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ORIGINAL ARTICLE

External Validations of Cardiovascular Clinical 
Prediction Models: A Large-Scale Review of the 
Literature
Benjamin S. Wessler , MD, MS; Jason Nelson , MPH; Jinny G. Park , MPH; Hannah McGinnes, MPH;  
Gaurav Gulati , MD; Riley Brazil , MD; Ben Van Calster , PhD; David van Klaveren, PhD; Esmee Venema, MD, PhD;  
Ewout Steyerberg , PhD; Jessica K. Paulus, PhD; David M. Kent , MD, MS

BACKGROUND: There are many clinical prediction models (CPMs) available to inform treatment decisions for patients with 
cardiovascular disease. However, the extent to which they have been externally tested, and how well they generally perform 
has not been broadly evaluated.

METHODS: A SCOPUS citation search was run on March 22, 2017 to identify external validations of cardiovascular CPMs in 
the Tufts Predictive Analytics and Comparative Effectiveness CPM Registry. We assessed the extent of external validation, 
performance heterogeneity across databases, and explored factors associated with model performance, including a global 
assessment of the clinical relatedness between the derivation and validation data.

RESULTS: We identified 2030 external validations of 1382 CPMs. Eight hundred seven (58%) of the CPMs in the Registry 
have never been externally validated. On average, there were 1.5 validations per CPM (range, 0–94). The median external 
validation area under the receiver operating characteristic curve was 0.73 (25th–75th percentile [interquartile range (IQR)], 
0.66–0.79), representing a median percent decrease in discrimination of −11.1% (IQR, −32.4% to +2.7%) compared with 
performance on derivation data. 81% (n=1333) of validations reporting area under the receiver operating characteristic 
curve showed discrimination below that reported in the derivation dataset. 53% (n=983) of the validations report some 
measure of CPM calibration. For CPMs evaluated more than once, there was typically a large range of performance. Of 1702 
validations classified by relatedness, the percent change in discrimination was −3.7% (IQR, −13.2 to 3.1) for closely related 
validations (n=123), −9.0 (IQR, −27.6 to 3.9) for related validations (n=862), and −17.2% (IQR, −42.3 to 0) for distantly 
related validations (n=717; P<0.001).

CONCLUSIONS: Many published cardiovascular CPMs have never been externally validated, and for those that have, apparent 
performance during development is often overly optimistic. A single external validation appears insufficient to broadly 
understand the performance heterogeneity across different settings.
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Clinical prediction models (CPMs) are widely avail-
able to inform decisions in cardiovascular medicine. 
Our own database, the Tufts Predictive Analytics 

and Comparative Effectiveness (PACE) CPM Registry,1 
demonstrates continued growth of prediction models 

for patients with cardiovascular disease despite appar-
ent substantial redundancy. The growth in the literature 
reflects the increasing ease with which these models 
can be developed, given the wide availability of both 
data and statistical software. Despite the publication 
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of methodologic2 and reporting guidelines3 and a large 
set of potential performance metrics,4 much remains 
unknown about the broad performance of these models, 
including the extent to which they have been validated, 
how well they validate, and how performance varies from 
one setting to another.

Although there are various ways to assess the perfor-
mance of a statistical model,4 clinically beneficial CPMs will 
yield accurate predictions on new cohorts (external valida-
tion)5 and improve decision-making and subsequent clini-
cal outcomes. Despite the increasing number of CPMs in 
the literature, how models perform generally during exter-
nal validations and the determinants of that performance 
is largely unknown. Current reporting recommendations 
reinforce the need for external validation,3 although recent 
analyses suggest that most CPMs either have not been 
externally validated6 or have only been validated on a single 
external cohort.7 CPM discriminatory performance can-
not not be assumed to be stable (ie, equivalent to model 
performance at derivation) when tested in new settings.8 
Model calibration has been largely neglected and unless it 
is known to be excellent, CPMs may lead to harm if they 
are used to inform decisions at certain risk thresholds.9,10

Here, we perform a field synopsis of external valida-
tion studies of cardiovascular CPMs reported in a prior 

systematic review.1 We aimed to describe the extent of 
external validation, variation in performance of models 
across databases, and to explore factors that are associ-
ated with worse model performance.

METHODS
Cardiovascular CPMs
The cardiovascular CPMs that form the basis of this review are 
found within the Tufts PACE CPM Registry. This registry rep-
resents a field synopsis of prediction models for patients at 
risk for and with known cardiovascular disease. All data and 
materials for this analysis have been made publicly available 
and can be accessed at www.pacecpmregistry.org. The search 
strategy and inclusion criteria have been previously reported.1 
Briefly, for inclusion in the Registry, an article must present the 
development of a cardiovascular CPM, contain a model pre-
dicting a binary clinical outcome, and the model must be pre-
sented in a way that allows prediction of outcome risk for a 
future patient. The search strategy for CPM identification was 
previously reported1 and is presented in the Figure I in the Data 
Supplement. This analysis looked at cardiovascular CPMs pub-
lished from 1990 through March 2015.

External Validation Search
A SCOPUS citation search of these cardiovascular CPMs was 
conducted on March 22, 2017. Citations were reviewed by 2 
members of the study team to identify external validations of 
CPMs in the Registry. Discrepancies were reviewed by a third 
member of the research team. Consistent with prior work,6 
external validations were defined as any report that claimed to 
study the CPM for the same outcome as originally reported, but 
in a nonoverlapping population.

Data Extraction
Information about each CPM/validation pair was extracted, 
including sample size, continent of study, number of events, and 
reporting of measures of discrimination and calibration. CPM 
validation performance focused on discrimination (area under 
the receiver operating characteristic curve [AUROC]) change 
compared with the AUROC seen in the derivation population. 
We also document whether validations include any assessment 
of CPM calibration. There are many methods to assess model 
calibration and only recent consensus on best practices.4,11 
Given this lack of consistency and interpretability in the litera-
ture, we report whether or not this dimension of performance 
was assessed during external validation. Calibration assess-
ment included any comparison of observed versus expected 
outcomes. Examples include a Hosmer-Lemeshow statistic or 
calibration plot. For this study, we also included measures of 
calibration-in-the-large, where overall observed event rates are 
compared with predicted rates.

CPM Performance
Consistent with prior work,12 changes in CPM discrimina-
tion from derivation to validation are described on a scale of 
0% (no change in discrimination) to −100% (complete loss 

WHAT IS KNOWN
• There has been a proliferation of clinical predic-

tion models (CPMs) to help risk-stratify patients at 
risk for cardiovascular disease. Clinically beneficial 
CPMs will yield accurate predictions for new patients 
and improve decision-making and clinical outcomes.

WHAT THE STUDY ADDS
• Here, we describe the extent to which CPMs have 

been validated and how performance varies across 
settings.

• We show that many CPMs have never been exter-
nally validated; for those that have, performance dur-
ing model development is often overly optimistic and 
that isolated validations do not adequately capture 
CPM performance heterogeneity across different 
settings.

Nonstandard Abbreviations and Acronyms

AUROC  area under the receiver operating char-
acteristic curve

CPM clinical prediction model
EPV events per included variable
IQR interquartile range
PACE  Predictive Analytics and Comparative 

Effectiveness Center
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of discrimination) because it more intuitively reflects the true 
changes in discriminatory power.13 Positive changes repre-
sent improvements in discrimination. The percent change in 
discrimination is calculated using the following equation ([vali-
dation AUROC−0.5]–[derivation AUROC−0.5]/(derivation 
AUROC−0.5]×100).

Population Relatedness
To explore potential explanations for decreased performance 
on validation data sets, we assessed the similarity between 
the derivation and validation populations by creating detailed 
relatedness rubrics for the 10 index conditions with the great-
est number of CPMs (Table I in the Data Supplement). These 
rubrics were created by investigators with expertise in these 
clinical areas. Relatedness was assessed for each CPM/vali-
dation pair to divide validation databases into 3 categories—
closely related, related, and distantly related. A fourth category 
no match was assigned to validations that were excluded 
from the analysis because they were not clinically appropriate 
matches (eg, CPM validated on population with nonoverlap-
ping index condition or outcome). Generally, the relatedness 
rubrics were based on 5 domains: (1) recruitment setting (eg, 
outpatient versus emergency room versus inpatient), (2) major 
inclusion/ exclusion criteria, (3) intervention type (eg, percu-
taneous coronary intervention versus thrombolysis for acute 
myocardial infarction), (4) therapeutic era, (5) follow-up time. 
Two clinicians reviewed these domains for each CPM/valida-
tion match and assigned a relatedness category. Nonrandom 
split-sample validations were labeled as closely related valida-
tions. Discrepancies were reviewed by the study team to arrive 
at a consensus.

Factors Associated With CPM External 
Validation
We identified a set of study-level factors to evaluate asso-
ciations with whether or not a CPM was externally validated. 
These factors were identified based on observed methodologic 
and reporting patterns as well as prior literature.8 These factors 
included: Index clinical condition, internal validation performed, 
year of publication (divided here before 2004, 2004–2009, 
2009–2012, after 2012), continent of origin, study design 
(eg, clinical trial versus medical record), sample size, number 
of events, number of predictors, prediction time horizon (<30 
days, 30–265 days, >365 days), regression method (eg, logis-
tic regression versus Cox regression), and reporting of discrimi-
nation or calibration. We analyzed unadjusted associations and 
used multivariable logistic regression to assess whether these 
variables were associated with CPM external validation.

Factors Associated With Poor Performance
A set of study-level factors defined a priori were evaluated for 
association with worse CPM performance (discrimination) dur-
ing validation. These factors included: population relatedness 
(here, dichotomized as distantly related versus other), presence 
of overlapping authors, same or different article, CPM model-
ing method, CPM data source, validation data source, outcome 
rate difference between derivation and validation data (defined 
as > versus ≤40%), CPM events per included variable (EPV). 
We used generalized estimating equations14,15 with robust 

covariance estimator to assess the multivariable association with 
the observed change in discrimination, taking into account the 
correlation between validations of the same CPM. Multiple impu-
tation of 20 imputed data sets was used to account for missing-
ness. These analyses estimated the absolute difference in the 
estimated percent change in the C statistic from derivation to 
validation populations, as calculated above. All statistical anal-
yses were performed using SAS Enterprise Guide version 8.2 
(SAS Institute, Inc, Cary, NC).

RESULTS
Overview of Validations
The Registry includes 1382 CPMs for cardiovascular 
disease and the citation search of these CPMs identified 
54 086 citations that were screened (Figure 1). These 
citations identified 14 615 abstracts that were screened 
to identify 6039 full-text articles. A total of 2030 exter-
nal validations were extracted from 413 articles. Only 
575 (42%) of the CPMs in the Registry have ever been 
validated (Table 1). On average, there were 1.5 valida-
tions per de novo CPM, with a very skewed distribution. 
The Logistic European System for Cardiac Operative 
Risk Evaluation16 has been externally validated 94×. For 
this analysis, we included 1846 validations of 556 CPMs 
after exclusion of 19 decision trees and 156 validations 
performed on unrelated (ie, populations with different 
index conditions or nonoverlapping outcomes) samples. 
The median external validation sample size was 861 
(25th–75th percentile [interquartile range (IQR)] 326–
3306), and the median number of outcome events was 
68 (IQR, 29–192; Table 2).

CPM Validation Discrimination
Overall, 91.3% (n=1685) of the external validations 
report AUROC. The median derivation AUROC was 0.77 
(IQR, 0.73–0.82). The median external validation AUROC 
was 0.73 (IQR, 0.66–0.79) representing a median per-
cent change in discrimination of -11.1% (IQR, −32.4% 
to +2.7%; Table 2). Of the validations with decreased 
performance (n=795), 25% (n=195) had <10% decre-
ment in discrimination. Two percent (n=35) had >80% 
drop in discrimination; 19% (n=352) of model validations 
showed CPM discrimination at or above the performance 
reported in the derivation dataset.

CPM Calibration
In total, 53% (n=983) of the validations report some mea-
sure of CPM calibration. The Hosmer-Lemeshow test 
of goodness-of-fit was most commonly reported (30%, 
n=555) followed by calibration-in-the-large (26%, n=488), 
and calibration plots (22%, n=399). (Table 2). Overall, 
there was no externally assessed calibration information 
available for 86% (n=1182) of the CPMs in the Registry.
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Clinical Domains
The ten conditions with the most CPM validations 
comprised 92% (1702/1846) of the total validations 
included in this analysis (Table 3). The condition with 
the largest number of validations was stroke (299 
validations performed on 104 CPMs). There were a 
total of 286 validations of 87 CPMs for populations at 
risk for developing cardiovascular disease (population 
samples) and 286 validations of 52 CPMs for Cardiac 
Surgery. Only 5 index conditions had ≥50% of avail-
able CPMs externally validated (arrhythmias [81%], 
valve disease [62%], venous thromboembolism [53%], 

cardiac surgery [51%], and aortic diseases [50%]). 
There is an extreme range of CPM performance and 
consistent loss of discriminatory performance during 
external validations (Figure 2, Table 3). These observa-
tions were apparent for all conditions that were studied 
(specific condition waterfall analyses shown in Figure II 
in the Data Supplement).

Relatedness
Relatedness was assigned to each of the 1702 of the 
CPM/validation pairs for the top 10 index conditions. Of 
these, 123 (7%) of the validations were performed on 

Figure 1. Flowchart of external 
validation review process.

Table 1. De Novo Models Summary

Overall Validated* Never validated

Models 1382 556 807

Validations per model, mean (range) 1.5 (0–94) 3.3 (1–94) 0

Cohort size 1728 (509–6198) 2130 (688–8978) 1227 (405–5303)

Events 165 (71–456) 198 (88–649) 144 (63–328)

EPV final model† 22.3 (11.3–50.6) 26.1 (12.2–70.6) 20.4 (11.0–42.7)

C statistic‡ 0.77 (0.725–0.821) 0.78 (0.73–0.83) 0.77 (0.72–0.816)

Multicenter, N (%) 830 (60) 380 (68) 438 (54)

Any calibration, N (%) 603 (44) 268 (48) 332 (41)

 Hosmer-Lemeshow test, N (%) 415 (30) 189 (34) 225 (28)

 Calibration plot, N (%) 254 (18) 112 (20) 141 (17)

 Calibration-in-the-large, N (%) 82 (6) 44 (8) 37 (5)

Characteristics of unique CPMs in PACE CPM Registry in aggregate for all CPMs, CPMs that have ever been validated, and 
CPMs never validated. All values reported as median (IQR) unless otherwise noted. CPM, clinical prediction model; EPV, events 
per included variable; IQR, interquartile range; and PACE, Predictive Analytics and Comparative Effectiveness.

*Includes validations in sample set (Table 2).
†EPV refers to the calculation of events per included variable in the final model, not candidate variables.
‡C statistic reported in 91.3% of exercises.
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closely related populations, 862 (51%) were performed 
on related populations, whereas 717 (42%) were per-
formed on distantly related populations (Table 2). The 
median AUROC for closely related validations was 0.78 
(IQR, 0.719–0.841). The median AUROC for related 
population validations was 0.75 (IQR, 0.68–0.803). The 
median AUROC for distantly related validations was 0.70 
(IQR, 0.64–0.77; P<0.001). Overall, the median percent 
change in discrimination was -3.7% (IQR, −13.2 to 3.1) 
for closely related validations, −9.0% (IQR, −27.6 to 3.9) 
for related validations, and −17.2% (−42.3 to 0) for dis-
tantly related validations (P<0.001).

Range of Performance for Individual CPMs
Table 4 shows the variation in performance across the 
10 CPMs16,18–26 that were validated most frequently. 
Uniformly, there was a substantial range in performance 
of each CPM across datasets, from virtually useless to 
excellent. For example, discrimination for the Logistic 
European System for Cardiac Operative Risk Evaluation 
(validated 94×) ranged from 0.48 to 0.90 across differ-
ent databases. None of these highly cited (and validated) 
CPMs had consistently good discrimination across vali-
dation databases.

Predictors of External Validation
Study features that are associated with CPM external 
validation (yes/no) are shown in Table II in the Data 
Supplement. The index condition was strongly associ-
ated with subsequent external validation. Models that 

were internally validated and models that were pub-
lished more recently were less likely to be externally vali-
dated. Sample size, number of predictors, and reporting 
of discrimination or calibration were positively associ-
ated with external validation. On multivariable analysis, 
these predictors remained associated with CPM exter-
nal validation. Study design, prediction time horizon, and 
regression method were not apparently associated with 
a model being externally validated.

Predictors of Poor Performance
Predictors of CPM validation performance are shown 
in Table 5. On univariate analysis, population related-
ness was significantly associated with CPM discrimina-
tion in validations. When CPMs were tested on distantly 
related cohorts, the AUROC decrease was −15.6% 
(95% CI, −22.0 to −9.1) compared with the reference 
(validations done on closely related cohorts). When 
evaluated in a multivariable model, population relat-
edness remained significantly associated with CPM 
discrimination in validations (−9.8% [95% CI, −18.8 
to −0.8). We also observed that validations demon-
strated AUROCs that were 9.8% (95% CI, 5.4–14.2) 
higher when reported in the same article (with the 
same authors) as the de novo CPM report compared 
with validations reported in different articles with non-
overlapping authors. There was a trend toward higher 
AUROC (+7.3% [95% CI, −1.2 to 15.8], P=0.09) when 
validations were reported by overlapping authors in a 
subsequent publication (compared with reports by non-
overlapping authors).

Table 2. External Validations Summary

 Sample set* Relatedness set† Closely related‡ Related Distantly related

Validation exercises 1846 (556 models) 1702 (483 models) 123 (117 models) 862 (301 models) 717 (216 models)

Cohort 861 (326 to 3306) 882 (330 to 3479) 1460 (494 to 4905) 960 (413 to 4492) 681 (256 to 2152)

Events 68 (29 to 192) 67 (28 to 188) 144 (48 to 275) 72 (31 to 201) 52 (25 to 158)

EPV final model§ 6.9 (2.5 to 22.9) 6.3 (2.4 to 21.1) 14.1 (6.7 to 33.9) 6.5 (2.3 to 20.6) 5.6 (2.1 to 18.5)

C statistic∥ 0.73 (0.66 to 0.794) 0.73 (0.664 to 0.796) 0.78 (0.719 to 0.841) 0.75 (0.68 to 0.803) 0.701 (0.64 to 0.77)

% Change in discrimination −11.1 (−32.4 to 2.7) −11.1 (−32 to 2.6) −3.7 (−13.2 to 3.1) −9.0 (−27.6 to 3.9) −17.2 (−42.3 to 0)

Multicenter, N (%) 779 (42) 717 (42) 70 (57) 338 (39) 309 (43)

Any calibration, N (%) 983 (53) 930 (55) 66 (54) 542 (63) 322 (45)

 Hosmer-Lemeshow test, N (%) 555 (30) 527 (31) 36 (29) 310 (36) 181 (25)

 Calibration plot, N (%) 399 (22) 378 (22) 28 (23) 236 (27) 114 (16)

 Calibration-in-the-large, N (%) 488 (26) 480 (28) 18 (15) 292 (34) 170 (24)

Characteristics of external validations of CPMs in PACE CPM Registry, stratified by inclusion in analysis sample, CPMs in top 10 most validated index conditions, and 
by relatedness category. All values reported as median (IQR) unless otherwise noted. CPM, clinical prediction model; EPV, events per included variable; IQR, interquartile 
range; and PACE, Predictive Analytics and Comparative Effectiveness.

*Excluded decision tree, classification and regression tree, and mismatched index condition validations.
†CPMs comprising top 10 most validated index conditions in CPM Registry (acute coronary syndrome, aortic disease, arrhythmia, cardiac surgery, chronic heart failure, 

population sample, revascularization, stroke, valve disease, venous thromboembolism).
‡Validation is split-sample external validation, as defined by Steyerberg.17

§EPV refers to the calculation of events in the validation exercise per included variable in the final model, not candidate variables.
∥C statistic reported in 91% of exercises.
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DISCUSSION
Our Tufts PACE CPM Registry documents the tre-
mendous proliferation and redundancy of CPMs being 
developed and published. The review reported here 
underscores that this proliferation is occurring without 
adequate—or even minimal—external evaluation. Approx-
imately 60% of published CPMs have never been exter-
nally validated. Approximately half of the CPMs that 
have been validated only once. A small minority of mod-
els have been validated numerous times. The value of 
single validations is unclear because there is substantial 
performance heterogeneity and good (or poor) perfor-
mance on a single validation does not appear to reliably 
forecast performance on subsequent validations. No 
CPM showed consistently good discrimination across 
multiple validation databases. For example, the 10 
most validated CPMs have each been validated >20×; 
all show substantial variation in discrimination across 
these validation studies, from virtually useless (ie, C sta-
tistic=≈0.5) to very good (C statistic=~0.8 or higher). 
This demonstrates the difficulty of defining the quality 
of a model generically because performance greatly 
depends on characteristics of the database on which 
a model is tested. These findings underscore recent 
calls for a fundamental paradigm shift in how models 

are assessed for validity and utility7 and calls for more 
robust stewardship of algorithms for health care.27

The majority of cardiovascular CPMs in our Registry 
have never been externally validated. This finding mirrors 
an observation made in previous assessment of primary 
prevention models8,28 and broadly suggests that cardio-
vascular clinicians should be skeptical about the accu-
racy of individual risk estimates. In our registry, model 
level predictors associated with subsequent external 
validation include the disease being studied and also 
larger sample size, higher outcome rates, and whether 
discrimination or calibration were reported in the original 
presentation. Older CPMs were generally more likely to 
be externally validated—an observation that may relate to 
insufficient time to allow for validation of more recently 
published CPMs. Given the extreme redundancy of 
CPMs and the relative scarcity of external validations, it 
seems reasonable to prioritize the study of existing car-
diovascular CPMs (as opposed to developing new ones), 
and how these might be optimized for clinical use.

Although this review focuses on external validations, 
this emphasis does not imply that internal validation is 
not important. Internal and external validation provide 
different information. Internal validation is especially 
important when the sample size and the number of 
outcomes are relatively small for the complexity of the 

Table 3. Conditions With the Most External Validations (Top 10)

 Delta C, median (Q1, Q3)

Index condition

Validated 
CPMs (% 
of total) Validations

Closely 
related Related

Distantly 
related

N  
missing Closely related Related Distantly related

Stroke 104 (48) 299 5 (1.7) 127 (42.5) 167 (55.9) 69 −7.1 
(−12.8 to 2.8)

−6.9 
(−17.7 to 3.5)

−12.9 
(−33.3 to 0.4)

Cardiac surgery 52 (51) 286 19 (6.6) 216 (75.5) 51 (17.8) 141 5.9 
(−26.9 to 8.9)

−10.3 
(−27.6 to 6.9)

−17.2 
(−43.4 to 2.9)

Population 
sample

87 (38) 286 7 (2.5) 162 (56.6) 117 (40.9) 162 −8.7 
(−13.3 to −3.6)

−15.2 
(−38.2 to −1.1)

−16.1 
(−48.6 to 1.3)

ACS 57 (45) 209 20 (9.6) 85 (40.7) 104 (49.8) 59 −2.3 
(−10.3 to 4.0)

−3.2 
(−17.8 to 7.8)

−11.7 
(−39.1 to 2.2)

Valve disease 37 (62) 202 12 (5.9) 71 (35.2) 119 (58.9) 56 −8.9 
(−17.9 to 0)

−6.3 
(−32.5 to 2.3)

−31.8 
(−52.3 to −11.5)

Arrhythmia 17 (81) 98 3 (3.1) 55 (56.1) 40 (40.8) 11 −12.7 
(−13.6 to −11.8)

−17.3 
(−50.0 to 44.8)

−31.8 
(−70.1 to 46.2)

CHF 47 (32) 92 18 (19.6) 47 (51.1) 27 (29.4) 30 −3.7 
(−13.5 to 3.5)

−21.3 
(−29.4 to −5.5)

−17.2 
(−28.9 to −5.2)

Revascularization 47 (36) 92 27 (29.4) 37 (40.2) 28 (30.4) 21 −1.1 
(−14.9 to 1.6)

−1.7 
(−16.7 to 2.6)

−15.1 
(−25.0 to −5.9)

Aortic disease 31 (50) 72 7 (9.7) 32 (44.4) 33 (45.8) 65 NA −7.9 
(−10.3 to −0.9)

39.4 
(39.4 to 39.4)

VTE 27 (53) 66 5 (7.6) 30 (45.5) 31 (47.0) 34 −10 
(−17.2 to −5.0)

−3.4 
(−19.2 to 28.6)

−7.4 
(−25.0 to 6.2)

Total 506 (44) 1702 123 
(7.2%)

862 
(50.6%)

717 
(42.1%)

648 −3.7  
(−13.3 to 3.5)

−9  
(−27.6 to 3.9)

−17.2  
(−42.4 to 0)

Discrimination and characteristics of validations for CPMs with top 10 most validated index conditions in PACE CPM Registry. N missing refers to either derivation 
AUC or validation AUC missing (delta C not available). ACS indicates acute coronary syndrome; AUC, area under curve; CHF, chronic heart failure; CPMs, clinical predic-
tion models; NA, not applicable; PACE, Predictive Analytics and Comparative Effectiveness; and VTE, venous thromboembolism.
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model-building procedure. In such cases, reporting the 
apparent performance is likely over-optimistic. External 
validation provides information about the transportability 
of the model to other settings and across time, and how 
robust predictions are to distributional shifts in the data. 
Combination of internal-external validation procedures 
to assess CPM performance may represent best prac-
tice to broadly understand CPM performance.29 Yet for 
those charged with deciding whether a given model is 
deployed in clinical practice, understanding how a model 
performs in the local setting may be most important. Our 

work suggests that this may be difficult to understand 
from the literature, especially if the target of inference is 
a setting other than where a model was validated.

It was common to observe substantial decrements 
in discrimination during validations. This finding is con-
sistent with prior reports that have shown CPM vali-
dation discriminatory ability that is highly variable and 
often worse than anticipated (when compared with 
performance on the derivation database).6,8 There are 
several potential reasons why model performance 
might decrease, including model invalidity (eg, due to 

Figure 2. Waterfall plot depicting the 
percent change in the C statistic in 
related (related and closely related) 
validations (in blue) and distantly 
validations (in orange). 
Plots comprise horizontal lines 
representing a total of 1701 validations 
that present C statistic that can be 
compared with the development C 
statistic. Vertical lines show that the 
median decrement in discrimination was 
more pronounced in the distantly related 
models than the related models.

Table 4. Top 10 Most Validated CPMs

Model Name Index condition No. of validations Development AUC
Median validation 
AUC (IQR)

Range in  
validation AUC

Logistic EuroSCORE16 Cardiac surgery 94 NR 0.75 (0.67–0.80) 0.48–0.90

Additive EuroSCORE18 Cardiac surgery 86 0.79 0.77 (0.72–0.82) 0.58–0.90

EuroSCORE II19 Valve disease 65 0.81 0.76 (0.68–0.81) 0.40–0.87

GRACE20 CAD: ACS 53 0.83 0.80 (0.73–0.84) 0.60–0.95

STS (valve)–mortality21 Cardiac surgery 51 0.81 0.70 (0.64–0.76) 0.45–0.85

CHA2DS2–VASc22 Arrhythmia 45 0.61 0.66 (0.61–0.69) 0.45–0.93

CHADS2
23 Arrhythmia 37 0.82 0.65 (0.61–0.68) 0.51–0.87

FRS–CHD24 Population sample 35 NR 0.68 (0.63–0.72) 0.54–0.80

ICH score25 Stroke 27 0.92 0.85 (0.75–0.87) 0.69–0.94

ACEF score26 Cardiac surgery 26 0.74 0.74 (0.68–0.77) 0.54–0.87

Description of top 10 most validated CPMs in PACE CPM Registry and validation performance. ACEF indicates age, creatinine, and left 
ventricular ejection fraction; ACS, acute coronary syndrome; AUC, area under curve; CAD, coronary artery disease; CPMs, clinical prediction 
models; EuroSCORE, European System for Cardiac Operative Risk Evaluation; FRS–CHD, Framingham Risk Score for Coronary Heart Dis-
ease; GRACE, Global Registry of Acute Coronary Events; ICH, intracerebral hemorrhage; IQR, interquartile range; NR, not reported; PACE, 
Predictive Analytics and Comparative Effectiveness; and STS, Society of Thoracic Surgeons.



Wessler et al Validations of CVD Clinical Prediction Models

Circ Cardiovasc Qual Outcomes. 2021;14:e007858. DOI: 10.1161/CIRCOUTCOMES.121.007858 August 2021 908

over-fitting on the derivation population) and a change 
in case mix.5 Model invalidity might be expected to be 
more pronounced when models are evaluated in pop-
ulations that are dissimilar to the derivation popula-
tion. We found that models had a substantially larger 
decrease in discriminatory performance when tested 
on distantly related populations compared with either 
related or closely related populations. However, judg-
ing the relatedness of the populations is laborious and 
requires substantial clinical expertise. Differences that 
may appear subtle can be very influential. For example, 
a CPM developed on patients in the emergency room 
might not be expected to have similar discriminatory per-
formance if the validation cohort includes only patients 
admitted to the hospital since—as in the case of many 

acute cardiac syndromes—care30 and outcome predic-
tors31 are different very early in the disease course. 
So too changes in treatments received (eg, different 
ACS revascularization approaches,32 stent types,33 or 
outcome definitions34,35) likely impact model valida-
tion performance. If the model was derived on patients 
receiving lytic therapy and validated using data from a 
more contemporary percutaneous coronary intervention 
trial, it should not be surprising that model performance 
appears worse than expected. Other study-level char-
acteristics we examined apart from relatedness did not 
appear to greatly influence model performance.

One of the most striking observations of this work 
is that isolated validations appear insufficient to under-
stand the performance of CPMs when tested in new 

Table 5. Predictors of Worse Discrimination: Variable Distributions and GEE Model Results

 

Univariate Multivariable (n=1054)*

N
Delta AUC difference 
(95% CI) P value

Delta AUC difference 
(95% CI) P value

Relatedness, n (%) Frequency N/A=93 (8.1%) 1054     

 Closely related 79 (7.5) Reference  Reference  

 Related 544 (51.6) −5.9 (−10.5 to −1.4) 0.011 −1.3 (−7.1 to 4.5) 0.660

 Distantly related 431 (40.9) −15.6 (−22.0 to −9.1) <0.001 −9.8 (−18.8 to −0.8)† 0.033†

CPM authors, n (%)  1147     

 Diff article, author overlap 94 (8.2) 7.3 (−1.2 to 15.8) 0.092 5.1 (−4.2 to 14.4) 0.283

 Diff article, no author overlap 849 (74.0) Reference  Reference  

 Same article 204 (17.8) 9.8 (5.4 to 14.2) <0.001 5.5 (−0.8 to 11.9) 0.088

CPM method, n (%) Frequency missing=20 (1.7%) 1127     

 Logistic regression 859 (76.2) Reference  Reference  

 Other 7 (0.6) −0.1 (−12.4 to 12.2) 0.985 −1.1 (−13.7 to 11.6) 0.870

 Time-to-event regression 261 (23.2) 2.6 (−5.8 to 11) 0.541 −1.4 (−11 to 8.2) 0.768

CPM data source, n (%) Frequency missing=4 (0.3%) 1143     

 Clinical trial 118 (10.3) 5.8 (−8.9 to 20.5) 0.437 3.7 (−14.1 to 21.5) 0.684

 Medical record 614 (53.7) Reference  Reference  

 Other 114 (10.0) −1.3 (−11.1 to 8.6) 0.803 −2.5 (−14.0 to 9.0) 0.669

 Registry 297 (26.0) 2.3 (−5.5 to 10) 0.569 2.1 (−6.3 to 10.5) 0.616

Validation data source, n (%) Frequency missing=47 (4.1%) 1100     

 Clinical trial 99 (9.0) −5.9 (−12.5 to 0.6) 0.077 −7.3 (−15.4 to 0.8) 0.076

 Medical record 606 (55.1) Reference  Reference  

 Other 58 (5.3) 3.9 (−5.2 to 13) 0.402 3.3 (−5.1 to 11.7) 0.440

 Registry 337 (30.6) 1.5 (−3.5 to 6.5) 0.560 1.2 (−3.5 to 6.0) 0.606

Relative outcome rate  
difference > 40%, n (%)

Frequency missing=402 (35.0%) 745     

 Yes 384 (51.5) −4.4 (−9.4 to 0.7) 0.091 −1.5 (−6.3 to 3.3) 0.540

 No 361 (48.5) Reference  Reference  

CPM EPV, median (IQR) Frequency missing=214 (18.7%) 933     

 23.4 (16.3 to 58.8) 0.4 (−1.9 to 2.7)‡ 0.718 1.8 (−1.1 to 4.6) 0.218

Results of regression analysis to detect predictors of change in discrimination performance from derivation to validation. EPM: events per included variable in the 
final model, not candidate variables. AUC indicates area under curve; CPM, clinical prediction model; Diff, different; EPV, events per included variable; GEE, generalized 
estimating equation; IQR, interquartile range; and N/A, not assessed.

*Multiple imputation for missing data (20 imputed data sets).
†significant with p<0.05
‡Natural log-transformed.
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populations. There was often an extreme range in per-
formance for CPMs evaluated in multiple databases—an 
observation that calls into question the generalizability 
of any one validation result. These data challenge the 
current approach in which a model might be evaluated 
on a single external population and then declared to be 
a validated prediction model that is ready for use. Even 
when a model performs well using statistical criteria, it is 
unclear whether such a model improves decision-making 
when used on a closely related population. Further, good 
statistical performance on one external database does 
not guarantee good statistical performance in another 
setting—such as where a CPM is eventually used to sup-
port care. There is no evidence from our analysis that 
so-called validated CPMs that have been integrated 
into clinical practice guidelines36,37 should be accepted 
as trustworthy unless CPM performance is specifically 
known to be excellent on populations like those being 
treated. Although having a single CPM that is accepted 
by the clinical community and promoted in guidelines is 
appealing as a means of standardizing practice across a 
range of different settings, the degree of variation seen 
in our review suggests that this paradigm may result in 
substantial variation of performance across different set-
tings and poor performance in some settings. Testing 
CPMs for improved decision-making and better clinical 
outcomes (eg, in a cluster-randomized trial38) is rarely 
performed before dissemination into practice. Novel par-
adigms, emphasizing increasing the accuracy of model 
performance on local populations, through continual 
recalibration and updating, are an appealing approach 
that deserves further consideration.

There are several potential reasons why external 
validations of prediction models are so rare. First, model 
developers typically exhaust their data deriving (and 
sometimes internally validating) their model and may not 
have additional data sources. Second, informally, there 
appear to be much stronger academic incentives for the 
development of new models, rather than the validation 
of previously published models. Third, there is limited 
understanding that it is informative to test and retest a 
validated model on new data to understand how robust 
predictions are to distributional shifts over time and set-
tings. This is supported indirectly by the observation that 
internally validated models appear to be less likely to be 
externally validated than other models. Finally, as pre-
dictive modeling methodologic and reporting standards 
have been published and adopted,2,3 there remain few 
standards for how best to conduct and report on valida-
tions of existing models.

Our review has several limitations. First, the review 
was limited by the information collected and presented 
in the original articles. We relied on changes in dis-
crimination largely because CPM calibration is woefully 
underassessed. Only 62% of models in the CPM Regis-
try have had calibration formally assessed in an external 

population; even among the models that were validated 
only 48% report any calibration. Finally, even when cali-
bration is reported, it is usually reported in a form that is 
not clinically interpretable (eg, as a Hosmer-Lemeshow 
statistic4,13) or graphically (easy to summarize according 
to calibration slope [ideal: 1] and systematic under or 
overestimation [intercept ideally 0]). Some less frequently 
used metrics, such as the integrated calibration index,39 
may help compare performance across multiple valida-
tions. Decrements in calibration may be as serious as, 
or even more serious than, decrements in discrimination 
because miscalibrated models yield misinformation which 
may cause harmful decision-making.9 Ideally, we would 
be able to evaluate the net benefit of model use, which 
integrates discrimination, calibration, and relative utility to 
compare the value of prediction-based decision-making 
compared with best one-sized-fits-all strategies.4,40 Such 
evaluations would have required individual patient data 
because these approaches are so rarely used in the pub-
lished literature. Similarly, we could not assess how much 
of the decrement in discrimination was due to differences 
in case mix, rather than invalidity, which would have also 
required evaluation of patient-level data.41 Finally, our 
systematic review does not include more recent valida-
tions after 2017, due to the enormous scope of this lit-
erature, the lack of efficient search strategies, and the 
laborious nature of comprehensive data extraction and 
evaluation of relatedness. We do not anticipate the more 
recent literature would substantially change our findings. 
Maintenance and continual updating data of this registry 
will registry will require a semiautomated approach heav-
ily reliant on natural language processing.42

CONCLUSIONS
Many published cardiovascular CPMs have never been 
externally validated, and for those that have, it is com-
mon to see significant performance heterogeneity and 
marked decreases in the discriminatory performance 
compared with the model development phase. Calibration 
has been widely underassessed, and single validations 
do not sufficiently capture CPM performance. Granular 
information about population relatedness is associated 
with CPM performance in external validations, and when 
CPMs are tested on distantly related populations, model 
performance is often substantially worse than expected. 
This review raises substantial concerns about the cur-
rent approach to validating cardiovascular CPMs and 
underscores the need for a radical rethinking for how 
performance heterogeneity is explored and quantified 
(eg, through multiple validations across various practice 
settings) and how models are evaluated for clinical use.
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