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Abstract

Background: Although significant epidemiological evidence indicates that cigarette smoke exposure increases the
incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory
tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute
respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We
hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the
abundance of apical CAR.

Methodology and Findings: Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect
of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of
polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have
discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an
eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control
air exposure. Additionally, the level of cellular glycogen synthase kinase 3b (GSK3b) is downregulated by SSS exposure and
treatment with a specific GSK3b inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection.

Conclusions: This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized
epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of
SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since
GSK3b inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these
might provide insight to extend the use of clinically relevant therapeutics and increase the understanding of potential side
effects.
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Introduction

Numerous studies have shown that the exposure to secondhand

smoke (also called environmental tobacco smoke (ETS), in-

voluntary smoke, and passive smoke) is associated with an

increased incidence of lower respiratory tract illness largely

resulting from viral infections [1–4]. Mainstream smoke (MSS) is

the smoke that a smoker inhales from the unlit end of a lit

cigarette, while side-stream smoke (SSS) is the smoke that

emanates from the tip of the smouldering cigarette. Although

ETS is a combination of SSS and exhaled MSS, it is estimated that

50–85% of ETS consists of SSS. Therefore, SSS makes up

a significant portion of the smoke that non-smokers encounter [4–

5]. It is estimated that children exposed to ETS have increased

respiratory tract infections resulting in up to 15,000 hospitaliza-

tions each year. In adults, acute respiratory infection and chronic

obstructive pulmonary disease (COPD) are two of the leading

worldwide causes of death [6]. Cigarette smoking is a well-

recognized risk factor for viral respiratory infection and is

considered a primary cause of COPD [1,7]. Studies also link

chronic adenovirus infection with the development or progression

of COPD [8–12]. Despite these strong associations, the molecular

mechanisms behind the increased susceptibility of the smoke-

exposed respiratory tract to viral pathogens are unknown.

Adenoviruses (Ad) are non-enveloped DNA viruses and

important causative agents of pediatric respiratory disease,

frequently requiring hospitalization, and of epidemic outbreaks

of acute respiratory disease in closed communities and among

young military recruits during basic training [13–14]. Viral entry

primarily relies on the presence and accessibility of viral receptors.

The Coxsackievirus and adenovirus receptor (CAR) is the primary

receptor for many adenovirus serotypes [15]. In polarized

epithelia, the apical (air) and basolateral membrane surfaces are

divided by tight junctions, which are essential for integrity of the
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epithelium. It is known that CAR is localized at basolateral

junctions in polarized epithelia and that basolateral CAR

facilitates adenovirus egress [16–17]. However, a major unan-

swered question is how these pathogenic viruses initiate infection

when viruses entering the airway lumen would encounter the

apical surface and the receptor is segregated on the basolateral

side. We have recently reported that an alternative low abundance

eight-exon isoform of CAR, CAREx8, localizes to the apical

membrane of well-differentiated polarized primary human airway

epithelia, where it supports apical adenoviral infection [18]. This is

a paradigm shift from the commonly held belief that there must be

a transient or sustained break in the barrier for the virus to gain

access to its receptor. Although increased epithelial permeability

resulting from cigarette smoke (CS) exposure is a generally well-

accepted phenomenon in vitro, this is a transient effect, and many

other molecular and structural changes are known to occur after

CS exposure [19–23].

Based on this information we asked whether CS exposure

increases epithelial susceptibility to adenovirus infection and

whether this correlates with a change in the abundance of apical

CAR. This study utilized a unique in vitro system designed to assess

the effect of sidestream cigarette smoke (SSS) exposure as

compared to mainstream cigarette smoke (MSS) or filtered air

(FA) on the susceptibility of polarized respiratory epithelia to viral

infection. Using a Walton automatic smoke machine, designed to

generate SSS or MSS, coupled to a Cultex air-liquid interface

exposure system, we have discovered novel differences in epithelial

susceptibility between SSS and MSS exposures that are not

discernible by cigarette smoke extract (CSE) exposure model

systems. Moreover, we have identified a potential regulatory

mechanism that may be responsible for the differences observed

between SSS and MSS exposure and may lead to the development

of novel therapeutic interventions for individuals experiencing

environmental CS exposure.

Methods

Cell Culture and Reagents
Human airway epithelial cells (CaLu-3) from ATCC (HTB-55,

Rockville, MD) were cultured in growth medium (RPMI 1640

medium (Life Technologies, Grand Island, NY) containing

10 mM HEPES, 10% fetal bovine serum, 1% penicillin/strepto-

mycin and 2 mM L-glutamine). For all smoke exposure experi-

ments, cells were plated in 12 mm Transwell inserts (0.4 mm pore

size, Corning Incorporated, Corning, NY) at a density of 56105

cells/well and maintained at 37uC and 5% CO2 after plating in

growth medium. Medium was changed every 48 h and electrically

tight (polarized) epithelial cultures were generally ready by 7 days.

The GSK3b inhibitor SB 415286 was obtained from Tocris,

(Minneapolis, MN, USA). Cells seeded onto plastic or Transwells

were treated overnight with 45 mM of the inhibitor, a dose used in

other studies and shown to be specific [24–28]. Control cells were

treated with vehicle alone (similarly diluted with DMSO).

Measurement of Transepithelial Electrical Resistance
(TER)
Tight junction integrity was assessed by measuring TER using

a Millicell ERS meter (Millipore, Bedford, MA), as previously

described [17–18]. On the seventh day of culture, the medium was

changed to exposure medium (RPMI 1640, 10 mMHEPES, 0.1%

w/v BSA) and allowed to incubate for one hour at 37uC prior to

TER measurement. Cultures exposed to cigarette smoke or

filtered air were transferred into maintenance medium (RPMI

1640, 10 mM HEPES, 2% fetal bovine serum, 1% penicillin/

streptomycin and 2 mM L-glutamine) and the TER was recorded

immediately following exposure and 18 h after exposure.

Cigarette Smoke Exposure
A Walton automatic smoke machine was used to generate

mainstream (MSS) and sidestream (SSS) cigarette smoke, as shown

schematically in Figure S1. The operation and characterization of

Figure 1. Smoke and air exposure transiently decreases the transepithelial resistance (TER) of polarized CaLu-3 cells. TER recovers by
18 h post-exposure to mainstream cigarette smoke (MSS), sidestream cigarette smoke (SSS) or filtered air (MSFA or SSFA). Data from six replicates per
condition and three independent experiments; mean values expressed as a percentage of control+SE of the mean. *p,0.05 MSS or SSS versus pre- or
post-exposure and versus MSFA or SSFA respectively.
doi:10.1371/journal.pone.0049930.g001

SSS Exposure Increases Viral Infection
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the instrument has been previously reported [21,29–30]. Non-

filtered University of Kentucky 2R1 research cigarettes available

at the Lovelace Respiratory Research Institute were used to

generate smoke for our experimental exposures. Both kinds of

smoke (MSS and SSS) were produced by lit cigarettes. In our

experimental system, MSS simulated the smoke that is inhaled by

a smoker from the unlit end of a burning cigarette and was

collected in the MSS collector (Figure S1). SSS was collected in the

SSS collector so that it simulated the smoke that comes off the

smoldering end. Cigarettes were maintained between 30% and

40% relative humidity at least two days prior to use. One 2R1

cigarette was smoked per exposure for 8 minutes by repeating

cycles of smoke for 2 s, hold for 28 s, and purge for 30 s for a total

of 8 puffs for MSS. Three 2R1 cigarettes were smoked in the same

exposure cycle to generate SSS. MSS and SSS exposure were

normalized to total nicotine content delivered as previously

described [21]. The exposure cycles closely approximate a human

smoker alternating between puffs from the cigarette and breaths of

filtered air. Air used for smoking or for purging of the smoke

reservoir was humidified to 100% relative humidity before use by

passing it through a bubbler. The Cultex exposure apparatus

(Vitrocell, Hannover, Germany) [21] was hooked directly to the

Walton Smoke machine, as shown in Figure S1, and provides

a unique means of performing air-liquid interface exposures which

more closely resemble in vivo conditions than other ‘‘wet’’ exposure

systems, such as smoke condensates [31–32]. Polarized epithelial

cells seeded on Transwells with transepithelial electrical resistance

(TER) between 1900 Vcm22 and 2000 Vcm22 were allowed to

equilibrate for 60 min in exposure media. Transwell cultures were

placed in the Cultex system maintained at 37uC and exposed to

SSS or MSS or filtered room air as control (FA). Control FA

exposures were performed at the same time as SSS or MSS

exposures and are termed SSFA or MSFA to indicate coupled

experimental controls. Immediately before exposure, TER was

measured, and then all but 50 ml of exposure medium was

removed from the apical compartment. Cultures were placed into

water-jacketed temperature-controlled glass Cultex chambers

(three inserts in each chamber), with exposure medium in contact

with the basolateral side of the culture. Ports above the apical

surface delivered and removed exposure mixtures to the exper-

imental wells or FA to control wells from the apical surfaces of the

Transwell cultures. Exposure flow was independently controlled

for each exposure chamber by individual MassTrak in-line flow

controllers (Automatic Controls, Wixom, MI) connected to

a vacuum reservoir on the post-exposure side. Flow rate for all

exposures was maintained at 25 ml/min/chamber (8.3 ml/min/

Transwell). Following exposure, the Transwell cultures were

returned to plates containing maintenance medium.

Viral Infection
Polarized CaLu-3 cells, exposed to either smoke or filtered air,

were incubated in maintenance medium for 18 h prior to apical

infection with a HAdV-5 vector containing the b-galactosidase
gene (Ad-b-Gal, University of Iowa Vector Core, Iowa City, IA),

diluted to 100 ml with PBS, at different multiplicities of infection

(MOI) as described in the results section, for 1 h at 37uC. The
inoculum was then removed, cells were rinsed with phosphate

buffered saline (PBS), and maintenance medium was replenished.

Cells were lysed 24 h later and b-galactosidase expression and

protein concentration were determined as previously described

(Galacto-Light Plus System, Applied Biosystems, USA; Bio-Rad

Protein Assay, Bio-Rad, CA, USA) [18].

Figure 2. Sidestream cigarette smoke (SSS) exposure increases
epithelial susceptibility to adenovirus infection (entry and
transduction). Polarized CaLu-3 cells were infected from the apical
surface with hAdV5-b-gal (MOI 10 pfu/cell) or mock infected (MOI 0)
18 h post-exposure to air (MSFA or SSFA), mainstream cigarette smoke
(MSS), or SSS. Cells were evaluated for A: b-Galactosidase activity
(transduction, four to six replicates per condition; three independent
experiments) or B: viral genomes (viral entry) 24 h post-infection (four
biological replicates per condition measured in duplicate in each qPCR
assay; three independent experiments). C: Intracelluar viral genome
load 24 h after apical adenovirus infection, at increasing MOI, in SSS- or
SSFA-exposed epithelia. Results for MSS, SSS, and FA without virus were

SSS Exposure Increases Viral Infection
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Western Blotting
Smoke and air exposed CaLu-3 cells were harvested 18 h post-

exposure. Samples were washed with ice-cold PBS, and lysed in

buffer (50 mM Tris pH 7.4, 137 mM NaCl, 1% Triton X-100,

5 mM EDTA, 1 mM EGTA, 1 mM NaF, 1 mM Na2VO4,

protease inhibitors (10 mg/ml) leupeptin, aprotinin, pepstatin,

and 1 mM phenylmethylsulfonyl fluoride) by rocking at 4uC. Cells
were scraped, sonicated five times with five pulses and centrifuged

at 14,000 g for 10 minutes in a microcentrifuge. The supernatant

was transferred to fresh tubes and protein concentration was

determined with the Bio-Rad protein assay (Bio-Rad). Equal

amounts of protein were subjected to 10% polyacrylamide gel

electrophoresis. Gels were transferred to a polyvinylidene di-

fluoride (PVDF) membrane (Millipore, Bedford, MA), blocked

with 5% BSA, washed, probed with primary antibodies for CAR

(1605p (total CAR), 5678 (CAREx8) as described previously

[18,33], GSK3b and GSK3bpS9 (Cell Signaling, Danvers, MA),

or b-actin (Millipore, Billerica, MA), washed and incubated with

HRP conjugated secondary antibodies (Jackson Immuno Re-

search, West Grove, PA). Band detection with ECL reagents

(Pierce, Rockford, IL) was imaged on a Fuji LAS 4000 and the

intensity of the bands was measured with Multi Gauge software

(Fujifilm, Tokyo, Japan). All densitometry data was normalized to

b-actin protein levels as a loading control and the percent change

was calculated relative to control samples. All graphs represent

calculated averages from a minimum of three individual experi-

ments.

RNA Isolation, Reverse Transcription, Real-time PCR and
Adenoviral Genome Quantification
To investigate changes in gene expression, total RNA was

isolated from cigarette smoke- or air-exposed CaLu-3 cells and

CaLu-3 cells treated with SB415286 using TRIzol (Life Technol-

ogies, Grand Island, NY) according to manufacturer’s protocol.

cDNA was synthesized from 1 mg of RNA using Quanta First

Strand Kit (Quanta BioSciences,Gaithersburg, MD) prior to

quantitative PCR (qPCR) according to the manufacturer’s in-

struction. For hAdV5 genome quantification, total DNA was

purified from the lysates of adenovirus-infected cells using the

DNeasy Blood and Tissue kit (QIAGEN, Valencia, CA) according

to the manufacturer’s instructions. DNA was eluted with 100 ml of
Qiagen AE elution buffer. qPCR was performed using SYBRG

with low ROX (Quanta, Gaithersburg, MD) in Stratagene’s Real

Time PCR System (Agilent Technologies, Santa Clara, CA) using

primers for glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

or b-actin mRNA as internal standards. The relative expressions of

target genes were quantified using comparative Ct analysis by

using Mx4000p software v5 for data analysis. Primers used were:

CAR-F: TCGGCAGTAATCATTCATCCCTGG, CAREx8-R:

ACTGTAATTCCATCAGTCTTGTAAGGG [18], totalCARF:

TACAGTCAGAAACAGAGTGGGC, total CAR-R:

CCAGCTTTATTTGAAGGAGGGAC GSK3b-F:
GGTCTATCTTAATCTGGTGCTGG, GSK3b-R: TGGATA-

TAGGCTAAACTTCGGAAC adenovirus hexon gene specific

primers AdqPCR-F: ACGCCTCGGAGTACCTGAG and

identical and were combined for graphical representation (No Virus;
four replicates per condition; two independent experiments). Repre-
sentative experimental results are shown as mean+SE.
doi:10.1371/journal.pone.0049930.g002

Figure 3. CAR expression is increased in polarized CaLu-3 cells 18 h post-sidestream cigarette smoke (SSS) exposure relative to
mainstream cigarette smoke (MSS), or filtered air (SSFA or MSFA) exposure. A: Total CAR mRNA (three to four biological replicates per
condition measured in duplicate in each qPCR assay; three independent experiments) and B: CAREx8 mRNA (three to four biological replicates per
condition measured in duplicate in each qPCR assay; three independent experiments) quantification using quantitative RT-PCR. Mean values of three
independent experiments relative to control+SE of the mean. C: Total CAR and D: CAREx8 protein and corresponding b-actin expression by Western
blot (representative) and Multi-Guage image analysis (mean values from three independent experiments expressed as a percentage of control+SE of
the mean). *p,0.05.
doi:10.1371/journal.pone.0049930.g003

SSS Exposure Increases Viral Infection
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Figure 4. CAR expression is increased and localization is altered in polarized CaLu-3 cells 18 h post-SSS exposure.
Immunofluorescence staining of A) total endogenous CAR (green) and B) CAREx8 (green), co-stained with antibodies directed against either the
tight junction protein ZO-1 (red) or the apical protein ezrin (red), in polarized CaLu-3 cells 18 h after exposure to SSFA or SSS. Nuclei are
counterstained with DAPI (blue). X–Z sections representative of three independent experiments are shown. Dotted white line represents the
Transwell filter that cells are seeded on. Black line = 10 mm. Confocal microscopy (606 oil immersion).
doi:10.1371/journal.pone.0049930.g004

SSS Exposure Increases Viral Infection
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AdqPCR-R: GTGGGGTTTCTGAACTTGT [34]. Abundance

relative to GAPDH gene expression was calculated for each gene

of interest. GAPDH-F: CACCCTGTTGCTGTAGCCAAA,

GAPDH-R: CAACAGCGACACCCACTCCT. qPCR efficiency

was comparable for all primer pairs and ranged from 23.0 to

23.4.

Immunocytochemistry
CaLu-3 cells seeded on Transwell inserts, as above, were

washed once with PBS, fixed with 4% paraformaldehyde,

permeabilized with 0.1% Triton X-100, and blocked with 2%

BSA in SuperBlock (Pierce, Rockford, IL), as previously described

[17–18]. Epithelial cultures were incubated with primary CAR

specific antibodies (1605 p (total CAR), 5678 (CAREx8)) and

antibodies for the tight junction protein zona-occludens (ZO-1) or

apical surface-associated protein ezrin (Santa Cruz Biotechnology,

Santa Cruz, CA), washed extensively with PBS, and incubated

with goat anti-rabbit Alexa-488 or anti-mouse Alexa-568 second-

ary Ab. After washing, slides were coverslipped with Vectashield

mounting media (Vector Laboratories, Inc, Burlingame, CA).

Staining was evaluated by laser scanning confocal microscopy

(Olympus FV 1000) at 606magnification (oil immersion); images

are shown as either single X–Y or X–Z sections.

Cell Surface Biotinylation
CaLu-3 cells were seeded at 16106 cells per 10 cm dish and

allowed to reach confluency. Cells were treated with SB415286 or

control vehicle for 18 h prior to incubation with Sulfo-NHSSS-

biotin 1 mg/ml (Thermo Scientific, Rockford, IL) for 1 h at 4uC
with rocking, as previously described [33]. Briefly, after washing,

free Sulfo-NHS-SS-biotin was quenched with 100 mM glycine for

20 min at 4uC. The cells were washed three times with PBS

(including Ca2+and Mg2+) and lysed with lysis buffer (50 mM Tris

pH 7.4, 150 mM NaCl, 1% Triton X-100, protease inhibitors

(10 mg/ml) leupeptin, aprotinin, pepstatin, and 1 mM phenyl-

methylsulfonyl fluoride). Cells were then scraped, lysates collected,

and sonicated with five pulses. This was followed by centrifugation

at 14,000 g at 4uC for 15 min. NeutrAvidin beads (Thermo

Scientific, Rockford, IL) were added to the supernatant and

incubated at 4uC for more than 2 h with rotation. NeutrAvidin

beads were then collected by centrifugation at 1,000 g at 4uC for

3 min and washed three times with ice-cold wash buffer. The

sulfo-NHS-SS-biotin-labeled proteins were eluted from NeutrAvi-

din beads with SDS-PAGE sample buffer at 100uC for 10 min.

This was followed by SDS-PAGE and Western blot using CAR

specific antibodies (1605 p (total CAR), 5678 (CAREx8)) and

antibodies for the tight junction protein occludin (Life Technol-

ogies) or apical surface protein DAF (BD Bioscience, San Jose,

CA).

Statistical Analysis
All experiments were performed at least three times. Sidestream

and mainstream exposures were performed sequentially, ensuring

a complete system purge between exposures, on the same day. In

each experiment triplicate samples from all exposure types were

collected. Microsoft Excel and Graph Pad Prism V5 (La Jolla,CA)

were used to perform statistical analyses. Significant differences

were analyzed using student’s t test and two-tailed distribution.

Results were considered to be statistically significant if p,0.05.

The D’Agostino-Pearson omnibus test (Prism) was used to confirm

data normality (p.0.05).

Results

Cigarette Smoke Exposure and Tight Junction Integrity
In order to determine whether the tight junctions of cultured

human airway epithelial cells (CaLu-3) were compromised upon

exposure to smoke, CaLu-3 cells were seeded on semi-permeable

Figure 5. GSK3b is downregulated 18 h post- sidestream
cigarette smoke (SSS) exposure in comparison to air (SSFA or
MSFA) or mainstream cigarette smoke (MSS) exposure. A:
Analysis of total GSK3b mRNA levels by quantitative RT-PCR (four to six
biological replicates per condition measured in duplicate in each qPCR
assay; three independent experiments; mean values from three
independent experiments relative to control+SE of the mean). B: GSK3b
and C: GSK3b-pS9 protein levels, representative Western blot and
densitometric analysis, relative to b-actin (mean values from three
independent experiments (duplicate gels per experiment) expressed as
a percentage of control+SE of the mean). *p,0.05.
doi:10.1371/journal.pone.0049930.g005

SSS Exposure Increases Viral Infection
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membranes and allowed to polarize for 7 days, at which time they

acquired an average TER of 1916642 V/cm2. A significant drop

in TER was observed immediately after the apical surface of each

culture was exposed to cigarette smoke (CS; MSS or SSS; ,900

V/cm2) and filtered air (FA; MSFA or SSFA; ,1200 V/cm2)

(Figure 1), indicating that some changes occurred as a result of the

experimental procedures. No TER drop was observed in non-

exposed cells (data not shown). Although the drop in TER was

significantly greater, and similar, for both SSS and MSS exposure

conditions in comparison to FA, disruption was transient and all

cultures completely recovered TER by 18 h post exposure.

SSS-exposure Enhanced Adenovirus Entry
It is well known that viral infection is increased when tight

junction integrity is compromised [16–17]. Thus, we asked

whether smoke exposure altered the susceptibility of epithelial

cells to adenovirus infection after the epithelial junctional integrity

was fully recovered, as observed at 18 h. The apical surfaces of

SSS, MSS, or FA exposed cultures were inoculated with Ad-b-Gal

at a MOI of 10 pfu/cell 18 h post-exposure when the junctional

integrity was recovered. Cells were analyzed for two different

measures of viral entry, b-galactosidase activity (transduction) and

viral genome load (entry), 24 h later. Both viral transduction

(Figure 2A) and genome load, relative to GAPDH, (Figure 2B)

were significantly increased in SSS-exposed cultures as compared

to air or MSS. Although a modest increase in viral genome copy

number was observed in MSS-exposed cultures as compared to

MSFA, only SSS-exposed cultures exhibited a significant increase

both in viral transduction and genome copy number. Further-

more, an increase in transduction for SSS-exposed epithelia,

relative to sidestream filtered air (SSFA) exposed epithelia, was

noted with increasing MOI (Figure 2C). This increase in virus

transduction in SSS exposed cells could be due to several factors,

such as increased receptor levels, increased accessibility to viral

receptor, increased endocytosis, or a combination of factors. In

order to address the mechanisms of increased entry and trans-

duction, we first investigated the levels and localization of the

primary receptor, CAR.

SSS Exposure Results in Increased CAREx8 Expression
We have recently identified two different isoforms of CAR,

CAREx7 and CAREx8, that localize to distinct cellular compart-

ments in polarized primary airway epithelia [18]. CAREx7 is

known to be present at basolateral junctions of polarized cells and

hence inaccessible for virus binding. CAREx8 appears to be present

at the apical surface of polarized primary human airway epithelia

and therefore is potentially available to mediate viral binding and

entry. The ratio of CAREx7 to CAREx8-specific transcripts in

CaLu-3 cells is roughly 12:1 (data not shown), and this is in

agreement with the 10-fold ratio observed in primary airway [18].

Using qRT-PCR primers designed to quantify total CAR or

CAREx8 mRNA specifically, we observed a significant increase in

both CAR and CAREx8 transcript levels in samples extracted 18 h

post-exposure in SSS-exposed CaLu-3 cells in comparison to

Figure 6. GSK3b is downregulated in polarized CaLu-3 cells
18 h post-GSK3b inhibitor (SB415286) treatment. A) Total mRNA
expression of GSK3b in control (white) or SB415286 (black) treated
CaLu-3 epithelia (four biological replicates per condition measured in
duplicate in each qPCR assay; mean values from three independent
experiments relative to control+SE of the mean). B) Representative
Western blot analysis of GSK3b, GSK3b-pS9, and b-actin protein levels.
Quantification of C) GSK3b or D) GSK3b-pS9 protein levels, relative to b-
actin (mean values from three independent experiments expressed as
a percentage of control+SE of the mean). *p,0.05.
doi:10.1371/journal.pone.0049930.g006

SSS Exposure Increases Viral Infection
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SSFA. In contrast, no change was observed in MSS-exposed

samples as compared to MSFA exposure (Figure 3A, B). In-

terestingly, WB with a CAR-specific Ab that detects total CAR

(1605 p; Figure 3C) [17] did not demonstrate an increase in total

Figure 7. CAR expression is upregulated in polarized CaLu-3 cells 18 h post apical treatment with 45 mM of GSK3b inhibitor
(SB415286). A: Total CAR and B: CAREx8 mRNA levels by quantitative RT-PCR (three biological replicates per condition measured in duplicate in each
qPCR assay; mean values from three independent experiments relative to control+SE of the mean) and C: total CAR and D: CAREx8 and corresponding
b-actin protein expression by Western blot (representative) and quantification using Multi-Guage densitometric analysis (mean values from three
independent experiments expressed as a percentage of control+SE of the mean). Apical biotinylation of polarized CaLu-3 cells 18 h post-treatment
with 45 mM SB415286 shows increased protein levels of E: total CAR and F: CAREx8 specifically (representative blot shown from three independent
experiments). *p,0.05.
doi:10.1371/journal.pone.0049930.g007

SSS Exposure Increases Viral Infection
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CAR, relative to actin, in SSS- or MSS-exposed cells (Figure 3C).

However, a significant increase in CAREx8 protein level was

detected with a CAREx8-specific antibody (5678 p, Figure 3D)

after SSS but not MSS exposure. Our ability to detect a difference

in the levels of CAREx8 protein but not total CAR may reflect the

high level of CAREx7 protein relative to CAREx8 at baseline, the

length of time required to synthesize CAR, or the sensitivity of our

antibody. These data suggest that SSS exposure causes an increase

in newly transcribed and synthesized CAREx8. To investigate

whether there was a change in the localization of CAR, we stained

SSS or SSFA exposed cells with antibodies directed against total

CAR (green; Figure 4A) or CAREx8 (green; Figure 4B). The

epithelia were counterstained with antibodies directed against the

tight junction protein ZO-1 (red) or the apical protein ezrin (red).

There was a striking difference in the amount and localization of

CAREx8 between SSFA and SSS exposure (Figure 4B). Although

much of the CAREx8 staining after SSS exposure was diffuse

within the cell, and may have also been at the basolateral junctions

between the cells, more CAREx8 appeared to co-localize with ezrin

at the apical surface than in SSFA control (Figure 4B) or in

Figure 8. Apical entry and transduction of hAdV5-b-gal is
increased in polarized CaLu-3 cells 18 h post apical treatment
with 45 mM of GSK3b inhibitor (SB415286). A: TER does not
change in polarized CaLu-3 cells treated with GSK3b inhibitor,
SB415286, for 18 h. B: A significant increase in adenoviral transduction
is observed upon treatment. C: A significant increase in intracellular
adenovirus genome copies occurs upon treatment. Representative data
shown; mean of four replicates per experiment; three independent
experiments. *p,0.05 SB415286 versus control or no virus.
doi:10.1371/journal.pone.0049930.g008

Figure 9. Schematic representation of the proposed mecha-
nism for increased epithelial susceptibility to adenovirus
infection upon sidestream cigarette smoke (SSS) exposure.
SSS downregulates GSK3b protein expression, which leads to transcrip-
tional upregulation of CAREx8, leading to increased susceptibility of the
epithelium to adenovirus infection from the apical surface. CXADR, CAR
gene.
doi:10.1371/journal.pone.0049930.g009
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baseline conditions (data not shown). This is consistent with the

diffuse localization of exogenous CAREx8 in primary airway

epithelia [18]. Interestingly, there appeared to be an increase in

total CAR (Figure 4A), which may reflect the increase in CAREx8.

In contrast, neither MSS nor MSFA exposures significiantly

altered total CAR or CAREx8 localization (Figure S2, also see

representative Figure 2A). Taken together, SSS exposure en-

hanced adenovirus entry through the upregulation of primary viral

receptor, and the CAREx8 isoform in particular. These data led us

to investigate potential mechanisms behind the increased expres-

sion of CAREx8 in SSS-exposed cells.

SSS Exposure Downregulates GSK3b
Glycogen synthase kinase 3b (GSK3b) is a ubiquitously

expressed constitutively active serine/threonine kinase that reg-

ulates multiple signaling pathways, thereby controlling a broad

spectrum of cellular responses, including metabolism, gene

transcription, protein translation, cell-cycle regulation, and apo-

ptosis [35]. In particular, inhibition of GSK3b causes the

upregulation of the transcriptional regulators Sp1, SNAIL, and

SMAD [25,27,36]. Recent evidence suggests that the gene for

CAR, CXADR, is regulated by Sp1, SNAIL, and SMAD [37–39].

Moreover, previous studies have shown GSK3b is downregulated

when lung carcinoma cells are exposed to cigarette smoke extract

[40–41]. To determine whether SSS or MSS exposure resulted in

GSK3b downregulation, total RNA or protein lysates were

prepared 18 h post-SSS, -MSS or -FA exposure. Quantitative

RT-PCR (qRT-PCR) and WB with anti-GSK3b antibodies

showed a significant decrease in both the mRNA and protein

levels of GSK3b after SSS but not MSS exposure (Figure 5A, B).

Additionally, GSK3b is known to be negatively regulated by

phosphorylation at amino acid serine 9 (GSK3b-pS9). Thus, we
asked whether there was a shift in the levels of inactive GSK3b-
pS9. WB of samples after SSS exposure, but not MSS,

demonstrated significantly higher levels of GSK3b-pS9 using

a phospho-S9 specific antibody (Figure 5C). These data indicate

that SSS exposure not only reduces GSK3b transcript and total

protein levels but also results in the inhibition of GSK3b.

GSK3b Inhibition Increases Apical CAREx8 and Adenovirus
Infection
To determine whether we could inhibit GSK3b and re-

capitulate the same outcome as SSS exposure, a highly specific

and potent inhibitor of GSK3b, SB415286 [42], or vehicle

(control), was applied to the apical surface of polarized CaLu-3

cells for 18 h. The epithelial cells were then lysed and subjected to

qRT-PCR for GSK3b, and WB for GSK3b and GSK3b-pS9
(Figure 6). The levels of GSK3b were significantly lower at both

mRNA and protein levels after inhibition (Figure 6A–C), relative

to control. Inhibition of GSK3b also increased GSK3b-pS9
(Figure 6B, D). These results were similar in magnitude to the

samples exposed to SSS (Figure 5).

To further determine the effect of GSK3b inhibition on total

CAR and CAREx8, the mRNA and proteins levels of CAR

(Figure 7A, C) and CAREx8 (Figure 7B, D) were analyzed by qRT-

PCR and WB. Similar to SSS-exposed samples (Figure 3A, C), we

observed an increase in total CAR and CAREx8 at the mRNA

level, while only CAREx8 was significantly increased at the protein

level. Since viral infection requires accessible apical receptor, the

levels of CAR and CAREx8 at the apical surface were investigated

by apical surface biotinylation. Sulfo-NHSSS-biotin analog, which

is membrane impermeable, was used to specifically label and

isolate apical membrane-associated proteins. Interestingly, an

increase in total CAR and CAREx8 at the apical surface was

observed as compared to the control samples (Figure 7E, F,

respectively). We next asked whether epithelial susceptibility to

adenovirus infection was increased upon GSK3b inhibition. No

difference in TER was observed between SB415286 and vehicle

treated epithelia (Figure 8A). Epithelia were infected from the

apical surface with Ad-b-Gal at a MOI of 0 or 125 pfu/cell and

both transduction (Figure 8B) and intracellular viral genome load

(Figure 8C) were significantly increased 24 h post-infection. These

results were of a similar magnitude to those obtained for the

samples exposed to apical SSS demonstrating that GSK3b
inhibition alone is sufficient to increase the susceptibility of

polarized CaLu-3 cells to apical adenoviral infection.

Discussion

There is a significant body of data that supports the association

between tobacco smoking and increased signs and symptoms of

viral respiratory tract infection and disease in children and adults

[1,7,13]. Sidestream smoke (SSS) is the smoke that comes off of the

tip of the burning cigarette between puffs and constitutes

approximately 50–85% of secondhand tobacco smoke [4–5]. In

this study we have utilized an in vitro exposure system to partially

recreate ETS exposures and examine their effect on viral infection

of polarized lung epithelial cells. We have found that adenoviral

infection of SSS-exposed polarized CaLu-3 cells is increased

compared to MSS- and air-exposed cells. Surprisingly, no

significant difference in the magnitude of apical viral infection

was observed between MSS or air exposure. Previous exposure to

viral pathogens and the level of pre-existing immunity, as well as

smoke-induced immunosuppression, are thought to be key factors

contributing to the susceptibility of the airway to viral infection in

individuals exposed to CS. Our data indicate that there are

additional underlying molecular mechanisms inherent to the

response of epithelial cells and that the composition of SSS is

unique in activating these mechanisms.

These data provide rationale for investigating the identity of

components present in SSS and MSS [43–44]. It is possible that

one or more of the components found in SSS but not in MSS may

be required to induce the cellular changes leading to increased

epithelial susceptibility to adenovirus infection. Furthermore, the

identification of the activating component(s) of SSS may contrib-

ute to a better understanding of the mechanisms of action of other

complex environmental pollutants known to alter epithelial

biology [31–32].

We have found that increased adenoviral infection is associated

with a significant increase in the levels of the primary adenovirus

receptor, CAR, and in particular CAREx8, upon acute SSS

exposure. Increased viral infection has previously been associated

with disruption of the epithelial junctional barrier, as determined

by TER [16–17]. TER is a sensitive measure of barrier integrity

that can reflect membrane channel opening or closing, cellular

swelling, shrinking, edge effects, or simply the disruption of a few

cellular junctions that dominate the circuit [45]. Several lines of

evidence indicate that the CaLu-3 epithelial cultures used in these

studies were well polarized 18 h post smoke exposure, including

high TER, limited apical viral infection, and distinct immunolo-

calization of proteins known to be apical (ezrin) or within the tight

junction (ZO-1), and the CAR isoforms. We have previously

shown that the CAREx8 isoform does not localize at the basolateral

surface, and when apically localized, it is available for viral entry

from the apical surface of airway epithelia [18]. Consistent with

diffuse localization upon overexpression in primary airway cells,

our immunocytochemistry data suggests that newly translated

endogenous CAREx8 may end up distributed throughout the
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epithelial cells, in addition to the apical surface (Figure 4, 7F).

Although both active and passive smokers are exposed to SSS,

Shaykhiev et al. have recently reported that CAR expression is

downregulated in the airways of both healthy smokers and people

with COPD, relative to non-smokers [23]. It is possible that in

active smokers the levels of CAR are constitutively downregulated

due to chronic exposure by a mechanism such as epigenetic

modification, and are not susceptible to further regulation by the

acute effects of SSS. Immunological factors may also play a greater

role in epithelial susceptibility to adenovirus infection in smokers

compared to non-smokers. Further investigation is required to

validate our observations in primary human airway cells, and to

identify the combined effects of SSS and MSS on viral infection, as

well as the effects at later time points and upon repeated or chronic

exposure. Future research should also address whether the

infectivity of other respiratory viruses that utilize apical receptors,

such as sialic acid (e.g. influenza and AAV5)[46–48], is similarly

affected by SSS. Epidemiological evidence clearly shows that

children and infants exposed to secondhand smoke are more

prone to viral infection as compared to non-exposed children.

Therefore, understanding the mechanism behind upregulation of

CAR, and CAREx8 in particular, may facilitate the development of

novel therapeutics to limit viral infection in these susceptible

individuals.

Our data show that SSS inhibits GSK3b by reducing total

GSK3b expression at both the mRNA and protein levels, as well

as increasing the levels of inactive phosphorylated-GSK3b.
Although there are two known isoforms of GSK3, a and b, it is
well documented that GSK3b is the developmentally essential

form and that it regulates the stability or activity of many diverse

proteins by phosphorylation. GSK3b is known to be involved in

multiple pivotal signaling pathways and has been shown to play

a role in development, cell polarity, insulin signaling, metabolic

regulation, neurodegenerative disorders, and cancer [25,27,49–

51]. Moreover, recent evidence suggests that GSK3b can in-

fluence RNA splicing [52]. Considering the shift in isoform

expression observed in our experiments, it can be speculated that

GSK3b may influence both the transcription and splicing of CAR.

One of the targets of GSK3b is b-catenin, a key mediator of the

Wnt signaling pathway and a protein also known to interact and

co-localize with CAR at cell junctions [16]. It is through

transcriptional regulators, such as b-catenin, Sp1, SNAIL, and

SMAD, that GSK3b-mediated regulation has an effect at the

transcriptional level. GSK3b is downregulated by CSE although

the precise mechanisms are unclear [40–41]. We show for the first

time that acute SSS exposure downregulates GSK3b. CAR has

been shown to be transcriptionally regulated by SP1, SNAIL, and

SMAD, thus, we hypothesized that GSK3b would play an

important role in the regulation of CAR expression. Treatment

of polarized CaLu-3 cells for 18 h with a GSK3b inhibitor resulted

in the upregulation of CAR mRNA and protein, and CAREx8 in

particular, similar to that resulting from SSS exposure. GSK3b
inhibition also resulted in a similar degree of increased adenovirus

transduction as SSS exposure. Future work will focus on

elucidating the mechanism behind the down regulation of GSK3b
and whether this directly affects the interaction between CAR and

b-catenin, activation of SP1, SNAIL, and/or SMAD, as well as

a potential influence on splicing. GSK3b inhibitors are under

intense clinical investigation as therapeutics for several diverse

diseases such as diabetes, depression, and neurodegeneration

[28,35]. Therefore studies such as these may expand the range of

applications for clinically relevant therapeutics to novel uses or

lead to a greater understanding of potential side effects.

Inflammation is known to play an important role in the

development of COPD and both genetic and environmental

factors have been implicated [53–54]. Moreover, childhood

respiratory illness is a risk factor for COPD [55–56]. Interestingly,

studies link chronic adenovirus infection with the development or

progression of COPD [8–12]. Taken together with our data, SSS

exposure may lead to increased airway susceptibility to adenoviral

infection and hence an increase in opportunities to develop

chronic adenovirus infection. This in turn may potentially lead to

or exacerbate symptoms by increasing the inflammatory response

and lead to disease progression. Future studies will investigate the

important potential link between ETS exposure, increased

susceptibility to adenovirus infection, and COPD progression.

Previous studies using a similar air-liquid interface system have

primarily focused on MSS [21,57–58]. For example, kinase

inhibition studies in polarized CaLu-3 cells have shown that the

acute loss in barrier function due to MSS exposure is likely

a regulated process [21,57]. A similar loss in barrier function is

observed in SSS exposure and it is possible that a similar acute

effect occurs. However, despite similar tight junction recovery in

all conditions, SSS-exposure specifically increases the susceptibility

of epithelia to apical adenovirus infection 18 h post-exposure

indicating that other longer-lasting changes occur in SSS-exposed

epithelia. To our knowledge, only one study has investigated SSS

exposure on airway cells. Analysis of SSS exposure on bronchial

epithelial cells, HFBE, demonstrated dose-dependent toxicity and

an inverse correlation with glutathione content [31–32]. No

comparison to MSS was made in this study. A few studies have

attempted in vivo SSS exposure in animal models [59–61].

Significant changes, including increased inflammatory cytokine

secretion, systemic lipid peroxidation, and myocardial infarct size,

but decreased heart contractile function and vitamin E levels [59–

60]. Moreover, studies of secondhand smoke in vivo, have shown

increased secretion of proinflammatory cytokines, such as IL-8

[61]. Interestingly, Lutschg et al. have recently shown that acute

exposure of polarized human bronchial epithelial 16HBE14o cells

to recombinant IL-8 leads to increased apical CAR and adenoviral

infection [62]. Although the isoform specificity of CAR was not

investigated, it could be speculated that this was a shift of CAREx8

from a subapical region to the apical surface. We found that IL-8

and MCP-1 were upregulated at 18 h post-SSS exposure (data not

shown). This would be consistent with GSK3b inhibition resulting

in transcriptional upregulation of CAR, coupled with a cellular

response to elevated IL-8 secretion causing newly synthesized

CAREx8 to localize at the apical surface, resulting in the increased

susceptibility of the airway to adenoviral infection. Additional

cellular signaling pathways are likely to be involved andthis should

be a subject of future investigations.

In summary, we show for the first time that acute SSS exposure,

but not MSS exposure, significantly increases the susceptibility of

polarized lung epithelial cells to adenoviral infection. We also

show that SSS exposure significantly downregulates the pivotal

cellular kinase GSK3b, and that direct inhibition of GSK3b in

polarized CaLu-3 cells has a similar effect on CAR expression and

adenoviral infection as acute SSS exposure (Figure 9). These

studies provide novel insight into the difference in biological

responses that occur during CS exposure and evidence that

cellular, in addition to immunologic, mechanisms play a significant

role in the susceptibility of the airway epithelium to viral infection.

Supporting Information

Figure S1 Schematic representation of the smoke
collection and exposure method. The Walton automatic
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smoke machine was connected directly to the the cultex exposure

system via tubing. Not drawn to scale. Filtered control air and

mainstream or sidestream smoke paths. Regulated, compressed air

feeds the Walton smoker, which operates by solenoid valves

switching air flow under the control of a timer. Smoke or plain air

(purge) is directed into the reservoir at intervals described in the

methods, and routed to the Cultex chamber, which contains two

groups of three Transwells. The filtered air control path begins

with pump A pushing air through a HEPA filter, bubbler, and

Cultex chambers. Output from both sets of Cultex chambers is

drawn through flow controllers at 8.3 ml/Transwell/min to the

vacuum reservoir evacuated by pump B.

(TIF)

Figure S2 CAR expression is increased and localization
is altered in polarized CaLu-3 cells 18 h post-MSS
exposure. A: Representative schematic showing the expected

localization of ezrin, ZO-1, and CAR in polarized cells.

Immunofluorescence staining of B: total endogenous CAR (green)

and B: CAREx8 (green), co-stained with antibodies directed against

either the tight junction protein ZO-1 (red) or the apical protein

ezrin (red), in polarized CaLu-3 cells 18 h after exposure to MSFA

or MSS. Nuclei are counterstained with DAPI (blue). Represen-

tative X-Z sections are shown from three independent experi-

ments. Dotted white line represents the Transwell filter that cells

are seeded on. Black line= 10 mm. Confocal microscopy (606 oil

immersion).

(TIF)
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