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Abstract
Purpose: The optimal treatment strategy for uveal melanoma (UM) relies on many factors, the most important being tumor size and

location. Building on recent developments in high-resolution 3D ocular magnetic resonance imaging (MRI), we developed an

automatic image-processing framework to create patient-specific eye models and to subsequently determine the full 3D tumor shape

and size automatically.

Methods and Materials: From 15 patients with UM, 3D inversion-recovery gradient-echo (T1-weighted) and 3D fat-suppressed

spin-echo (T2-weighted) images were acquired with a 7T MRI scanner. First, the sclera and cornea were segmented from the T2-

weighted image by mesh-fitting. The T1- and T2-weighted images were then coregistered. From the registered T1-weighted

image, the lens, vitreous body, retinal detachment, and tumor were segmented. Fuzzy C-means clustering was used to differentiate

the tumor from retinal detachments. The tumor model was verified and (if needed) edited by an ophthalmic MRI specialist.

Subsequently, the prominence and largest basal diameter of the tumor were measured automatically based on the verified

contours. These results were compared with manual assessments on the original images and with ultrasound measurements to

show the errors in manual analysis.

Results: The framework successfully created an eye model fully automatically in 12 cases. In these cases, a Dice similarity

coefficient (mean surface distance) of 97.7%§0.84% (0.17§0.11 mm) was achieved for the sclera, 96.8%§1.05% (0.20§0.06

mm) for the vitreous body, 91.6%§4.83% (0.15§0.06 mm) for the lens, and 86.0%§7.4% (0.35§0.27 mm) for the tumor.

The manual assessments deviated, on average, 0.39§0.31 mm in prominence and 1.7§1.22 mm in basal diameter from the

automatic measurements.
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Conclusions: The described framework combined information from T1- and T2-weighted images to accurately determine tumor

boundaries in 3D. The proposed process may have a direct effect on clinical workflow, as it enables an accurate 3D assessment of

tumor dimensions, which directly influences therapy selection.

© 2021 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Uveal melanoma (UM) is the most common primary

intraocular malignancy in adults,1 with an incidence of

5.2 million cases per year in the US,2 of which 50%

develop metastases.3 Apart from enucleation,4 therapeu-

tic options include brachytherapy, stereotactic radiation

therapy, and proton therapy.5,6

Treatment selection relies on many factors such as

tumor size and location. Tumor size is usually repre-

sented by its basal diameter (maximum diameter of the

tumor base) and tumor prominence (the minimum dis-

tance between the tumor apex and the outer boundary of

the sclera).7 Brachytherapy is generally selected for

small- to medium-sized UM (for ruthenium brachyther-

apy, the limits are defined as largest basal diameter

<16 mm and tumor prominence <6 mm from the internal

sclera) distal from the optic disc,8-10 whereas proton ther-

apy is used if the tumor is more extensive.11,12 These

tumor dimensions are typically determined using 2D

ultrasound, where the transducer is positioned perpendic-

ularly to the tumor.13,14 Although ultrasound imaging is

fast and inexpensive, it is hampered by low tissue con-

trast between the tumor and the sclera. Ultrasound can

also underestimate or overestimate tumor dimensions,

because it provides only 2D information via oblique

planes through the tumor.13 Ocular magnetic resonance

imaging (MRI), however, can produce high-resolution

3D images with high soft-tissue contrast, using dedicated

receive coils and high magnetic field strengths.15-19 By

comparing tumor prominence obtained from MRI with

that from ultrasound (US), it has been shown that the

higher accuracy of MRI measurements can significantly

influence treatment selection.13

Treatment planning is usually based on 3D parametric

models of the eye and tumor, constructed by software

packages such as EYEPLAN20 and OCTOPUS21 for pro-

ton therapy planning, by combining spheres and ellip-

soids. For brachytherapy, generally only the tumor

prominence is used to calculate the time the applicator

needs to be in situ,22 although 3D planning software such

as Plaque Simulator (Eye Physics, LLC, Los Alamitos,

California) is available. However, parametric models do

not provide patient-specific information, which may lead

to uncertainties, and subsequently, larger safety margins

than necessary.23

Patient-specific MRI-based eye models have been

developed to study the shape of the retina,24 and active
shape models (ASMs) have also been used to segment

the eye.25,26 However, these models did not include

tumors. Moreover, ASMs may not capture all variations

in the vitreous body (VB) because of the large variety in

tumor shape and location, and they may have scalability

problems if a test case has a different size or more com-

plex shape than the training set.27 A 3D U-net convolu-

tional neural network has been used to segment eye

structures and tumors, showing improvements in sclera

and lens segmentation but not in the tumor, compared

with approaches using a mixture of ASMs and random

forest.26,28 Recently, a weakly supervised framework

based on a 2D convolutional neural network was pro-

posed to segment the tumor only.29 However, the pro-

posed slice-by-slice segmentation may suffer from

discontinuities and underestimate the tumor size, espe-

cially in complex shapes.

In this study, we used an automatic framework to cre-

ate patient-specific eye models including UM segmenta-

tion without needing prior knowledge about its shape or

location. For validation, these segmentations were veri-

fied and (if needed) edited by a specialist to create models

for automatically determining the tumor prominence and

basal diameter.
Materials and Methods
Clinical data set

The study protocol was in accordance with the Decla-

ration of Helsinki and was approved by Leiden Univer-

sity Medical Center’s medical ethical committee.

Informed consent was obtained from all participants.

Fifteen patients with UM (mean age, 59.3 § 13.9

years) were included retrospectively. The study sample

included both posterior and anterior tumors with and

without retinal detachments, and there was wide variety

in tumor sizes. Patients were examined on a 7T Philips

Achieva MRI whole-body magnet (Best, The Nether-

lands) using a custom-built eye coil.13 Eye-motion arti-

facts were minimized by a cued-blinking protocol.16

Participants were instructed to focus on a cross as a fixa-

tion target.16 Three-dimensional inversion-recovery gra-

dient-echo (T1-weighted) and 3D T2-weighted fat-

suppressed spin-echo (T2-weighted) images were

acquired (see Table 1). In one case, a postcontrast-

enhanced image was required to discriminate between

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 MRI aquisition parameters

Parameter 3D inversion-recovery

gradient-echo

(T1-weighted image)

3D T2-weighted

fat-suppressed spin-echo

(T2-weighted image)

3D T1-weighted

fat-suppressed spin-echo

(postcontrast-enhanced image)

Inversion time, ms 1280 - -

Repetition time, ms 5.4 2500 5.4

Echo time, ms 2.4 194 2.4

Flip angle 7o 90o 7o

Acquisition resolution, mm3 0.53£0.55£0.51 0.60£0.60£0.60 0.60£0.60£0.60

Reconstruction resolution, mm3 0.28£0.28£0.30 0.24£0.24£0.30 0.28£0.28£0.30

Field of view, mm3 40£42£38 47£47£38 45£45£38

Scanning direction Axial scan Axial scan Axial scan
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the tumor and retinal detachment because of an indeci-

sive T1-weighted image. The tumor classification,

according to the American Joint Committee on Cancer,

was based on fundus and ultrasound imaging (Table E1).
Segmentation framework

The overall approach was to segment the eye structures

by combining the complementary information of T1- and

T2-weighted images. Figure 1 shows the proposed frame-

work, developed in MeVisLab, version 2.7.1 (Fraunhofer

MeVis, Bremen, Germany). First, the sclera and cornea

were segmented in the T2-weighted image (termed the

sclera mask); then the T1- and T2-weighed images were

coregistered using this mask. The VB, lens, retinal detach-

ment, and tumor were segmented in the registered T1-

weighted image. Subsequently, fuzzy C-means clustering

was applied to differentiate the tumor from the retinal

detachment. Finally, the surface of each structure was

determined by fitting a mesh to either a strong positive or

negative edge, dependent on the object’s contrast, using an

adaptive subdivision surface-fitting algorithm.30 In the fol-

lowing sections, each step is described in more detail.

Sclera segmentation in the T2-weighted image
First, the center of the eye was estimated using the fast

radial symmetry transform algorithm,31 which searches for

a sphere with a diameter of an average adult eye (25

mm).32 Subsequently, the inner boundaries of the sclera

and cornea were detected in 2 phases: (1) a Hessian-based

filter was applied to enhance sphere-like objects33,34 with

minimum connections to the surrounding extraocular

muscles, and a mesh at the eye’s center was expanded iter-

atively to fit to strong negative edges (bright-to-dark); and

(2) a convex hull was computed for the mesh and expanded

further on the T2-weighted image to fit to strong edges.

Image registration
To combine complementary information, the T1- and

T2-weighted images were coregistered with intensity-
based rigid registration with normalized mutual informa-

tion as a similarity metric (using the software package

Elastix35). The sclera mask was used to focus the registra-

tion to the eye.

The dedicated eye coil and cued-blinking protocol

produced high-resolution isotropic 3D data, with minimal

partial volume effects and motion artifacts,16 which

allowed the application of intensity-based registration

without any landmarks.
VB segmentation
To discriminate the low-intensity VB from the

high-intensity lens, tumor, and retinal detachment on

the registered T1-weighted images, fuzzy C-means

clustering was performed within the sclera mask, and

the largest region was selected through connected

component analysis. Similarly to the sclera segmenta-

tion, the final VB mask was obtained by expanding an

initial mesh iteratively to match the positive edges

(dark to bright).
Lens segmentation
The lens was detected based on the following crite-

ria: (1) location in the anterior part of the eye, (2) high

intensity on the T1-weighted images, (3) location near-

est to the eye’s optical axis, and (4) a volume of

approximately 165 mm3.36-38 Therefore, we divided

the eye into an anterior and posterior mask, using a

plane at the sclera’s center perpendicular to the optical

axis, and processed only the anterior part. The optical

axis was estimated from the principle component anal-

ysis on the sclera mask to be close to an arbitrary point

in the middle of the first coronal slice in front of the

cornea. The high-intensity cluster containing the lens,

tumor, and retinal detachment, obtained from the previ-

ous step, was subsequently used to select candidate

objects in the anterior mask. Using connected compo-

nent analysis and mesh fitting, the lens object was

selected from these candidates based on its central

location and volume.



Figure 1 Example of (A) 3D T1-weighted and (B) 3D T2-weighted images with anatomic annotations. (C) framework of the UM

segmentation.
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Tumor segmentation
Because all the structures had been identified in the

preceding steps, the tumor could be segmented by simply

subtracting the VB and lens masks from the sclera mask,

using subsequent fuzzy C-means clustering to distinguish

the tumor from the anterior chamber and retinal detach-

ments because it generally has a higher intensity. Mor-

phologic operations (erosion and closing) were applied

before the mesh fitting.
Tumor prominence and basal diameter

Because tumor prominence is defined as the minimum

distance between the tumor apex and the outer boundary

of the sclera (instead of the detected inner boundary), the

outer boundary of the sclera needed to be detected first

by expanding the segmented sclera contour further to fit

on edges from both T1- and T2-weighted images simulta-

neously. The prominence was subsequently determined
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by a maximum-minimum search over the Euclidian dis-

tances between the outer sclera points S and the tumor

points T :

Prominence ¼ maxtj 2T fminsi 2 S k tj � si k g ð1Þ

The basal diameter was defined as the maximum

Euclidian distance between all tumor base points B ;
which is a subset of T with points within 0.3 mm from

the inner sclera:

Basal Diameter ¼ maxbi 2Bfmaxbj 2Bf k bj � bi k ggð2Þ
Evaluation

An ophthalmicMRI specialist created ground-truth con-

tours (G) by manually correcting the segmentations, based

on information from the T1-weighted, T2-weighted, and (if

available) postcontrast-enhanced images. The accuracy of

the automatic segmentation was assessed by computing the

volume overlap betweenG and the automatic segmentation

(S) using the Dice similarity coefficient (DSC):

DSC ¼ 2jS\Gj
jSj þ jGj ð3Þ

Furthermore, we studied the distribution of the surface

distance (SD) between G and S for each anatomic struc-

ture per patient:

SDs2 S ¼ ming 2Gð k s� g k Þ ð4Þ
The mean absolute surface distance (mSD) and how

frequently the surface distance was within the image res-

olution (§0.3 mm) were computed.

To highlight the influence of MRI on defining the true

dimensions of the tumor, we provided the manual measure-

ments to the tumor dimensions based on US and compared

them with the manual measurements based on MR images.

To evaluate the accuracy of the manual assessments of

tumor dimension that were performed on the original MR

images, automatic measurements were performed on the G

contours to create reference measurements that avoided the

confounding effect of any segmentation error.

Trivial manual inconsistencies of selecting points

away from the G contours (ie, intraobserver variabil-

ity) were quantified by matching the manual points

automatically to the G contours, then comparing the

resultant measurement with the manual assessment.
Results
Eye model

The eye segmentation ran fully automatically (ie,

without any user interaction) in 12 out of 15 patients (see
Figure 2). The data consisted of a wide variety of cases,

eg, UM located on top of the optic disc (Subject002), a

complex UM shape (Subject003), ciliary melanoma

(Subject005), UM in an elongated eye (Subject006; axial

length, 26.6 mm), tumors touching the lens (Subject004

and Subject011), a tumor infiltrating the lens and ciliary

body (Subject007 and Subject012), and necrotic UM

(Subject008). Motion artifacts can be observed in T2-

weighted images of Subject004, Subject005, Subject009,

and Subject012 and slightly in Subject006. Figure 3

shows the 3 cases where the framework failed either to

segment the tumor (Subject013 and Subject014) or to

register the images (Subject015).

High DSC values were obtained for the sclera, VB,

lens, and tumor: 97.7% § 0.84%, 96.8% § 1.05%,

91.6% § 4.83%, and 86.0% § 7.4%, respectively

(Figure 4). The corresponding mSD values were 0.17 §
0.11 mm, 0.20 § 0.06 mm, 0.15 § 0.06 mm, and 0.35 §
0.27 mm, respectively. Figure E2 shows the distribution

of the surface distances per patient for each segmented

structure. The distributions show that, on average, 82%,

76%, 89%, and 68% of the segmentation errors in the

sclera, VB, lens, and tumor, respectively, were within the

voxel size of 0.3 mm.
Tumor prominence and basal diameter

The manual and reference measurements of the tumor

dimensions based on MR images are presented in Table 2

along with the corresponding manual measurements based

on US images. For the tumor prominence, the difference

between the manual and reference measurements was in the

range of −0.92 to 1.12 mm, with an overall average abso-

lute difference of 0.39 § 0.31 mm. For the basal diameter,

the range of the differences was −4.65 to 3.0 mm, with an

overall average absolute difference of 1.70§ 1.22 mm.
Discussion
Eye model

We introduced an automatic framework to segment

3D ocular MR images of UM patients, which was suc-

cessful in registering and segmenting the targeted struc-

tures fully automatically in 12 out of the 15 cases (80%).

In the remaining 3 cases, the eye models were easily cre-

ated after manual interaction.

Sclera segmentation of an elongated eye (Subject006)

showed that the algorithm did not suffer from scalability

problems. Furthermore, the capability of the mesh-fitting

technique to preserve continuity helped to estimate

missed tumor-sclera boundaries (Subject002). Motion

artifacts in the T2-weighted images may have degraded

the quality of the sclera segmentation, because defining



Figure 2 Segmentation results for each subject, overlayed on the corresponding T1- and T2-weighted images. The solid and dashed

contours are the reference and segmentation contours, respectively. Sclera: cyan; vitreous body: yellow; lens: green; and tumor: red.
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the correct boundaries was difficult. However, including

information from T1-weighted images helped to mitigate

the motion-artifact effect. Furthermore, adjusting the fit-

ting parameters to put more constraints on the contour

expansion can resolve the remaining segmentation errors

that result from motion. To resolve the root of this prob-

lem, we are working on faster MRI acquisition protocols

for future applications.

Because our data set did not include any clips, the clip

artifacts were not encountered. There are some promising

publications that show only very small clip artifacts.39

Therefore, we expect that in these cases, using coarser

contours for fitting may help avoid noisy edges and give

more weight to the contour’s continuity term in the fitting
optimization equation so that missed edges owing to clip

artifact can be estimated.

Small susceptibility artifacts, caused by air bubbles

beneath the eyelids, were noticed in some patients, such

as Subject015, and resulted in local image distortions of

the anterior segment. The contour continuity term in the

fitting equation, however, helped to mitigate the effect of

this distortion on the sclera segmentation result. The

patients included in this study did not use mascara or

other types of makeup that would cause significant arti-

facts and spatial distortions.

The crystalline lens was segmented with high accu-

racy (high DSC and the lowest mSD). However, the algo-

rithm underperformed when the tumor overlapped the



Figure 3 Three cases in which the fully automatic segmentation failed. Sclera: cyan; vitreous body: yellow; lens: green; and tumor:

red. The red arrows on a T1-weighted image of Subject015 point to the motion artifact.
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lens, owing to the unclear boundary between the tumor

and lens. Consequently, the lens was undersegmented in

Subject007 and oversegmented in Subject013, in which

the ciliary melanoma infiltrated into the lens. The algo-

rithm could therefore be improved by incorporating con-

straints to the lens shape.

The algorithm succeeded in segmenting the VB. How-

ever, as the segmentation was performed in 3D, the

smoothness parameter of the mesh-fitting algorithm lim-

ited the flexibility of the contour to fit the complex VB-

tumor interface in Subject003.

Tumor segmentation was performed without a priori

information on tumor shape or location. In all cases, the

mSD was within the reconstruction voxel size, except for

in Subject007 (1.14 mm) and Subject008 (0.49 mm),

which caused a high standard deviation to the tumor’s

overall mSD. For Subject007, the low contrast between

the lens, tumor, and retinal detachment in the T1-

weighted image caused oversegmentation of the tumor.

For the necrotic UM in Subject008, although parts of the
necrosis were included in the tumor contour by the mor-

phologic operations, the remainder of the necrotic area

was not included, because it was larger than the morpho-

logic mask, causing a high mSD. Overall, 90.7%§6.3%

of the surface distances of the tumor contours were within

the limit of 0.6 mm, which is the interobserver variability

of US measurements in UM.40 We therefore believe that

the current segmentation method is accurate enough to be

used in current clinical practice and can actually provide

valuable additional clinical information, because it

encompasses the complete 3D tumor shape instead of

only a 2D cross-section. It would, however, be very valu-

able to also evaluate the reproducibility of manual tumor

segmentation on these MR images, as this would be a

more representative benchmark for the proposed auto-

matic segmentation framework.

Retinal detachment is a common complication of ocu-

lar tumors,41 which can be difficult to discriminate from

the main tumor in non−contrast-enhanced MR images,

because depending on the amount of melanin in the



Figure 4 Box plots show the quantitative evaluation of the

automatic segmentation results for 12 cases. (A) Dice similarity

coefficient. (B) mean absolute surface distance error. Blue

squares show the 50% confidence intervals, whiskers show the

90% confidence intervals, red lines indicate median values, and

orange dots show mean values.
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tumor, it can be isointense compared with retinal detach-

ment on T1- and T2-weighted images. In some patients,

however, the fuzzy clustering could correctly identify the

tumor because it is the region of highest intensity on the

T1-weighted images. As this may not be valid for all

cases, as can be observed in Subject007, inclusion of con-

trast-enhanced scans in future analyses may provide more

robust differentiation between tumor and retinal detach-

ment, as the signal intensity of only the tumor will

increase on T1-weighted images.

One limitation of this study is the limited number of

cases; more patients need to be included in future pro-

spective validation studies, because variation in tumor

appearance is substantial among patients with UM. The

patients included in this study already revealed some lim-

itations of the proposed algorithms: the tumor in Sub-

ject014 could not be segmented automatically, because

the tumor size was less than the size of the morphologic

kernel (5£5£5 pixels = 2.1 mm3) that is used in the algo-

rithm to filter out the noisy voxels. Therefore, the tumor-

segmentation algorithm has difficulties in segmenting

tumors that have volumes less than 2.1 mm3. This prob-

lem has been reported before in other methods,26 where it
was difficult to segment tumors with volumes less than

50 voxels (4.7 mm3). The increased resolution of our 7T

imaging protocol significantly reduced this problem, but

with the current imaging methods, the visualization and

therefore automatic segmentation of very small UM

remain challenging. Additionally, the lens-segmentation

algorithm is designed to segment the crystalline lens,

which is hyperintense on the T1-weighted image. As a

result, the algorithm cannot segment intraocular lenses

(eg, Subject015), as its signal intensities are generally

lower than those of a crystalline lens. Moreover, this

study highlighted the influence of acquisition artifacts on

the creation of an eye model. Although the sclera could

be segmented automatically in Subject015, the registra-

tion failed because of losing mutual information between

the T1- and T2-weighted images, owing to a combination

of motion artifacts that appeared in the T1-weighted

image and susceptibility artifacts in the cornea in the T2-

weighted image caused by small air bubbles beneath the

eyelid. In this case, however, we could roughly use the

sclera contour to segment the VB and the tumor automati-

cally on the T1-weighted image.

Although the proposed algorithms were developed on

7T MRI, they can be used in 3T images as well, as the

MR-imaging features are relatively similar across differ-

ent field strengths. Nonetheless, the mesh-fitting parame-

ters and the size of the morphologic kernels have to be

optimized for 3T images, because the image resolution is

slightly lower on 3T than 7T images. It has recently been

shown that the MRI methodology can indeed be trans-

lated to clinical 3T scanners,19 but we also noticed that

there are small differences in image contrast, which

would need to be incorporated in the automatic segmen-

tation algorithms. We expect some degradation in the

segmentation quality, such as larger segmentation errors

in most of the contours, owing to the lower resolution

and contrast of 3T images compared with 7T.

We provide, in Table E2, an overview comparison

between the proposed model and published models. To

perform a fair comparison, however, a common data set

would be needed, because the results are very much influ-

enced by the amount of the images used and their quality.

Nevertheless, as the proposed model is based more on

image content and depends less on the shape of the anato-

mies involved, we expect it to be more flexible than

ASMs, and therefore, more able to segment eyes with

additional pathology, such as the myopic elongated eye

(Subject006), or with differently located tumors without

needing a priori information about the tumor location, for

instance. Furthermore, both ASMs and deep-learning

models need a new training data set for every new imag-

ing modality to create a different set of model parameters.

However, we expect that the proposed framework is more

generic and would not need a new data set to change the

segmentation parameters if we used a different type of

MR scanner. From a clinical perspective, the generated



Table 2 Reference and manual measurements of the tumor prominence and basal diameter in all cases

Tumor prominence Tumor basal diameter

Case Ultrasound Automatic

(reference),

mm

Manual,

mm

Automatic

(segmentation),

mm

Ultrasound Automatic

(reference),

mm

Manual,

mm

Automatic

(segmentation),

mm

Subject001 6.0 6.4 6.4 6.3 13.0 14.1 13.0 13.7

Subject002 4.0 3.5 3.8 3.1 11.0 10.6 9.4 8.4

Subject003 13.0 9.3 9.5 9.3 21.0 18.7 19.5 17.8

Subject004 13.0 13.8 14.3 14.3 19.0 18.6 17.9 13.3

Subject005 3.0 3.3 3.7 3.1 6.0 5.9 4.1 4.1

Subject006 5.0 5.1 6.2 4.7 16.0 13.7 13.7 14.1

Subject007 9.0 8.2 8.1 7.9 14.0 13.3 8.6 18.2

Subject008 7.0 6.2 5.8 6.1 19.0 13.5 12.8 12.7

Subject009 4.0 3.7 3.9 3.6 9.0 9.8 7.1 8.1

Subject010 11.0 10.4 10.1 10.2 11.0 11.3 14.3 10.0

Subject011 12.0 9.9 10.2 9.6 22.0 21.9 20.5 22.2

Subject012 9.0 8.6 7.7 8.7 14.0 16.5 14.1 18.2

Subject013 1.0 2.6 2.8 - 7.0 5.0 4.5 -

Subject014 3.0 3.1 3.2 - 8.0 6.6 5.0 -

Subject015 3.0 3.3 3.9 - 12.0 12.8 10.1 -
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models need to be checked by an expert before using

them for therapy planning, but the minimal manual cor-

rections needed would increase objectivity and reproduc-

ibility compared with a fully manually segmented model.

Accordingly, the comparison of DSC and mSD values in

Table E2 shows that our proposed model has a promising

performance in localizing different structures and will

need minimal user interaction to correct the contours.

Note that the average mSD of the tumor contours in the

proposed work is higher than that of the ASM with a con-

volutional neural network. This is mainly caused by the

results of Subject007, where the tumor was overseg-

mented. If we would have considered the tumor segmen-

tation of Subject007 on the postcontrast-enhanced image

instead of the T1-weighted image, the average mSD

would have been smaller (0.27§0.09 mm). This average

mSD measurement is within the image reconstruction

resolution and shows that the proposed contours can be

used clinically with minimal user correction.
Tumor prominence and basal diameter

The 3D MR imaging allows for a more accurate

assessment of tumor geometry than does 2D US,13 but it

also shifts the difficulty of determining the correct orien-

tation for the size measurements from the acquisition

(ensuring the correct orientation of the US probe) to the

image analysis (determining the correct 3D plane to per-

form the measurement).

The manual determination of the correct plane to mea-

sure tumor prominence is relatively easy. Consequently,

the difference between the manual and automatic
prominence measurements was less than the acquisition

resolution (0.6 mm) for 10 of 12 patients and less than

the reconstruction resolution (0.3 mm) for 6 of 12

patients. The main source of the difference was the exact

definition of the boundary of the tumor and/or sclera (ie,

intraobserver variability), which can be seen by the aver-

age distance to the reference contours G of 0.35§
0.31 mm. In the 2 patients with a relatively large differ-

ence of about 1 mm, Subject006 and Subject012, the

main cause of the difference was a difference in definition

of the outer sclera. The manual tumor prominence meas-

urements were performed on the T1-weighted image,

where the outer sclera boundary is often not clearly iden-

tifiable. As the automatic framework combines informa-

tion from T1- and T2-weighted images, a more accurate

determination of the tumor boundaries is possible.

In contrast to measuring the tumor prominence, the

largest basal diameter is difficult to measure manually on

3D MR images for 2 reasons. First, the direction of the

largest basal diameter can best be determined in a slice

parallel to the tumor base. However, in this scan plane,

the sclera can be parallel to the image slice, which can

mask the tumor boundaries owing to partial voluming

(see Subject007 in Fig E1b). Second, the outer contours

of the tumor base are generally curved in 3 dimensions,

making it impossible to assess the complete tumor bound-

ary in a 2D reconstructed slice. As a result, the manual

determination of the largest basal diameter is not only a

time-consuming task but is also quite inaccurate for

larger tumors. The intraobserver variability was high

because of the difficulty of defining the boundary of the

tumor base, with a value of 0.89 § 1.13 mm, and the dif-

ference between the manual and automatic measurements
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was larger than both acquisition and reconstruction reso-

lution in 11 out of 12 patients in this study.

The tumor prominence measurements from this cohort

of patients confirmed the findings that manual promi-

nence measurements based on MR images deviate

approximately 1.1§0.9 mm from the manual measure-

ments on US images.12 This overestimation of the tumor

prominence likely originated from a slightly oblique ori-

entation of the US probe, resulting in an apparent

increase in tumor thickness. Moreover, we showed that

the manual basal diameter measurements on MR images

deviated by approximately 2.3§1.7 mm from the manual

measurements on US images, although US generally

reports a larger basal diameter. Along with the difficulty

of determining the correct plane for this measurement,

which is also a limiting step in the manual interpretation

of the MR images, US images are further hindered by a

low contrast between the tumor and sclera. Additionally,

the relatively small field of view of the US images makes

it not always possible to visualize the complete tumor

base, increasing the inaccuracy of the method. As a

result, the automatic MR-based determination of the

tumor diameter was a relevant improvement to the cur-

rent clinical practice. Because current radiation therapy

protocols have incorporated the different uncertainties of

US in the margin and/or dose delivery, a more dedicated

evaluation of the effect of 3D MR-based tumor models

on radiation therapy planning is needed before they can

be applied in clinical practice.

The main advantages of the automatic framework are

its reproducibility and objectivity. Regardless of the level

of user experience, the automatic frameworks can repro-

duce consistent contours that minimize an objective func-

tion and result in more consistent tumor-dimension

measurements. The automatic framework can minimize

the sources of subjectivity that are prevalent in manual

segmentation and assessments.42 Also, with the advances

of high-resolution MRI, a large number of slices with

inclusion of multiple contrasts is acquired, which can

make manual segmentation a time-intensive task; the

time required can be significantly reduced by the pro-

posed automatic framework.

In addition, the segmentation results of this study show

the potential of the proposed methods to accommodate var-

iations either in the shape of the UM or its location within

the eye. The image quality and level of tumor infiltration

into other structures can affect the segmentation quality;

however, these errors can always be corrected manually.

Therefore, our future work will focus on resolving these

difficulties and reducing manual intervention further. This

framework makes it possible to separate boundary detec-

tion from the 3D geometric analysis, providing a better

insight into tumor dimensions and resulting in a better

treatment plan. The aforementioned difficulties in manual

measurements illustrate that automatic size measurements

are more accurate than manual ones.
Conclusion
We have proposed an automatic framework to segment

high-resolution 3D ocular MR images of UM and to pro-

vide accurate information about the tumor dimensions. The

presented segmentation results show the potential of the

proposed framework to accommodate variability in eye size

and UM shape and location without needing prior knowl-

edge. The proposed framework may have a direct effect on

the clinical workflow, as it enables an accurate 3D assess-

ment of the tumor dimensions, directly influencing therapy

selection that currently relies on manual measurements and

delineation of tumor margins on 2D ultrasound images. A

personalized 3D MR-based model of the tumor and sur-

rounding structures may contribute to more systematic and

accurate treatment determination and planning.
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