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Quantitative blood flow velocity 
imaging using laser speckle 
flowmetry
Annemarie Nadort1,2, Koen Kalkman1, Ton G. van Leeuwen1 & Dirk J. Faber1

Laser speckle flowmetry suffers from a debated quantification of the inverse relation between 
decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation 
imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we 
experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in 
vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and 
multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering 
in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow 
velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood 
flow, velocity and tissue perfusion.

Quantitative imaging of microcirculatory blood supply to tissues is of paramount importance for diagnosis, ther-
apy planning and monitoring, e.g. of metabolic, vascular and critical diseases1,2. Quantifying cerebral blood flow 
gives insight into brain metabolism3, while visualizing angiogenic vasculature can aid in localizing tumours4,5 and 
monitoring their development and oxygen metabolism6–8. Important clinical microcirculation parameters are 
blood flow (blood volume per unit time in the vasculature) and perfusion (blood volume per volume tissue, per 
unit time). Both are intimately related to blood flow velocity V through the morphology of the vasculature (e.g. 
vessel diameters and vessel density).

Laser speckle flowmetry9 is a widely available vascular imaging tool with potential use at the bedside or during 
operations10–18. It provides a measure for blood flow velocity by quantifying the decrease in speckle contrast as 
a result of ‘blurring’ of dynamic speckles within a finite camera exposure time9,19. When red blood cells (RBCs) 
move, the speckle contrast K, defined as the ratio of the standard deviation (σi) to the mean (<I> ) of the pixel 
intensity, decreases with increasing ratio of the camera exposure time T and the characteristic timescale of the 
speckle dynamics τc

20,21.
The interpretation of τc as a measure of blood flow, velocity or tissue perfusion is confounded22–24, but repre-

sents a clinically relevant question. Albeit that the relation is verified to be of the form 1/τc =  α V in flow phantom 
experiments, the exact value of the proportionality constant α is debated and has not been verified in vivo24,25. 
Suggestions for α ranged from a dependence on system parameters24,26,27 to a dependence on the optical proper-
ties of the scatterers28 and dependence on multiple scattering24,28. These predictions differ 1–2 orders of magni-
tude25. However, to become a true quantitative tool the assessment of α beyond speculation is a necessity.

Thereto, we integrated sidestream dark field (SDF) microscopy29,30 with laser speckle contrast imaging 
(LSCI)21. SDF-LSCI enables simultaneous, independent measurement of τc and V in microcirculatory vessels 
or phantom flow channels. Our recent study showed that correction for additional decorrelation sources (e.g. 
muscle movement, dynamic scattering outside the focal volume) improves the relation between τc and V. Since α  
was suggested to depend on scatterer size through the scatterer phase function28 and multiple scattering through 
the number of dynamic scattering events24,28, we designed an in vitro flow phantom to investigate on the influ-
ence of scatterer size and volume fraction. We place our results in theoretical context taking into account the 
optical properties and experimental geometry, resulting in a practical relation 1/τc =  α 1A(N) ×  V where α 1 is 
the proportionality constant for single scattering and A(N) scales for the average number of dynamic scattering 
events N. Applying this theoretical framework to chick embryo and human microcirculation beds demonstrates 
the feasibility of LSCI for quantitative mapping of blood flow velocities in vivo. Importantly, LSCI additionally 
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provides means to derive the clinically relevant parameters blood flow and perfusion from the vessel geometry in 
microcirculation images.

Practical Approach
Acquiring blood flow velocities and decorrelation times in vivo was realized using the integrated SDF-LSCI sys-
tem as schematically shown in Fig. 1, enabling recording of raw speckle images and conventional SDF images of 
the same microcirculation area sequentially (see also Supplementary Fig. 1). To obtain quantitative flow velocity 
mapping several acquisition and analysis steps need to be taken. Step 1–3 describe the multi-exposure acquisi-
tion algorithm and its curve-fitting to find τc

22,31, where τc,total and τc,offset refer to τc from vessel and tissue regions, 
respectively, and are required for our offset correction21. Step 4–6 describe the multiple scattering and scatterer 
phase function model to obtain the blood flow velocity, as elucidated in this Article. A more detailed description 
can be found in Supplementary Fig. 2, which, together with Fig. 1, serves as an overview of the outcomes in the 
rest of this paper and should be treated as a guideline to the reader.

Theoretical Framework
When coherent light backscattered from different positions in biological tissue is imaged on a camera, the ensem-
ble of phase differences gives rise to a randomly varying spatial intensity distribution (speckle). Movement of 
scatterers results in a temporally fluctuating speckle pattern. The characteristic timescale τc of the fluctuation 
can be used to quantify the motion of scattering particles. The parameter τc parameterizes the temporal electric 
field autocorrelation function (ACF) g1(τ ) describing the sample dynamics. However, g1(τ ) and thus τc depend 
on optical and physical properties of the tissue, e.g. the scattering phase function. Moreover, scattering from 
more than one moving particle causes faster decorrelation of the speckle pattern (shorter τc). We review the 
optical properties relevant to our application and their relationship with g1(τ ) and τc in Supplementary Section 
IIIa and IIIb, respectively. Our approach builds upon the theoretical foundation of Laser Doppler Flowmetry 
(LDF)28,32, Diffusing Wave Spectroscopy (DWS)33,34 and using our recent advances in the modelling of optical 
scattering of whole blood using Mie-Percus-Yevick (MPY) equations35. For high volume fractions of scatterers, 
as in blood, inter-particle correlation (“dependent scattering”) has to be taken into account to calculate the scat-
tering properties (e.g. non-linear increase of the scattering coefficient with volume fraction). This correlation is 
implemented by modelling flowing blood as a discrete random medium of hard spheres which is characterized by 
average density and pair correlation function. The latter is calculated using Percus-Yevick (PY) equations36,37 as 
before35,38. Next the number of dynamic scattering events has to be determined. The probability density function 
for the number of scattering events per unit volume pN(n) is generally taken to be Poissonian28. Since this is only 
valid for low volume fractions, for RBCs in whole blood (volume fraction or hematocrit (Hct) 30–50%) we use 
a Gaussian distribution for pN (n), where the relation between mean (N) and variance (σn

2) is determined by the 
pair correlation function39,40 (Supplementary Section IIIc) . Here, N is estimated from Monte Carlo simulations of 
our measurement geometry (Supplementary Section IV). The result is a model of g1(τ ) and associated τc in terms 
of optical properties, organization and scattering order.

To fulfil our aim to quantify the relationship 1/τc =  α V in multiple scattering scenarios, we introduce the 
rescale parameter A(N), defined as A(N) =  τc,1/τc or A(N) =  α /α 1, where the subscript ‘1’ denotes single scat-
tering. Using the theoretical model outlined above we calculated A(N) for RBCs and a range of values for N, as 
plotted in Fig. 2, for two hematocrit values corresponding to whole blood (Hct =  45%) and the microcirculation 
(Hct =  30%)41 (solid lines). For comparison to conventional LSCI approaches we also plotted Α(N) for Gaussian 
and Lorentzian shape of g1,(τ) (Fig. 2, dashed lines, see also the Discussion). The calculation of Α(N) practically 
relates V to τc in vivo via 1/τc =  α 1Α(N) ×  V.

The characteristic timescale τc of temporal speckle dynamics can be derived from spatial intensity statistics 
of an imaged speckle pattern (Supplementary Section IIId). After the initial derivation9 essential improvements 
to the analysis were included42,43, for example accounting for a static component in the speckle pattern. When 

Figure 1.  Overview of acquisition and analysis steps for quantitative laser speckle flowmetry. A modified 
SDF-LSCI videomicroscope enables consecutive multi-exposure laser speckle imaging and SDF-imaging of the 
same microcirculation area. The acquisition and analysis steps are supported by our theoretical modelling and 
experimental validation, as described in this Article.
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a Gaussian form of g1(τ ) is appropriate42 – confirmed by our theoretical analysis – an analytical expression for 
speckle contrast K(T/τc) can be derived for curve fitting, where T is the camera exposure time varied in the meas-
urement. Next to the sought τc the model incorporates the parameters βM

21,44,45 (the measurement geometric 
calibration constant) and ρ (the fraction dynamically scattered light where ρ =  If /(If +  Is), with If the detected 
intensity of the fluctuating scattered light and Is the detected intensity of the light scattered by static components) 
that can both be measured. The resulting expression is Supplementary equation (12), from which τc can be relia-
bly estimated by applying a multi-exposure acquisition scheme and subsequent nonlinear curve fit16,22,31.

Influence of Size and Volume Fraction of Scatterers
Experimental LSCI data was acquired using an integrated SDF-LSCI device (Supplementary Fig. 1). 
Multi-exposure SDF-LSCI frames were recorded for 9 flow velocities [0.1–20 mm/s] and 6 differently sized micro-
spheres [diameter 0.6–10 μ m; all 2.5 vol%] and τc was estimated by fitting Supplementary equation (12) to the 
measured speckle contrast (see Methods). Typical multi-exposure curves and fits are shown in Fig. 3. In Fig. 4a, 
1/τc vs. V is plotted for the different sphere sizes, where the slope defines α. For large scatterers (5, 7 and 10 μ m) 
α increases with decreasing size. For small scatterers (0.6, 1 and 2 μ m) however, α is approximately constant. The 
theoretical predictions for α follow from Supplementary Section III using the optical and physical properties 
listed in Supplementary Table 2 and Monte Carlo simulations for this geometry. Fig. 4b shows α plotted (data 
points) for all scatterer sizes, together with predictions (solid line). The shaded area represents the uncertainty in 
the calculation due to variations in size and refractive index of the scatterers.

Figure 2.  Multiple scattering scaling factor. Scaling factor Α(N) =  α /α 1 =  τc,1/τc, is calculated using our model for 
autocorrelation g1(τ ) based on Mie-Percus-Yevick scattering in human blood for Hct =  30% (upper solid orange line) 
and Hct =  45% (lower solid red line). As a practical guideline, A(N) from our MPY model can approximately be 
fitted by A(N) =  1.1 N(2/3), which gives an error < 10% for the range plotted for both hematocrits. Dashed lines 
represent Α(N) for Lorentzian (grey) and Gaussian (black) models for g1(τ ). All scaling factors are calculated 
using a normal distribution for the number of scattering events in the vessel pN(n), with mean N and variance 
determined by the Percus-Yevick pair correlation function (Supplementary equation 6).

Figure 3.  Multi-exposure curves and fits. Multi-exposure speckle contrast values (data points) and 
corresponding fit of Supplementary equation (12) (dashed lines) for 9 different flow velocities for 2 μ m 
polystyrene spheres (2.5 vol%). Speckle contrast K is calculated according to Supplementary equation 12.
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In order to determine the effect of concentration, we prepared different volume fractions of solutions of 1, 2 
and 5 μ m spheres (Supplementary Table 2) and determined α shown in Fig. 5a together with α from 2.5 vol% 
solutions of 0.6, 7 and 10 μ m. In Fig. 5b the same data points are plotted as a function of optical properties, 
scattering coefficient μ s and N, which results in a more uniform increase of α with increasing μ s resp. N, until 
α remains constant. Figure 5c shows measured values vs. prediction yielding good correspondence for small α 
(low μ s and N), however for higher α theory overestimates the experimental measurement. We note that for in 
vivo blood flow velocity measurements small values for α  are predicted.

Quantitative Flowmetry in vivo
We assessed in vivo decorrelation times by imaging the readily available microcirculation of the chorioallan-
toic membrane of a chick embryo grown ex ovo. Multi-exposure SDF-LSCI and conventional SDF frames were 
recorded for 35 unique vessels for which RBC tracking was possible, to independently estimate τc (by LSCI) and 
V (by SDF) of the same vessels. Compared to controlled phantom experiments, first it is essential to account for 
‘offset’ decorrelation due to dynamic scattering of photons outside the focal plane or caused by muscle move-
ments21 (see Methods). Second, the average number of scattering events varies per vessel diameter, estimated 
from Monte Carlo simulations (Supplementary Section IV). Therefore, for each vessel a unique α(N, μ s, p(q)) 
can be found. We assume that for the microcirculation, scattering coefficient μ s and phase function p(q) are 
invariant and we can write α(N). This allows rescaling of each τc to N =  1 by a model-based in vivo scaling factor 

Figure 4.  Influence of scatterer size on α. (a) 1/τc plotted against V for 6 different scatterer sizes (polystyrene 
microspheres diameter =  [0.6–10 μ m]), together with a linear fit (dotted lines) to the data points with weights τc. 
The slope of the linear fit is α. No error bars are plotted for clarity, the average standard error on τc was 4% ±  2% 
(max. error 12%). (b) α versus scatterer diameter, error bars are 95% CI intervals from linear fit in (a). Also 
plotted is the theoretically derived α (solid line) using Mie-Percus-Yevick scattering theory and the number 
of scattering events N in the flow tube (diameter d 0.2 ±  0.03 mm) as obtained from Monte Carlo simulations 
(N =  1.2μsd), N ranged from [2–15] for [0.6–10 μ m] spheres. The shaded area represents the uncertainty in α 
due to error margins in optical properties of the scatterers.

Figure 5.  Influence of scatterer volume fraction on α. Measured α versus (a) scatterer volume fraction,  
(b) scattering properties (scattering coefficient μs and average number of scattering events N in the flow tube 
with diameter d 0.2 ±  0.03 mm, N =  1.2μsd) and (c) theoretically derived α for all measured samples. Error bars 
are 95% CI intervals from linear fit on 1/τc vs. V.
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Α(N) =  α/α1, denoting the parameters rescaled for single scattering α1 and τc,1. The scaling factor A(N) calculated 
for chick embryo blood vessels is shown in Supplementary Fig. 5. In Fig. 6a 1/τc, (top panel) and the rescaled 1/τc,1 
(bottom panel) are plotted versus blood flow velocity for the chick embryo blood vessels. The correlation coef-
ficient of the linear fit of 1/τc and 1/τc,1 vs. V improved after rescaling from r =  0.11 to r =  0.74, respectively. The 
slope of the rescaled linear fit gave α1 =  0.20 ±  0.07 (95% CI), close to theoretical α1 =  0.27 with an uncertainty 
range of [0.24–0.30] calculated by varying the size ±5% and refractive index nRBC ± 1% (Supplementary Table 1).  
Next, we reassessed the human sublingual microcirculation measurements acquired previously (14 unique vessels 
with known flow velocities)21 by model-based rescaling of τc using A(N) from Fig. 2 for Hct =  30%. The correla-
tion coefficient increased from r =  0.48 to r =  0.87 between 1/τc (Fig. 6b, top panel) and the rescaled 1/τc,1 data 
(Fig. 6b, bottom panel), respectively, vs. flow velocity. The in vivo α(human) was 0.41 ±  0.50 (95% CI) for the 
original data and α1 was 0.39 ±  0.15 (95% CI) for the rescaled data, near identical to the theoretical prediction for 
α 1 of 0.38 with an uncertainty range of [0.34–0.41] calculated by varying the size ± 5% and nRBC ± 1%. In both (a) 
and (b) in Fig. 6 one data point was excluded as an outlier.

To illustrate the quantitative imaging ability of laser speckle flowmetry we constructed a 1/τc map (repre-
senting the basic LSCI outcome) and a blood flow velocity map as shown in Fig. 7 and Supplementary Movie 1 
(human) and Supplementary Movie 2 (chick embryo), following the practical steps outlined in Supplementary 
Fig. 2 and Supplementary Section VII.

Figure 6.  In vivo determination of α. 1/τc versus V for RBCs in vivo, for (a) chick embryo and (b) human 
microcirculation. The top panels (green open circles) show 1/τ c estimated by a multi-exposure curve fit 
(Supplementary Section IIId, equation 12) and τc,offset correction (Supplementary equation (13)21). The bottom 
panels show 1/τc,1 rescaled for the average number of scattering events N, using model based Α(N) =  α /α 1, and 
1/τc,1 =  (1/τc)/Α(N). In both (a,b) one data point was excluded as an outlier (not shown). Vertical error bars 
represent 95% CI of the multi-exposure curve fit and horizontal error bars represent the standard deviation in 
reference flow velocity measurements from conventional SDF images. The slope, or α1, is 0.20 ±  0.07 (95% CI)  
and 0.39 ±  0.15 for chick embryo respectively human RBCs, and the theoretical prediction for α1 is 0.27 
respectively 0.38.

Figure 7.  Human microcirculatory flow velocity mapping. (a) Conventional SDF image where the contrast 
is based on absorption differences between RBCs and tissue. Flows below 2 mm/s can be measured by RBC 
tracking. (b) 1/τc map of the same microcirculation region obtained with multi-exposure SDF-LSCI after 
correction for τc,offset, contrast is obtained by perfusion dynamics. (c) Map of LSCI-derived blood flow velocities 
after correction for τc,offset and A(N), and masking of selected blood vessel contours. The scale bar is 100 μ m.
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Discussion
In this Article we demonstrate non-invasive quantitative blood flow velocity measurements in vivo, using a rela-
tively simple and available technique based on LSCI. LSCI suffers from a debated quantitative relationship with 
blood flow, velocity or tissue perfusion22,23 and a lack of calibration of the inverse relationship between τc and flow 
velocity quantified by the proportionality constant α25. Several predictions for α have been suggested in litera-
ture, but disagree in their absolute value and physical dependence26–28,46. The results of our study confirm that 
scatterer size and volume fraction influence the relationship between 1/τc and V28. To quantitatively understand 
this relation we employed a theoretical model based on optical and physical properties of the scatterers, where α 
is particularly influenced by the scattering phase function and multiple scattering effects. Our assumption that the 
scattering properties of RBCs in the microcirculation are invariant allows for rescaling by the number of scatter-
ing events, enabling quantitative in vivo blood flow velocity measurements. This has previously been implemented 
empirically by rescaling τc by a weighting term that is proportional to the vessel diameter16, or local absorption 
properties related to blood content47, though in a qualitative fashion. The quantity 1/τc is essentially related to 
flow velocity and vessel diameter/blood content, therefore a strong linear correlation with V alone is not expected, 
however, by correcting for volume fraction of RBCs the linear correlation is much improved as also evidenced by 
the reduction in 95% CI range for α 1. We estimated the average number of scattering events with Monte Carlo 
simulations and related their distribution to the Mie-Percus-Yevick (MPY) scattering model of whole blood. This 
approach resulted in an excellent agreement between theory and experiment, validating α and its correction fac-
tor for multiple dynamic scattering, A(N), in vivo for microcirculatory blood flow velocities and confirming that 
quantitative measurement of flow velocity by LSCI is feasible. Conveniently, vessel diameters and vessel density 
can be estimated from the images, allowing quantitative mapping of both blood flow and velocity and estimating 
tissue perfusion using laser speckle flowmetry.

In Figs 4 and 5 we systematically varied the size and volume fraction of flowing polystyrene spheres and com-
pared the experimental results to theoretical predictions. In Fig. 4b α  for 5, 7 and 10 μ m particles (2.5 vol%) is in 
good agreement with our predictions, but for smaller scatterers (0.6, 1 and 2 μ m) α is overestimated by theory. 
For the small scatterers, which are below the resolution limit of the system, the measured α seems to saturate 
to a value of 2–2.5 μ m−1 in our system. A similar value for α was found in our previous report, using 2.5 vol% 
Intralipid®  as flowing fat emulsion with sub-resolution effective scatterer size21. Supplementary Fig. 7 shows that 
saturation of α is expected for small scatterers, albeit at much higher values. Moreover, α does not show depend-
ence on volume fraction for these small spheres (Fig. 5), suggesting that α in this case is predominantly deter-
mined by system properties rather than sample properties24,26. On the other hand, from Supplementary Table 1 
and Fig. 5b, all experiments with small particles involve a high μ s and thus a large number of dynamic scattering 
events so that an alternative explanation is that our theory overestimates decorrelation by multiple scattering 
when the number of events get large. A satisfactory theoretical explanation for either possibility has hitherto not 
been found.

In our in vivo SDF-LSCI geometry, RBC size exceeds the resolution limit. Although in whole blood (high μ s) 
multiple scattering is present for most vessels (our data set: vessel diameter =  [10–55 μ m]) the average number 
of scattering events N =  [1–5] was low, making saturation of α unlikely. Numerically simulating N in vivo and 
applying the theoretical model to the optical properties of blood allowed to rescale the obtained τc for multiple 
scattering resulting in a high linear correlation between 1/τc,1 and flow velocity. In addition, the measured α1 
is in perfect agreement with the theoretical prediction. Though in vivo α could only be validated against low 
flow velocities (<2 mm/s) measured by conventional SDF flowmetry, the in vitro experiments verified α up to 
15 mm/s indicating that LSCI is capable of measuring high microcirculatory flow velocities as well. Extending the 
multi-exposure regime to shorter exposure times will increase the maximum flow velocity limit further.

Our multiple scattering model in whole blood based on the MPY approach matches the experimental results 
well, therefore the in vivo scaling factor Α(N) in Fig. 2, can be used as a practical guideline to quantitative laser 
speckle flowmetry when N can be estimated. To recapitulate, dynamic scattering by multiple moving particles 
yields a different time-constant τc compared to single scattering. Α(N) is simply the ratio of these time constants 
(A(N) =  τc,1/τc or A(N) =  α /α 1) at a certain value for N, relating V to τc in vivo via 1/τc =  α 1Α(N) × V. Thus, the 
practical realization of quantitative laser speckle flowmetry necessitates the estimation of N from the geometry 
of blood vessels. Then, τc,1 is calculated according to 1/τc,1 =  (1/τc)/Α(N) and the flow velocity estimated from 
1/τc,1 ≈ [0.38 ±  0.04]V. For comparison to conventional LSCI approaches we also plotted Α(N) for Gaussian 
and Lorentzian shape of g1,(τ) (Fig. 2, dashed lines), calculated using a normal distribution for pN(n). Rescaling 
for multiple scattering is thus highly model dependent, where the Lorentzian (A(N) ~ N) and the Gaussian 
(A(N) ~ √N) model result in an underestimation or overestimation of V, respectively.

We use the analytical model of Supplementary equation (12) to fit experimental K(T) vs. T curves, based on 
the assumption that this model accurately retrieves the actual decorrelation time τc, even though our derived 
g1(τ) is not necessarily purely Gaussian. We verified the validity of this approach by calculation (Supplementary 
Section XI). It is shown that the current model and the Gaussian model approximate each other sufficiently, espe-
cially for N >  1, by examining the final K(T) curve. We therefore conclude that assuming a Gaussian ACF, thereby 
making the fit model for K(T) analytical and practical, results in an acceptably small error in τc estimation. This 
result does not imply that scaling factors A(N) should be based on Gaussian approximations to g1(τ) as evi-
denced by Fig. 2. We therefore scale our in vivo measured τc to the value τc,1 (for single scattering) using the MPY 
model-based factor A(N). This highlights an important finding of our study: although the in vivo estimation of τc 
is valid using a Gaussian form for g1 and its often-used expression for K(T)21,24,42, the subsequent rescaling of τc to 
τc,1 is recommended using our MPY-based A(N) in Fig. 2, to prevent over- or underestimation of V when using 
the Gaussian or Lorentzian model respectively. A recent study by Kazmi et al.48 applied the N-scattering correc-
tion using the more straightforward Gaussian approach and found an improved correlation coefficient between 
1/τc and V, as compared to uncorrected values. However, the absolute at certain still differed by a factor of 2 for 
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different animals. This good relative relationship between both quantities can also be explained by our modelling 
in Fig. 2: comparing our model to the Gaussian based A(N) results in similar relative correction factors between 
V and τc. Thus, in order to absolutely quantify flow velocity (and thus other important physiological parameters 
like perfusion), we believe that our MPY-based rescaling factor, and its related pN(n), are crucial. We emphasize 
that τc in vivo is subject to additive decorrelation sources along the photon path through tissue21, referred to as the 
‘offset’ correction, which should be estimated and corrected accordingly.

Introducing the offset-decorrelation correction to conventional LSCI analysis yields a quantitative decor-
relation map (Fig. 7b) and subsequently applying the model-based scaling factor and α 1 yields a quantitative 
blood velocity map (Fig. 7c). We note that more advanced image analysis algorithms (discussed in Supplementary 
Section VII) will reduce the small differences between flow velocities found using RBC-tracking (Fig. 7a) and 
quantitative LSCI (Fig. 7c). The offset correction was introduced in our previous in vivo SDF-LSCI validation 
study21. The offset correction holds if all decorrelation sources are statistically independent. Only in that case is 
the total decorrelation function given by the product of the decorrelation functions of each process21,24. Moreover, 
our correction assumes that all decorrelation processes are well described with Gaussian ACFs and that pixels 
representing tissue sample only the offset decorrelation, while the pixels representing vessels sample the offset and 
additional flow decorrelation. The first assumption is assessed in the previous paragraph. The last assumption is 
substantiated by the low scattering of the sublingual mucosal non-keratinized top layer resulting in a high prob-
ability that photons are derived from the focal plane (the high quality SDF-images of flowing RBCs substantiate 
this). However, in highly scattering tissues such as skin the offset correction warrants further study. To illustrate 
the importance of the offset-correction in the sublingual microcirculation, we plotted the data from Fig. 6 without 
the offset correction in Supplementary Fig. 8, i.e. 1/τc,total and 1/τc1,total vs. V. As chick embryo vessels are embed-
ded in a weakly scattering medium (egg-white) and have low vessel density, the offset decorrelation times are long 
compared to flow decorrelation times and therefore have less influence. For human vessels on the other hand, not 
applying the offset correction reduces the linear correlation coefficient between 1/τc,1,total and V substantially and 
the resulting values for α1 deviate from theoretical values (see Supplementary Fig. 8). Thus, in human microcir-
culation beds, decorrelation events from vessels outside the focal area have a substantial influence on the detected 
τc’s in laser speckle contrast images49 and the offset-correction is necessary.

The uncertainty in the estimation of N with Monte Carlo simulations is due to uncertainties in the included 
optical properties and fidelity of the simulated measurement geometry. Our phantom experiment offers an alter-
native way to validate N as described in Supplementary Section X and Supplementary Fig. 9. The latter figure 
shows the dependence of parameter ρ on the scattering coefficient of the dynamic medium. Naturally, the meas-
urement geometry also influences ρ (e.g. due to different static/dynamic medium properties, tube diameter, etc.) 
thus ρ needs appropriate estimation/calibration. In vivo, ρ is influenced by imaging geometry, vessel diameter, 
vessel depth and Hct values and can be estimated from measurements at long exposure times. When neglecting 
to appropriately estimate ρ the resulting value for τc can deviate majorly16,31. Estimation of N in vivo using Monte 
Carlo simulations depends on the geometrical and optical properties such as vessel depth, diameter and μ s,blood. 
Varying the vessel depth between 0.1 and 0.4 mm and the Hct between 30% and 45% resulted in comparable val-
ues for N (Supplementary Fig. 4), indicating that our estimation of N is robust. In addition, calculating α1 using 
this variation in N values influenced α1 by less than ± 0.02 for microcirculatory vessel diameters. Alternatively, 
low-coherence interferometric set-ups allow path-length resolved speckle signals to be acquired50–52, providing 
better estimation of N albeit without the simplicity of the LSCI approach.

To make our results more widely applicable we performed Monte Carlo simulations for a conventional speckle 
imaging set-up where wide field laser light illuminates tissue at an angle and the backscattered light is captured by 
a camera directly above the tissue10,13–16,53. In this geometry very similar N values for dynamic detected photons 
were found for both in vitro and in vivo optical properties (Supplementary Fig. 4), which generalizes our multiple 
scattering scaling. Practically, combining the results from Monte Carlo simulations for N, calculation of A(N) 
and the theoretically and experimentally derived value for α1 the relationship between 1/τc and V simplifies to 
1/τc =  0.6V, 1/τc =  1.2V and 1/τc =  2.0V for 20, 50 and 100 μ m microcirculatory vessels, respectively.

The approach to calculate g1 for multiple scattering has been recognized in literature50,52,54, explicitly in the 
LDF28 and DWS34 field. The differences in the treatment of multiple scattering and modelling g1 between LDF, 
DWS and our approach are discussed in Supplementary Section XII. Key challenges are to find a valid model for 
g1 and a valid expression for pN(n) in the specific geometry. Here we have shown that our experimental α1 =  0.39 
(and estimation of pN(n)) matches very well with theory (α =  0.38) and falls in between predictions from the LDF 
framework (α1,LDF =  0.36) and DWS framework (α1,DWS =  0.54).

The experimental and theoretical findings in this study improve the quantitative flowmetry capabilities of 
LSCI and show that the clinically relevant parameters blood flow, velocity and tissue perfusion, can be quanti-
tatively represented in SDF-LSCI microcirculation images, escaping the doctrine of qualitative and relative flow 
measures (Supplementary section XIII). This enables SDF-LSCI to quantitatively study microcirculation within 
and between organs and organisms and during the course of disease and therapy. In essence, for quantitative in 
vivo speckle flowmetry reliable estimation of τc, correction for ‘offset’ decorrelation21, and estimation of vessel 
diameter to correct for multiple scattering are key ingredients. We recommend to consider the influence of system 
resolution on α, for example when choosing flowing scattering solutions in phantom experiments. The highly 
vascularised chorioallantoic membrane of the chick embryo can be a practical calibration model as an intermedi-
ate between in vitro and in vivo validation.

Methods
Data acquisition.  A clinical microcirculation imager based on SDF microscopy (Microscan, Microvision 
Medical, The Netherlands) was modified to provide illumination with laser light (HeNe, 632.8 nm). Four multi-
mode fibres surround a central imaging pathway (5× magnification, 4.2 μ m resolution ) (Supplementary Fig. 1)21. 
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Back-reflected light forms a speckle pattern on an 8-bit monochrome camera (IEEE 1394, Guppy F-080B, Allied 
Vision Technologies, Germany) with a field of view of 1 ×  0.7 mm on 1024 ×  768 pixels. The minimal speckle 
diameter was 2.2 pixels ≈ 10.2 μ m55. To obtain a multi-exposure curve, we applied an exposure time range of 
0.3–30 ms (in vitro)/100 ms (in vivo) using neutral density filters to prevent overexposure (Supplementary Fig. 1).  
For conventional SDF imaging broad band green light (530±20 nm) was coupled into the fibres to provide 
absorption-based contrast between flowing RBCs and surrounding tissue, enabling RBC flow measurement56. 
During in vivo data acquisition the SDF and SDF-LSCI modes were alternated to measure the flow velocity and 
decorrelation time of the same region21.

In vitro flow phantom.  We designed a flow phantom consisting of a polymer tube (diameter 0.2 ±  0.03 mm; 
depth 0.3 mm ±  0.03 mm) embedded in silicone elastomer (Sylgard®  184 Silicone Elastomer DOW/Corning, US) 
mixed with titanium dioxide (TiO2, anatase form, Sigma Aldrich, US) in the concentration [TiO2] =  1 mg/ml to 
mimic tissue scattering57. The tube was connected to a 0.5 ml syringe, slowly pressed by a syringe pump (Harvard 
model PHD2000, US) providing a flow range of 0.1–20 mm/s. The flowing media consisted of polystyrene spheres 
in water with diameters 0.6, 1, 2, 5, 7 and 10 μ m (Kisker-Biotech, Germany, stock volume fraction 2.5 vol%). For 
1, 2 and 5 μ m particles we prepared different volume fractions in the range 0.6–7 vol%. The range of scattering 
coefficients μ s was 7–150 mm−1 as specified in Supplementary Table 2. Flow series were repeated 2 or 3 times 
per sample. Low flow (<1 mm/s) measurements on large spheres (>2 μ m) were excluded due to precipitation of 
scatterers.

In vivo microcirculation.  We recorded in vivo SDF-LSCI image frames from the microcirculation of a chick 
embryo at embryonic day 9, grown ex ovo58. The imaging tip of the integrated SDF-LSCI device was gently put 
in contact with the chorioallantoic membrane tissue to prevent disruption of blood flow. The human sublingual 
microcirculation SDF-LSCI dataset was previously obtained21 and analyzed using the current MPY-based model. 
For the sublingual microcirculation the device was hand-held, while it was secured in a stand for chick embryo 
microcirculation imaging.

Data analysis.  In vitro: Speckle contrast K was calculated from the raw speckle images according to 
Supplementary section IIId, equation (10) over a local region of 10 ×  10 pixels. For each exposure time T, min-
imally 200 K-values were selected in the center of the tube (standard deviation in K < 5%). Next, nonlinear 
curve-fitting of Supplementary equation (12) to the multi-exposure curves was performed to find τc. Here, βM 
and ρ were a-priori estimated at T << τc (static phantom) and at T >>  τc (flow > 15 mm/s and T >  10 ms) respec-
tively, leaving τc the only fit parameter in Supplementary equation (12). βM is expected to be constant throughout 
and was found to be 0.40 ±  0.02. Specifically, ρ was estimated for each scatterer size and volume fraction and kept 
constant for different flow velocities. The goodness of nonlinear fit < Radj

2>  averaged over all fits of K(T) vs. T 
was 0.98 ±  0.02.

In vivo: To calculate K a spatiotemporal local region of 7 ×  7 ×  20 pixels was applied to optimize the in 
vivo spatiotemporal resolution and minimize the standard deviation in in K (<7%)21. Minimally 25 K values 
were obtained per vessel (or adjacent tissue region) and T. The exposure time range was extended to longer T 
[0.5–100 ms] and ρ and βM were a-priori estimated at long and short T respectively. In the subsequent curve 
fit both were constraint within 5% of their estimated value, and τc was unconstraint. The goodness of nonlin-
ear fit < Radj

2>  averaged over all fits was 0.99 ±  0.01. The in vivo decorrelation times (τc,total) were corrected for 
statistically independent sources of decorrelation via τc,offset measured from adjacent tissue (similar to τc,total) as 
described in Supplementary equation (13)21. Reference flow measurements (maximal measurable flow 2 mm/s) 
were obtained from SDF-mode images using commercially available software (AVA3.0, Microvision Medical, The 
Netherlands)56. In vivo flow measurements were repeated minimally 3 times per vessel and vessels with a large 
variation in flow were excluded. To correct the decorrelation times for multiple scattering the number of scatter-
ing events N in the vessel were estimated using Monte Carlo simulations as described in Supplementary Section 
IV yielding the in vivo scaling factor Α(N) =  α (N)/α 1, where α(N) was theoretically derived using the optical 
properties of blood (Supplementary Table 1) for N scattering events, and α1 for single scattering. Finally, 1/τc was 
rescaled according to 1/τc,1 =  (1/τc)/Α(N).

Ethics Statement.  The chick embryo experiments are exempt from animal ethics committee approval, in 
accordance with the EU directive/Dutch law on animal experiments (WOD). For this Article we have not done 
additional human experiments as we have re-analyzed previously obtained data from human microcirculation 
(ref. 21).
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