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Abstract

Background: Birth weight is one of the most important indicators of neonatal survival. A reliable estimate of foetal
weight at different stages of pregnancy would facilitate intervention plans for medical practitioners to prevent the
risk of low birth weight delivery. This study has developed reliable models to more accurately predict estimated
foetal weight at a given gestation age in the absence of ultrasound facilities.

Methods: A primary health care centre was involved in collecting retrospective non-identified Indonesian data. The
best subset model selection criteria, coefficient of determination, standard deviation, variance inflation factor,
Mallows Cp, and diagnostic tests of residuals were deployed to select the most significant independent variables.
Simple and multivariate linear regressions were used to develop the proposed models. The efficacy of models for
predicting foetal weight at a given gestational age was assessed using multi-prediction accuracy measures.

Results: Four weight prediction models based on fundal height and its combinations with gestational age (between
32 and 41 weeks) and ultrasonic estimates of foetal head circumference and foetal abdominal circumference have
been developed. Multiple comparison criteria show that the proposed models were more accurate than the existing
models (mean prediction errors between − 0.2 and 2.4 g and median absolute percentage errors between 4.1 and 4.
2%) in predicting foetal weight at a given gestational age (between 35 and 41 weeks).

Conclusions: This research has developed models to more accurately predict estimated foetal weight at a given
gestational age in the absence of ultrasound machines and trained ultra-sonographers. The efficacy of the models was
assessed using retrospective data. The results show that the proposed models produced less error than the existing
clinical and ultrasonic models. This research has resulted in the development of models where ultrasound facilities do
not exist, to predict the estimated foetal weight at varying gestational age. This would promote the development of
foetal inter growth charts, which are currently unavailable in Indonesian primary health care systems. Consistent
monitoring of foetal growth would alleviate the risk of having inter growth abnormalities, such as low birth weight
that is the most leading factor of neonatal mortality.

Keywords: Fundal height, Gestational age, Estimated foetal head circumference, Estimated foetal abdominal circumference,
Regression analysis, Foetal weight estimation, Absence of ultrasound facilities, Primary health care centre, Prediction
accuracy, Indonesia
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Background
Birth weight is a primary measurement and significant indi-
cator to ensure the optimal growth, survival, and future
well-being of new-borns. Deviation from normal delivery
weights (2500–3999 g), such as low birth weight (LBW) (<
2500 g) and macrosomia (> 4000 g) could lead to some
negative consequences on neonatal health [1–3]. While
macrosomia may cause neonatal and maternal morbidity
[4], LBW is well-documented to be one of the most contrib-
uting factors to the neonatal mortality [1]. LBW is defined
as weight less than 2500 g at birth regardless of gestational
age (GA) and can be caused by preterm birth or intrauter-
ine growth restriction [5]. In this paper, LBW includes both
preterm and term new-borns of appropriate for GA.
Routine and reliable estimates of foetal weight at a given

GA throughout pregnancy are vital. These estimates could
create evidence-based track records/analysis to assist
medical practitioners to detect the signs of potential LBW
during pregnancy and provide the appropriate interven-
tions. Although a wide range of simple and advanced
multivariate weight prediction models based on clinical
and ultrasonic measurements has been developed, most
are only based on maternal or foetal factors [6–25]. Less is
known about the combinations of these characteristics to
estimate foetal weight during pregnancy despite the fact
that birth weight is significantly associated with character-
istics of both mother and foetus [1, 26].
Several models based on combined maternal and neonatal

characteristics have been developed and reviewed, these
existing models were mostly developed based on the infor-
mation available at delivery time [27, 28]. In most developing
countries, the availability of foetal biometric measurements
during pregnancy is low, particularly in rural areas due to
limited access to ultrasound machines and skilled personnel
[29]. Westerway et al. (2000), Loughna et al. (2009), and
Papageorghiou et al. (2014) have used a large number of
ultrasonic measurements to develop formulas that estimate
foetal biometric characteristics at a given GA [30–32]. These
formulas then could be used to fill the foetal database gaps
during pregnancy when ultrasound facility is absent.
The present research develops foetal weight prediction

models based on combined maternal and estimated foetal
biometric characteristics to estimate foetal weight at any
given GA. The proposed models can be simply implemented
in low-resource primary health care centres where ultra-
sound machines and trained ultra-sonographers are not al-
ways available. The predicted foetal weight will assist in the
development of foetal growth charts for Indonesia. No such
charts currently exist for the Indonesian population.

Methods
Study design and setting
A quantitative and analytic study based on a retrospective
pregnancy cohort analysis was carried out. Unidentified

secondary quantitative data were collected and analysed
to (1) assess the adequacy of the existing ultrasonic
models in estimating foetal biometric characteristics, (2)
develop new foetal weight prediction models based on
both maternal and estimated foetal biometric characteris-
tics, (3) assess the accuracy of the proposed models in pre-
dicting foetal weight between 35 and 41 weeks of GA, and
(4) carry out a comparison study between the proposed
and commonly used models. The study was conducted in
a primary health care centre in South Kalimantan prov-
ince, Indonesia. The locality was selected because it is one
of the five provinces with the highest neonatal mortality in
the country [33–35].

Conceptual framework
Figure 1 shows the framework used in this study, along
with the selected possible predictors of foetal weight
estimation.

Data source
Study data were sourced primarily from a paper-based
pregnancy register of pregnant women who received
antenatal care (ANC) services and gave birth in the se-
lected primary health care centre from January 2013 to
August 2015. Prior to delivery, GA, fundal height (FH),
foetal head engagement/foetal station (FS), and recorded
foetal weight estimation (EFWr) at a given GA were
measured and recorded by the assigned midwives. At de-
livery time, actual birth weight (ABW), neonatal head
circumference (HC), and neonatal abdominal circumfer-
ence (AC) were also measured and recorded.

Data management
Data was recorded in Microsoft Excel and the statistical
analyses were performed using Minitab version 17 and
R. The ordinary least square (OLS) and robust regres-
sion (the weighted likelihood estimation) were carried
out by using lm function and wle.lm function, respect-
ively in R [36–39].

Statistical analysis
The adequacy assessment of existing ultrasonic models to
estimate foetal biometric characteristics during pregnancy
The existing ultrasonic formulas to estimate foetal HC
and foetal AC which were developed based on the Austra-
lian foetal biometry data (measured between 11 and
41 weeks), the UK foetal biometry data (measured be-
tween 13 and 42 weeks), and the international foetal bi-
ometry data (measured between 14 and 42 weeks or until
birth) [30–32] (provided in Additional file 1: Table S1)
were applied to estimate foetal HC and foetal AC at a
given GA for Indonesian foetus (n = 127). A reliability ana-
lysis using intraclass correlation coefficient (ICC) [40, 41]
was performed to assess the consistency of the ultrasonic
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formulas for Indonesian population. The obtained ICC
values (provided in Additional file 2: Table S2) were com-
puted by single-rating, consistency, and two-way random
effects models for the foetal biometrics with three raters
(different ultrasonic formulas) across 127 subjects (preg-
nant women). Interclass (Pearson) correlation coefficient
was also analysed to assess whether there is a significant
relationship between the predicted foetal biometrics and
the neonatal measurements recorded at delivery time
(provided in Additional file 3: Table S3).

The development of new foetal weight prediction models
based on combinations of maternal and estimated foetal
biometric characteristics
Bernoulli distribution with the event probability (p) of
70% was used to randomly divide our data into two sets:
model development (training) data (n = 89) and model
efficacy assessment (testing) data (n = 38).
Based on the training data set, simple and multivariate

linear regressions were used to develop our proposed
models. The best subset selection methodology together
with correlation coefficient (r), coefficient of determin-
ation (R2), standard deviation (S), Mallows Cp, and vari-
ance inflation factor (VIF) were deployed to identify the
most suitable subset of predictors. Analysis of variance
(ANOVA) together with t-test statistics was used to

simultaneously and partially confirm the significance of
predictors’ contribution in the regression models. Diag-
nostic tests of residuals were used to confirm the validity
of the regression models.
Since our aim is to investigate whether a combin-

ation of maternal and foetal factors could improve
foetal weight prediction accuracy, we have utilised the
most commonly recommended formulas of ultrasonic
foetal measurement standards (based on GA) to pre-
dict the measurements of foetal biometrics in our
local population. This prediction is one way to fill in
the foetal database gaps during pregnancy in the ab-
sence of ultrasound. The estimates of these two most
significant characteristics of foetal biometry, such as
HC and AC were then combined with maternal FH
to develop the prediction models. The idea of this
combination was to evaluate whether it could im-
prove the prediction accuracy of foetal weight.
Our delivery date in our data ranged from 32 to

41 weeks. The ultrasonic formulas were deployed to
estimate foetal HC and foetal AC at the given GA for
each individual patient and used to estimate the deliv-
ery weight. Therefore, the mean time between the last
measurements of FH and GA as well as the last esti-
mates of foetal HC and foetal AC and birth was as-
sumed to be 0 days.

Fig. 1 Conceptual framework for factors influencing foetal weight estimation between 32 and 41 weeks of pregnancy
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The efficacy assessment of the proposed models
The testing data set was used to validate and assess the ef-
ficacy of the proposed models. The potential bias due to
growth between the last measurements and birth of the
developed models for estimating foetal weight was
assessed by calculating the mean prediction error [the
average of the differences between the ith actual values of
birth weight (ABWi) and the ith predicted values of foetal

weight based on the proposed models ( EFWpi )]=
Pn

i¼1
ðABWi−EFWpi Þ

n . The mean absolute percentage prediction

error or MAPE ¼ Pn
i¼1

jðABWi−EFWpi
ABWi

�100Þj
n was also calculated

to represent the dispersion of the errors [42]. In addition,
the median absolute percentage prediction error or

MEDAPE ¼ Median jðABWi−EFWpi
ABWi

� 100Þj was measured

and used for assessing the efficacy of the models. The later
measurement is more resistant to outlier distortion (due
to the presence of extreme deviations) than the mean;
therefore, deploying MEDAPE would eliminate the false
interpretation of forecast accuracy [43].
The efficacy of the proposed models was also assessed

by the number of estimates within 10% of ABW. A two
independent sample t-test was used to decide if there is
a significant difference between the observed or actual
values of birth weight (ABW), EFWr, and estimated
foetal weights based on the proposed models (EFWp).
Multiple comparisons were carried out between our pro-
posed models, eleven existing clinical models, and six
existing ultrasonic models to select the most effective
models for estimating foetal weights at a given GA.

Results
Out of 146 women who received ANC services and gave
birth in the selected primary health care centre, 127
(87%) women met the study criteria (Fig. 2). These
women delivered live singletons with normal delivery
weights between 32 and 41 weeks of GA. We excluded
19 (13%) women due to incomplete information on the
required characteristics listed in Fig. 2, such as no re-
cords of GA, FH, and FS (n = 3 ), GA > 41 weeks (n = 2),
been referred to hospitals due to pregnancy complica-
tions (n = 6), and abnormal birth weight babies (n = 8).

General information on the study population
Descriptive statistics on baseline characteristics of
mother and new-born of the study population (n =
127) are presented in Table 1. Overall, the pregnant
women were well-nourished (arm circumference =
25.5 cm) and had normal haemoglobin level (11.6 g/
dl) and body mass index (24.4 kg/m2). The median
age, height, weight, and FH for women were 28 years
(range 16–44 years), 156 cm (range 148–176 cm),
60 kg (range 44–83 kg), and 32 cm (range 27–

36 cm), respectively. The outcomes of pregnancy were
in a normal average of GA (38 weeks), delivery
weight (3252.8 g), birth length (50.2 cm), neonatal
HC (33.5 cm), and neonatal AC (34.5 cm).

The reliability assessment of existing ultrasonic formulas
in estimating foetal biometrics
This section presents the results of reliability analysis
among three existing ultrasonic formulas [30–32] listed
in Additional file 1: Table S1 in predicting foetal biomet-
rics when ultrasound facilities are not accessible.
The intraclass and interclass correlation coefficient ana-

lyses are presented in Additional files 2 and 3: Table S2 and
S3, respectively. The results presented in Additional file 2:
Table S2 indicate that all three formulas have excellent reli-
ability/consistency in predicting foetal HC and foetal AC at
a given GA (the obtained ICC values are 0.957 and 0.996,
respectively). Therefore, either of the existing formulas can
be deployed in our study population.
Additional file 3: Table S3 shows that the estimated

ultrasonic HC has a significant relationship with the
neonatal HC (p-value < 0.0005) based on the existing
models although the relationship was weak (0.191 < r <
0.212). Meanwhile, there is no significant correlation be-
tween the estimated ultrasonic AC and the neonatal AC
(0.076 < r < 0.078, p-value > 0.05). However, since the
Australian standard formulas produced slightly higher
interclass correlation coefficients (between the estimates
of foetal biometrics and the neonatal measurements)
and more estimates falling within 10% of the neonatal
measurements; therefore, the ultrasonic formulas based

Fig. 2 Flowchart of recruitment of participants through the study
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on the Australian population will be deployed to fill the
foetal database gaps and assist the development of our
proposed models.

Correlation analysis
Prior to developing models, correlations between the po-
tential predictors of foetal weight estimation based on
127 data were investigated. The correlation analysis is
presented in Additional file 4: Table S4.
Additional file 4: Table S4 shows that maternal FH has

a significant correlation with the EFWr and the ABW (r
= 0.952, p-value < 0.0005 and r = 0.795, p-value < 0.0005,
respectively). Unlike FH, GA has no significant correl-
ation with the EFWr and ABW.

Optimal models based on the best subset selection
algorithm
Deploying the best subset selection algorithm, we have
summarised the models developed based on the EFWr

(provided in Additional file 5: Table S5). These models
were based on one, two, and three independent vari-
ables. The table also lists their corresponding R2, Mal-
lows Cp, S, and VIF statistics.
Additional file 5: Table S5 shows that the first model

incorporated only one predictor: FH. The second, third,
and fourth models incorporated two predictors: FH and
GA, FH and estimated foetal HC, and FH and estimated
foetal AC, respectively. The last model was developed
based on three predictors: FH, estimated foetal HC, and
estimated foetal AC.
Overall, the developed models had equal capability in

predicting foetal weight estimation (coefficient of deter-
mination between 88.3 and 88.8%). However, using Mal-
lows Cp index and S, we concluded that Models (3) and
(4) were the best fit models with the least predicting er-
rors. Models based only on estimated foetal HC or esti-
mated foetal AC was excluded from the analysis due to

the insignificant R2. Model (5) was excluded due to the
presence of severe multicollinearity (VIF > 193) (pro-
vided in Additional file 5: Table S5).
Table 2 presents the coefficients of the predictors for the

chosen models together with the corresponding p-values of
ANOVA, t-test statistics, and diagnostics of residuals.
Table 2 shows that for each individual model, the

p-value corresponding to independent predictors is signifi-
cant. Since our sample size is large, statistically significant
non-normality of residuals was accepted. However, the au-
thors have deployed robust regression to find the best fit
models. Unfortunately, the best fit models proposed by ro-
bust regression had slightly larger prediction errors than
those selected through the best subset models. Therefore,
our further analysis is carried out using the OLS regres-
sion models presented in Table 2.

The accuracy comparison of the proposed and existing
models
The two most commonly used models in Indonesia for
estimating delivery weight are the Johnson-Toshach and
the Risanto models. Both models estimate foetal weight
based on FH. However, the Johnson-Toshach formula,
which is nationally well-recognised, requires additional
information on the status of the FS [44].
As listed in Table 2, the first model recommended through

the best selection algorithm was Model (1) which is also de-
veloped based on FH only. Therefore, the authors carried
out further comparisons between the proposed Model (1)
and the widely used the Johnson-Toshach [14, 15] and the
Risanto models [22, 23] as well as other existing models for
estimating foetal weight based only on FH (the Niswander,
the modified Niswander, the Mhaskar, the Gayatri-Afiyanti,
the Buchmann-Tlale, the Santjaka-Handayani, the
Mongelli-Gardosi, and the Yiheyis [16–18, 22–25, 45]). We
also compared Models (2), (3), and (4) with the existing
models based on ultrasonic measurements of foetal

Table 1 Maternal and neonatal baseline characteristics of study population (n = 127)

Characteristics Missing data Mean Standard deviation Median Minimum Maximum

Maternal age (years) – 27.6 4.9 28 16 44

Maternal height (cm) 3 156.5 5.0 156 148 176

Maternal weight (kg) – 59.9 7.5 60 44 83

Maternal body mass index (kg/m2) 3 24.4 3.1 24.3 16.5 34.2

Maternal arm circumference (cm) 1 25.5 1.7 25 22 31

Maternal haemoglobin level (g/dl) – 11.6 0.7 11.4 9 13.2

Maternal fundal height (FH) at delivery time (cm) – 32.2 2.4 32 27 36

Gestational age (GA) at delivery time (weeks) – 38.6 1.5 39 32 41

Actual birth weight (ABW) (g) – 3252.8 340.8 3300 2600 4000

Neonatal birth length (cm) – 50.2 2 50 40 56

Neonatal head circumference (HC) (cm) – 33.5 1.3 33 29 37

Neonatal abdominal circumference (AC) (cm) – 34.5 1.9 35 28 37
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biometrics, such as foetal HC and foetal AC (the Jordaan,
the Weiner, the Hadlock 1984, and the Stirnemann [10, 42,
46, 47]). Details for the proposed and existing models are
presented in Additional file 6: Table S6.
The prediction accuracy of the proposed (Models (1),

(2), (3), and (4) in Table 2) and the existing models were
assessed using the testing data set. The predicting errors
were calculated as the mean prediction error (the average
of the differences between ABWi and EFWpi ), the MAPE,
and the MEDAPE. The results are presented in Table 3.
Table 3 shows that the mean prediction errors recorded

for the proposed models are significantly smaller (between −
0.2 and 2.4 g) than those recorded for other existing models.
Similarly, the MAPEs and MEDAPEs recorded for the pro-
posed models are significantly smaller (between 5.0 and 5.1%
and between 4.1 and 4.2%, respectively) than those recorded
for other existing models. Therefore, we concluded that our
four proposed models were capable to predict estimated
foetal weight with less errors compare with the existing
models between 35 and 41 weeks of pregnancy. The visual-
isation of these multiple comparisons can be seen in Fig. 3.
Furthermore, a two independent sample t-test (provided

in Additional file 7: Table S7) was also used to investigate
if there is a significant difference between the observed
and estimated foetal weights based on the proposed
models. The results show that there is no significant dif-
ference between the observed and estimated foetal weights
based on the proposed models (p-value > 0.05).

Assessing the prediction accuracy based on proportion
falling between 10% of actual values
Table 3 presents the prediction ability of the proposed
models, 11 existing clinical models (based on FH only),

and 6 existing ultrasonic models (based on ultrasonic
measurements of foetal HC and foetal AC as well as
based on GA only). The table provides the total number
of predictions falling within 10% of ABW.
Table 3 shows that 92% of the predicted values pro-

duced by our proposed Model (1) fall within the 10% of
ABW compared with 89% for the Johnson-Toshach
model and 84% of the Risanto models. However, Model
(1) only uses FH to predict foetal weight, while the
Johnson-Toshach model requires information on FH as
well as FS. Therefore, we recommend that Model (1) be
used instead of the Johnson-Toshach model.
Model (1) (based on FH only) is equally capable to es-

timate foetal weight as Models (2) and (4). These results
imply that the inclusion of GA (which is not a biometric
measurement of foetus) and estimated foetal AC do not
have an impact on estimated foetal weight accuracy. Our
results are in agreement with the previous study con-
ducted by Huber (2014) [48].
Comparing the accuracy of Model (3) (based on FH and

estimated foetal HC) and Model (4) (based on FH and es-
timated foetal AC) with the Hadlock 1984 model (based
on ultrasonic measurements of foetal HC and foetal AC)
[10], we concluded that both proposed Models (3) and (4)
were significantly more capable in predicting foetal weight
than the Hadlock model. Table 3 shows that the propor-
tion of predicted birth weights falling within the 10% of
ABW for Models (3) and (4) are more than double the
proportion based on the Hadlock model.

Discussion
Our study highlights that the use of combined mater-
nal and estimated foetal biometric characteristics can
provide a reliable estimate of delivery weights

Table 2 Predictor analysis of the proposed models

Model Parameters Estimated coefficients Simultaneous p-value
(ANOVA)

Partial
p-value
(t-test)

VIF Residuals

(1) β0 (Intercept) − 1538.3 < 0.0005*** 2.66e-12*** – Non-normal
(p-value < 0.005)

β1 (FH) 150. 3 < 2e-16*** –

(2) β0 (Intercept) − 959 < 0.0005*** 0.011* Non-normal
(p-value < 0.005)

β1 (GA) −15.8 0.071* 1.01

β2 (FH) 151.2 < 0.0005*** 1.01

(3) β0 (Intercept) − 634.3 < 0.0005*** 0.2304 – Non-normal
(p-value < 0.005)

β1 (FH) 151.2 < 2e-16*** 1.01

β2 (estimated HC) −2.8 0.0682* 1.01

(4) β0 (Intercept) −996.8 < 0.0005*** 0.00548** – Non-normal
(p-value < 0.005)

β1 (FH) 151.2 < 2e-16*** 1.01

β2 (estimated AC) −1.6 0.07066* 1.01
***Significant at p-value < 0.0005
**Significant at p-value < 0.05
*Significant at alpha p-value < 0.1

Anggraini et al. BMC Pregnancy and Childbirth          (2018) 18:436 Page 6 of 12



between 35 and 41 weeks of GA. This result confirms
the previous study that shows a significant association
between birth weight and characteristics of mother
and foetus [1, 26].
Both clinical and estimates of ultrasonic predictors are

used in our proposed models. Maternal FH measure-
ment was selected as one of the clinical predictors as it
is one of the most recommended and accessible predic-
tors to estimate foetal weight and monitor foetal growth
during pregnancy [3, 23, 49, 50]. Although the clinical
approach using FH screening had reportedly low sensi-
tivity for detecting intergrowth and birth weight abnor-
malities (ranged 16–45%) [51, 52], it is a simple and
inexpensive clinical activity [29, 53], especially true in
rural areas where ultrasound machines and skilled
personnel are not always available. The utility of FH re-
mains an important first level screening tool, widely
used during routine ANC in both high and low income
settings [29] even though it had high false-negative rates
for small for GA [53].

In ultrasonic settings, foetal biometric characteristics
monitored during pregnancy include HC, biparietal
diameter (BPD), occipitofrontal diameter (OFD), AC,
and femur length (FL). These characteristics are rou-
tinely measured by ultrasound every 5 weeks after
the first initial dating scan (between 8 and 14 weeks’
gestation). The standard ranges for ultrasonic mea-
surements are (14–18), (19–23), (24–28), (29–33),
(34–38), and (39–42) weeks [54] or at least once
every trimester of pregnancy, i.e. between weeks 10–14
(first trimester), 20–24 (second trimester), and 30–32
(third trimester) [55].
Assessment of foetal biometric characteristics during

ANC is vital to ensuring normal foetal size and safe
delivery. In the absence of ultrasound facility, particu-
larly in low-resource primary health care settings, the
measurements of these characteristics are not always
accessible. Therefore, a reliable prediction of these
characteristics during pregnancy would be a proxy of
foetal biometrics and vitally improve the quality of

Table 3 Accuracy comparisons between the proposed and existing models

Sample size n = 38

(ABW - EFWp) Mean prediction error (g) MAPE (%) MEDAPE (%) Error distribution Number of estimates
within 10% of ABW (%)

Our recommended models

Model (1) 2.42 5.01 4.10 Normal (p-value > 0.05) 92

Model (2) −0.20 5.10 4.16 92

Model (3) −1.62 5.10 4.22 89

Model (4) −0.29 5.10 4.16 92

Existing clinical models

Johnson (1957) [15] 31.18 5.28 4.73 Normal (p-value > 0.05) 89

Risanto I (1995) [22] 149.56 5.95 5.37 84

Risanto II (2014) [23] 152.37 6.00 5.45 84

Niswander (1970) [16] 400.95 12.24 12.07 37

Mod Niswander (1999) [17] 457.68 13.70 14.16 29

Mhaskar (2003) cited in [65] 405.26 12.59 12.86 32

Gayatri (2006) [24] 471.05 14.02 15.15 26

Buchmann-Tlale (2009) [18, 66] 571.05 17.12 18.18 11

Santjaka (2011) [25] − 2411.95 75.33 72.24 0

Mongelli-Gardosi (2004) [19] 1348.35 41.93 42.40 0

Yiheyis (2016) [45] 363.95 11.12 11.05 45

Existing ultrasonic models

Jordaan (1983) [46] − 277.09 14.64 14.43 Normal (p-value > 0.05) 39

Weiner II (1985) cited in [60] 486.29 15.90 12.86 32

Hadlock 1984 [10] −96.83 12.67 12.64 45

Hadlock 1991 [67] − 42.75 11.74 9.88 50

Stirnemann 2016 [42] −31.46 12.20 10.88 39

Sotiriadis 2017 [68] 230.72 10.88 9.43 50
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ANC services in monitoring foetal inter growth as-
sessment which currently remain low due to the data-
base gaps [56–59].
Several ultrasonic formulas to estimate the foetal char-

acteristics at different GA have been developed [30–32].
The foetal HC and foetal AC are widely recognised as
the most influential predictors for predicting foetal
weight [10, 11, 46, 60, 61]. Our results show that the
best fit formulas to estimate these foetal characteristics
at a given GA in our population were based on the Aus-
tralian population [30].
To the best of our knowledge, in the majority of

Indonesian primary health care centres where ultra-
sound facility is not accessible, none of the existing
ultrasonic formulas were adopted to estimate foetal HC
and foetal AC. Therefore, the formulas potentially can
be deployed to fill in the database gaps on the inter
growth process of foetus during pregnancy. Conse-
quently, early informed intervention could be initiated
to prevent abnormal growth and delivery weights.
Several techniques have been available to reduce

collinearity, such as centering, multiplying variables
by various constants (scaling), the use of orthogonal
polynomials, and other transformations [62]. Cur-
rently, the use of automated machine learning, such
as Genetic Algorithm rather than a conventional frac-
tional polynomial approach has also been applied to

model multiple biometric variables of foetus that are
highly correlated [54].
In this paper, we used the best subset selection algo-

rithm to prevent the inclusion of highly correlated vari-
ables and select the best subset of predictors to be
included in the models. It has been emphasized that a for-
mula for estimating foetal weight should be simple and
straightforward to be used by doctors and midwives and
be easily understood by patients [63]. This would improve
the quality of communication, information, and education
as part of routine ANC service in low-resource primary
health care centres.
Based on our comparison analysis, the proposed

Models (1), (2), (3), and (4) produced the least mean
prediction errors (between − 0.2 and − 2.4 g), the MAPEs
(between 5.01 and 5.10%), and the MEDAPEs (between
4.10 and 4.22%). The mean percentage prediction error
(MPE) steadily tended towards zero as the time interval
between the last scan and birth decreased [42]. Our
MPEs were ranged between − 0.1 and − 0.3% in those
born within 0 day (n = 38) which are lower than the pre-
vious research [42] reported by − 0.8% in those born
within 1 day (n = 198).
Our proposed models were unbiased for predicting

weight between 35 and 41 weeks of GA. In the group
born within 0 day of the last measurements, the MAPEs
were ranged between 5.0 and 5.10% with 89–92% of

Fig. 3 MEDAPEs comparison between the proposed and commonly used models ordered by GA
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predicted weights falling within 10% of the true birth
weights which are smaller than those reported in previ-
ous study [42]. This was particularly for Model (1) which
was simply developed based on FH only.
The comparison between the proposed Model (1) and

the widely used Johnson-Toshach model shows that
Model (1) (developed based on the Indonesian data) was
more accurate in predicting the estimated foetal weight
than the Johnson-Toshach model (developed based on the
United States data). Furthermore, the Johnson-Toshach
model requires the knowledge of FS. The results presented
in Table 3 also shows that the inclusion of FS in the model
has not reduced the prediction errors in foetal weight esti-
mations yet raise a subjectivity issue unless there is a
standard protocol to determine FS with less error [20].
Therefore, we recommend the proposed Model (1) be de-
ployed in Indonesia and other countries with similar
health systems and challenges for weight prediction.
Our comparison study confirms that the proposed

Models (3) (based on FH and estimates of foetal HC)
and (4) (based on FH and estimates of foetal AC) per-
form better than the ultrasonic models: the Jordaan, the
Weiner II, the Hadlocks, the Stirnemann, and the Sotir-
iadis models. The incorporation of estimated foetal HC
or estimated foetal AC has increased R2 slightly (pro-
vided in Additional file 5: Table S5), but it did not im-
prove the predicting accuracy (Table 3). However, access
to these values will enable the practitioners to monitor
foetal growth during pregnancy where advanced equip-
ment, such as ultrasound, is not always available. Conse-
quently, detecting foetal growth abnormality, such as
small for GA, prematurity, intrauterine growth retard-
ation, and LBW during pregnancy will be possible.

Strengths and limitations
Our retrospective study has investigated the utilisation
of some commonly used foetal weight prediction models
in Indonesia. Particularly, the combination between ma-
ternal and estimated foetal biometric characteristics was
proposed. The aim of this combination was whether it
could improve the prediction accuracy of foetal weight
at any given GA in the absence of ultrasound machines
and trained ultra-sonographers.
The retrospective cohort study was undertaken to pro-

vide baseline data on the selected primary health care
centre. It is possible that women have used different
health services than that reviewed in this study. Although
this may result in underestimation in data records, it is
unlikely to impact on the validity of the analyses. This
study also encountered limitations associated with the ac-
curacy of the information recorded on the manual preg-
nancy register or inaccurate data transfer to the electronic
database. However, monitoring and controlling the
process of data transfer was conducted to reduce potential

error. Further study should be conducted to assess the ef-
ficacy of the proposed models using prospective data [64].
The proposed prediction models are linear regressions.

However, the authors have investigated non-linear models.
The non-linear models did not improve the estimation ac-
curacy. Therefore, complex models do not guarantee signifi-
cant improvement in the prediction accuracy. Furthermore,
due to the fact that the objective of the study is to provide
simple yet reliable foetal weight estimating models for
low-resource areas, we are recommending the proposed
models. We believe that the findings can be applied in other
low-resource settings to improve ANC services.

Conclusion
This research has developed models to predict the esti-
mated foetal weight at varying gestational age where ultra-
sound facilities do not exist. Since birth weight is one of
the most important indicators of neonatal survival, a
reliable estimate of foetal weight at different stages of
pregnancy would facilitate the intervention plan for
medical practitioners to prevent the risk of abnormal
delivery weights. Further, the models will lead to the
development of foetal inter growth charts, which are
currently unavailable in the Indonesian primary health
care systems.

Additional files

Additional file 1: Table S1. Existing ultrasonic formulas to estimate
foetal HC and AC based on GA. Table S1 consists of the existing
ultrasonic formulas to estimate foetal head circumference (HC) and foetal
abdominal circumference (AC) which were developed based on the
Australian foetal biometry data (measured between 11 and 41 weeks),
the UK foetal biometry data (measured between 13 and 42 weeks), and
the international foetal biometry data (measured between 14 and
42 weeks or until birth) [29–31]. (PDF 167 kb)

Additional file 2: Table S2. Intraclass correlation coefficient analysis of
the existing ultrasonic formulas in predicting foetal biometrics. Table S2
shows a reliability analysis using intraclass correlation coefficient (ICC) to
assess the consistency of the ultrasonic formulas for Indonesian
population. The obtained ICC values were computed by single-rating,
consistency, and two-way random effects models for the foetal biomet-
rics with three raters (different ultrasonic formulas) across 127 subjects
(pregnant women). (PDF 95 kb)

Additional file 3: Table S3. Interclass correlation coefficient analysis for
predicting foetal biometrics. Table S3 describes interclass (Pearson)
correlation coefficient to assess whether there is a significant relationship
between the predicted foetal biometrics and the neonatal measurements
recorded at delivery time. (PDF 108 kb)

Additional file 4: Table S4. Correlation coefficient of the potentially
clinical predictors of foetal weight estimation. Table S4 presents the
investigation of correlations between the potential predictors of foetal
weight estimation based on 127 data. (PDF 91 kb)

Additional file 5: Table S5. Models recommended by the best subset
selection algorithm together with corresponding analysis of variance
information. Table S5 summarises the models developed based on the
recorded estimated foetal weight (EFWr) using the best subset selection
algorithm. These models were based on one, two, and three
independent variables. The table also lists their corresponding R2,
Mallows Cp, S, and VIF statistics. (PDF 171 kb)
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Additional file 6: Table S6. List of the proposed and existing models
based on clinical and ultrasonic variables. Table S6 lists the proposed
models and the existing clinical and ultrasonic models for estimating
foetal weight. (PDF 381 kb)

Additional file 7: Table S7. Two independent sample t-tests between
ABW, EFWr, and EFWp. Table S7 provides a two independent sample t-
test to investigate if there is a significant difference between the ob-
served or actual values of birth weight (ABW), recorded foetal weight esti-
mation (EFWr), and estimated foetal weights based on the proposed
model (EFWp). (PDF 157 kb)
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