which were diluted in PBS/0.01% Triton
X-100, at 4∘C overnight. They were then washed 3 times
with PBS and incubated with Alexa-Fluor 488 (1 : 1000) or
Alexa-Fluor 568 (1 : 1000) secondary antibodies for 1 h. After
3 further washes with PBS, the sections were embedded
in Vectashield mounting media (Vector Labs, Burlingame,
CA). Images were obtained using a laser scanning confocal
microscope based on an FV1000 scanning unit (Olympus,
Japan). Primary antibodies used in this study are anti-
PSD95 (mouse monoclonal, Millipore), anti-synaptophysin
(mouse monoclonal, Millipore), and pCRMP2(S522), which
recognizes phospho-CRMP2 at Ser522 (rabbit polyclonal,
EMC Biosciences).

2.3. Histological Analysis

2.3.1. Immunohistochemistry. Mice were anesthetized using
diethyl ether and then perfused transcardially with 4% PFA
in PBS. Brain samples were fixed in 4% PFA in PBS overnight
at 4∘C. GFP-M mice used in this study were 4–6 weeks
of age. After dehydration in 20% sucrose in PBS, samples
were embedded in OCT compound (Sakura Finetek, Japan).
Cryosections were cut at 14 𝜇m thickness. For immunos-
taining, sections were incubated with anti-pCRMP2(S522)
antibody at 4∘C overnight. After washing with PBS, the
secondary antibody, AlexaFluor, was applied, and sections

were mounted with Vectashield. All immunostaining images
were captured with a confocal microscope (FV1000).

2.3.2. RapidGolgi Staining. Male CRMP2KI/KI andCRMP2+/+
mice at P18 and at 5 weeks of age (𝑛 = 3 for each genotype and
age)were used in this study. FormodifiedGolgi-Cox staining,
an FDRapidGolgiStain kitwas used (FDNeuroTechnologies,
MD). Stained slices were sectioned at a thickness of 200𝜇m.
Pyramidal hippocampal CA1 neurons in each mouse were
selected for the analysis as described in our previouswork [12,
13]. Dendritic spines of CA1 pyramidal neurons were counted
in 50 𝜇m segments of proximal branches of apical dendrites
under a BX50 microscope (Olympus) with a UPlanSApo
40x (NA = 0.95) objective. In a typical experiment, more
than 2000 spines were counted on more than 50 dendritic
segments in 25 neurons. Average spine densities per 50𝜇m
dendritic segments were then calculated for each genotype
group. Groups of spines were compared using Student’s 𝑡-test.

3. Results

3.1. CRMP2 Is Phosphorylated in Dendritic Spines of Cultured
Hippocampal Neurons. We tested the possible function of
CRMP2 phosphorylation in synapses. We first examined the
subcellular localization of phospho-CRMP2 (pCRMP2) in
cultured hippocampal neurons. We used anti-synaptophysin
or anti-PSD-95 antibodies as presynaptic and postsynaptic
markers, respectively. Double staining with anti-pCRMP2
and anti-synaptophysin or anti-PSD-95 antibodies showed
that pCRMP2 colocalized with both synaptophysin and
PSD-95 in dendritic protrusions (Figure 1). These results
demonstrate that CRMP2 is phosphorylated by Cdk5 in the
presynapse and dendritic spines in cultured hippocampal
neurons, suggesting the possible involvement of CRMP2
phosphorylation in the development of dendritic spines in
hippocampal neurons.

3.2. Reduced Spine Densities of Hippocampal CA1 Pyramidal
Neurons in Juvenile CRMP2𝐾𝐼/𝐾𝐼 Mice. We examined den-
dritic spine density by Golgi staining in P18 CRMP2KI/KI
mice. Golgi staining of forebrain slices showed a reduction in
the number of spines in hippocampal CA1 pyramidal neurons
inCRMP2KI/KImice comparedwith those inCRMP2+/+mice
(Figure 2). These results indicate that phosphorylation of
CRMP2byCdk5 is required for proper formation of dendritic
spines in the mouse brain.

3.3. CRMP2 Is Phosphorylated in Dendritic Spines of Hip-
pocampal CA1 Pyramidal Neurons in Mouse Brains. CRMP2
is expressed in hippocampal neurons in adult mice [2].
Thus, we examined its phosphorylation in dendritic spines
in hippocampal CA1 pyramidal neurons. For this purpose,
we performed immunostaining of hippocampal sections
from GFP-M mice at 4–6 weeks of age with anti-pCRMP2
antibody. In GFP-M mice, some hippocampal CA1 pyra-
midal neurons express GFP [15]. As shown in Figure 3, we
detected pCRMP2 immunoreactivity in dendritic spines in
hippocampal CA1 pyramidal neurons of GFP-M mice. In
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Figure 1: Subcellular localization of phospho-CRMP2 in cultured hippocampal neurons. (a) Immunocytochemistry with anti-phospho-
CRMP2 and synaptophysin antibodies. Higher magnification is shown in (a). (b) Immunocytochemistry with anti-phospho-CRMP2 and
PSD95 antibodies in cultured rat hippocampal neurons 28 days in vitro (DIV). Merged images are shown. Higher magnification shown in
(b). Scale bar, 20 𝜇m.

contrast its immunoreactivity was very low in those of GFP-
M, CRMP2KI/KI double mutant, which is attributable to a
cross reactivity of this antibody to pCRMP1 [14].These results
suggest that Cdk5 phosphorylates CRMP2 in dendritic spines
of hippocampal CA1 pyramidal neurons in the mouse brain.

3.4. Reduced Spine Densities of Hippocampal CA1 Pyramidal
Neurons in 5-Week-Old CRMP2𝐾𝐼/𝐾𝐼 Mice. We examined
dendritic spine density by Golgi staining in 5-week-old
CRMP2KI/KI mice. Golgi staining of forebrain slices showed
a reduction in the numbers of spines in hippocampal CA1
pyramidal neurons in CRMP2KI/KI mice compared with
those in CRMP2+/+ mice (Figure 4). These results indicate
that phosphorylation of CRMP2 by Cdk5 is required for the
development of proper dendritic spine density in the adult
mouse brain.

4. Discussion

Recent studies have demonstrated that Cdk5 substrates are
involved in the regulation of spine formation. Synaptic
proteins phosphorylated by Cdk5 including ephexin1 [18],
WAVE1 [19], CRMP1 [13], TrkB [20], PSD95 [21], drebrin
[22], and p70 ribosomal S6 kinase (S6K) [23] have been
shown to play a role in spine formation [13, 19, 21, 23]
and maintenance [18, 20]. However, their functions differ
such that some of them are crucial for spine formation [13]
and some for spine retraction [18]. We recently reported
reductions of dendritic spine densities in hippocampal CA1
pyramidal neurons of inducible-p35 cKO, p39 KO mice and
CA1-p35 cKO, p39 KO mice with a p35 deletion in the CA1
region of the hippocampus after P17 [12]. We also reported
reduction of spine densities in cerebral layer V neurons and
hippocampal CA1 pyramidal neurons in inducible-p35 cKO,
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Figure 2: Reduction of dendritic spine density in hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice at P18. (a) Representative
photographs of dendritic segments of hippocampal CA1 pyramidal neurons at P18. Scale bar, 10 𝜇m. (b) Reduced dendritic spine density
was observed in hippocampal CA1 pyramidal neurons of CRMP2KI/KI mice compared to those of control mice. 50 neurons in each area from
three mice in each genotype were analyzed. ∗𝑃 < 0.05.
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Figure 3: Localization of phospho-CRMP2 at dendritic spines of hippocampal CA1 pyramidal neurons. (a) Representative images of
immunostaining of apical dendrites and their branches with phospho-CRMP2(S522) (pCRMP2S522) antibody in hippocampal CA1
pyramidal neurons from GFP-M mice. Magnified images of the areas indicated in (a) are shown in (a). Scale bar, 10 𝜇m. (b) Representative
images of immunostaining of apical dendrites and their branches with pCRMP2S522 antibody of hippocampal CA1 pyramidal neurons in
GFP-M, CRMP2KI/KI mice. Magnified images of the areas indicated in (b) are shown in (b). Scale bar, 10 𝜇m.
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Figure 4: Reduction of dendritic spine density in hippocampal CA1 pyramidal neurons in 5 week-old CRMP2KI/KI mice. (a) Representative
photographs of dendritic segments of hippocampal CA1 pyramidal neurons at 5 weeks old. Scale bar, 10 𝜇m. (b) Reduced dendritic spine
density was observed in hippocampal CA1 pyramidal neurons of CRMP2KI/KI mice compared to those of control mice. 50 neurons in each
area from three mice in each genotype were analyzed. ∗∗𝑃 < 0.01.

p39 KO mice when we deleted the p35 gene in 4-month-old
animals [12].These findings indicate that spine formation and
maintenance are dependent on Cdk5 kinase activity in the
mouse brain.

Our previous study showed that Sema3A-induced spine
development is mediated by phosphorylation of CRMP1 by
Cdk5 [13]. Because CRMP1 and CRMP2 have functional
similarities in brain development [14], we examined whether
phosphorylation of CRMP2 by Cdk5 is also important for
the development andmaintenance of dendritic spines in vivo.
Cdk5 specifically phosphorylates Ser residue of CRMP2 at
522 [10]. We previously generated CRMP2KI/KI mice to study
the function of Cdk5-mediated CRMP2 phosphorylation
by replacing Ser at 522 to Ala [14]. Our present analysis
of dendritic spine densities in hippocampal CA1 pyramidal
neurons in CRMP2KI/KI mice at P18 showed reduced spine
densities in these neurons compared to those of controls
(Figure 2). Along with our previous study on CRMP1KO
mice [13], these results indicate that CRMPs are important
substrates of Cdk5 for spine formation. The results obtained
in the present study will provide a new insight into the
regulatory mechanisms underlying the effect of Cdk5 on
dendritic spine density.

Our analysis of 5-week-old CRMP2KI/KI mice showed
further reduction of spine densities in hippocampal CA1
pyramidal neurons (Figure 4). These results exclude the pos-
sibility that reduced spine densities of hippocampal neurons
in CRMP2KI/KI mice at P18 (Figure 2) are due to the delay
of brain development. In the cerebral cortex of macaque
monkeys and humans, the number of dendritic spines rapidly

increases after birth and peaks in an early phase of the
infantile period [24]. Spine density then decreases during
the later infantile period and adolescence period to reach
the adult level [25]. Decrease of dendritic spine density
during the transition from puberty to adulthood has also
been reported in the mouse hippocampus [26].These studies
indicate ontogenetic similarity between rodent, primate, and
human in spine formation and pruning. This overshoot-type
time course of spine formation and pruning is attractive
for researchers because it is possibly involved in develop-
mental and psychiatric disorders [27]. Further studies are
also required for the analysis of the involvement of CRMP2
phosphorylation in spine pruning and maintenance.

Cdk5 and its activator p35 play multiple roles in brain
development, especially in neuronal migration [28]. Emerg-
ing evidence suggests that Cdk5/p35 is also involved in
synaptic plasticity [29]. Cdk5/p35 is localized at neuronal
synapses and phosphorylates many synaptic proteins [21, 30–
33]. Furthermore, the induction of synaptic plasticity and
spatial learning are impaired in Cdk5/p35 mutant mice [34–
36]. The role of Cdk5 in synaptic plasticity and learning was
initially studied using Cdk5 inhibitors, which showed inhibi-
tion of hippocampal LTP induction and context-dependent
fear conditioning [30, 37]. We have previously reported the
impairment of long-term depression (LTD) induction and
spatial learning and memory in p35 KO mice [36]. Our
recent study of p35 conditional KO (cKO) mice, which lack
histological abnormalities in the brain, also showed impair-
ment of spatial learning and memory and LTD induction
[38]. Importantly, electrophysiological analysis of hippocam-
pal slices from p35 cKO mice revealed reduced synaptic
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transmission in hippocampal CA1 pyramidal neurons [38].
Since we observed reduced spine densities of hippocampal
CA1 pyramidal neurons inCRMP2KI/KImice, further electro-
physiological studies of hippocampal synaptic plasticity and
behavioral analysis in CRMP2KI/KI mice will provide further
knowledge of the significance of Cdk5-mediated CRMP2
phosphorylation in synaptic plasticity and in learning and
memory.

5. Conclusions

CRMP2 is phosphorylated in dendritic spines of rodent hip-
pocampal neurons in vitro and in vivo. When we eliminated
Cdk5-mediated phosphorylation of CRMP2 at S522 in the
mouse brain, the densities of dendritic spines of hippocampal
neurons were reduced in the mouse brain. These results sug-
gest the regulation of spine density of hippocampal neurons
by CRMP2 phosphorylation.
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