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Abnormal lipid metabolism is closely related to the malignant biological

behavior of tumor cells. Such abnormal lipid metabolism provides energy

for rapid proliferation, and certain genes related to lipid metabolism

encode important components of tumor signaling pathways. In this study,

we analyzed pancreatic cancer datasets from The Cancer Genome Atlas

and searched for prognostic genes related to lipid metabolism in the Molec-

ular Signature Database. A risk score model was built and verified using

the GSE57495 dataset and International Cancer Genome Consortium data-

set. Four molecular subtypes and 4249 differentially expressed genes

(DEGs) were identified. The DEGs obtained by Weighted Gene Coexpres-

sion Network Construction analysis were intersected with 4249 DEGs to

obtain a total of 1340 DEGs. The final prognosis model included CA8,

CEP55, GNB3 and SGSM2, and these had a significant effect on overall

survival. The area under the curve at 1, 3 and 5 years was 0.72, 0.79 and

0.87, respectively. These same results were obtained using the validation

cohort. Survival analysis data showed that the model could stratify the

prognosis of patients with different clinical characteristics, and the model

has clinical independence. Functional analysis indicated that the model is

associated with multiple cancer-related pathways. Compared with pub-

lished models, our model has a higher C-index and greater risk value. In

summary, this four-gene signature is an independent risk factor for pancre-

atic cancer survival and may be an effective prognostic indicator.

As a malignancy of the digestive system, pancreatic

cancer is one of the most aggressive malignancies in

the world. In recent years, pancreatic cancer morbidity

and mortality rates have steadily increased, with an

overall 5-year survival rate of about 8% for patients

[1]. Despite the rapid development of diagnosis and

treatment of pancreatic cancer over the past 20 years,

the mortality rate of patients remains high [2–4]. The
combination of tumor markers and imaging helps to

diagnose the disease in a timely and accurate manner

[5]; however, due to the insidious nature of the disease

and the lack of early clinical signs, it is not easy to

diagnose. It has been reported that about 50% of

patients have confirmed that the cancer has
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metastasized [6,7]. Therefore, revealing the molecular

mechanisms of pancreatic cancer progression and

developing corresponding targeted therapies are critical

to improving pancreatic cancer outcomes.

Lipids play an important function in maintaining

normal cell function and homeostasis; they are not

only an important part of the cell membrane but also

provide precursors for important molecules needed in

the growth and differentiation pathways [8,9]. Intracel-

lular lipids come from two sources: one is food intake,

and the other is lipid synthesis from scratch by hepato-

cytes and cells in need. Normal cells in the body

acquire lipids mainly from diet and rarely from lipid

synthesis from scratch. For most normal cells, lipids

that meet cellular needs rarely are synthesized from

scratch because of slow cell growth [10,11]. However,

Medes et al. [12] found in the 1950s that tumor cells

synthesize fatty acids primarily by synthesizing them

from scratch. In tumor cells, on the one hand, lipids

and cholesterol are often activated to meet the needs

of tumor cells that are rapidly proliferating, and on

the other hand, lipids alter the properties of biofilms

and protect cells from oxidative damage from internal

and external sources [13]. Lipogenesis is an important

feature of rapid malignancy growth [14]. Normal cell

lipid synthesis from scratch is rare, and about 90% of

fatty acids are synthesized from scratch in tumor cells

[12]. Activated lipid scratch synthesis was found to be

associated with poorer prognosis and shorter disease-

free survival in tumor patients [15,16]. At the molecu-

lar level, increased lipid synthesis from scratch in

tumors is often accompanied by increased lipid syn-

thase and enhanced activity [17,18]. Thus, aberrant

activation of lipid synthesis from scratch is a common

feature of tumor cells. In addition, lipid metabolic

reprogramming that promotes increased lipogenesis is

associated with the abnormal development and pro-

gression of pancreatic adenocarcinoma [19]. Mam-

malian target of rapamycin complex 2 (mTORC2)

stimulates the synthesis of sphingomyelin (glucoce-

ramide) and glycerophospholipids (cardiolipin) to pro-

mote tumor progression [20]. Studies have shown that

mTORC1 stimulates the synthesis of fatty acids and

sterols by regulating the expression of SREBP1c, a

major adipogenic transcription factor [20–23]. The

active form of SREBP1c is sensitive to proteasomal

degradation but can enter the nucleus and participate

in its transcriptional targets, including its own gene

promoter and the promoter of the major enzyme

encoding fatty acid synthesis [24]. However, a deeper

understanding of lipid metabolism-related genes in the

prognosis and treatment of pancreatic cancer is

needed.

In this study, lipid metabolism-related gene expres-

sion in pancreatic cancer was analyzed to identify key

genes that could predict patient prognosis. A differen-

tially expressed gene (DEG) analysis, Weighted Gene

Coexpression Network Construction Analysis

(WGCNA) and Cox proportional risk model were

used to finally construct a signature based on the

expression of several key genes as a prognostic signa-

ture for pancreatic cancer. This prognostic model can

be used as an effective tool to predict the prognosis of

patients with pancreatic cancer. These findings will

also help identify new therapeutic targets for pancre-

atic cancer.

Material and methods

Expression spectral data and preprocessing

Human lipid metabolics-related pathways were downloaded

from Molecular Signature Database v7.0 [25], and a total of

776 genes related to lipid metabolism were sorted out from

the six lipid metabolic pathways in Table 1. Pancreatic can-

cer RNA sequencing (RNA-seq) expression data and corre-

sponding clinical follow-up data were obtained from the

public database The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) [26], which contained RNA-

seq data of 182 patients and clinical information of 171

patients on December 3, 2019. GSE57495 is a microarray

dataset from the Gene Expression Omnibus (GEO) data-

base (http://www.ncbi.nlm.nih.gov/geo/) [27], containing

expression profile data and clinical sample information from

62 patients with early pancreatic cancer. The International

Cancer Genome Consortium (ICGC) validation dataset

included 257 patients with pancreatic cancer with expression

profile data and clinical follow-up information. For TCGA

dataset, (a) samples without clinical data and overall sur-

vival (OS) <30 days were removed, (b) normal tissue sample

data were removed, (c) genes with fragments per kilobase of

Table 1. Pathways involved in lipid metabolism.

Pathways Database Gene count

Regulation of lipid metabolism by

peroxisome proliferator-activated

receptor alpha

Reactome 119

Metabolism of lipids Reactome 738

Sphingolipid metabolism Reactome 89

Transcriptional regulation of white

adipocyte differentiation

Reactome 84

Glycerophospholipid metabolism KEGG 77

Fatty acid metabolism Reactome 177

Sum 1,284

(unique:

776)
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exon per million of zero in half of the samples were

removed, and (d) the expression profile of genes related to

lipid metabolism was preserved. For GEO datasets, (a) nor-

mal tissue sample data were removed, (b) OS data from

months was converted to days, (c) samples with

OS <30 days were removed, (d) Chip probes were mapped

to the human gene SYMBOL using Bioconductor package,

and (e) the expression profile of genes related to lipid meta-

bolism was preserved. For the ICGC dataset, (a) sample

data without survival status were removed, (b) samples with

OS <30 days were removed, and (c) the expression profile

of genes related to lipid metabolism was preserved. The

GSE57495 and ICGC datasets were considered as the vali-

dation dataset. The clinical data information is shown in

Table 2. The workflow chart is shown in Fig. 1.

Identification of prognostic genes

The expression profile of 776 lipid metabolism genes was

extracted from TCGA dataset. However, 15 genes were not

found. Furthermore, we keep genes that are not zero in

more than half of the samples. As a result, 730 genes were

used for subsequent analysis. Next, univariate Cox analysis

of coxph function in R package was performed to obtain

genes related to prognosis of pancreatic cancer with

P < 0.05.

Identification of molecular subtypes

Cluster analysis of pancreatic cancer samples was per-

formed by nonnegative matrix clustering algorithm

(NMF), and the standard ‘brunet’ was selected by NMF

method for 50 iterations. The clustering number k was set

as 2–10, and the average contour width of the common

member matrix was determined through the R package

‘NMF’. The minimum member of each subclass was set as

10. According to the cophenetic, dispersion and silhouette

index were used to determine the optimal clustering num-

ber.

Difference of tumor-infiltrating immune cells in

molecular subtypes

Six types (B_cell, CD4_Tcell, CD8_Tcell, neutrophil,

macrophage cell and dendritic cell) of tumor-infiltrating

immune cell were retrieved from Tumor Immune Estima-

tion Resource (https://cistrome.shinyapps.io/timer/) [28].

Immunity, matrix score, and tumor purity of each sample

were calculated in R package estimate. These indicators

were compared on molecular subtypes.

Identification of DEGs

R package differentially expressed Seq2 (DESeq2) [29] was

applied to calculate the DEGs in molecular subtypes with a

false discovery rate (FDR) <0.05 and |log2FC| > 1.

WGCNA

Based on expression profiles of DEG, the WGCNA coex-

pression algorithm was used to mine the coexpression mod-

ule using the R package WGCNA (http://www.r-project.

org/) [30]. First, the appropriate soft threshold is deter-

mined by approximate scale-free topology criteria. The

adjacency matrix was transformed into a topological

matrix, and the genes were clustered using average-linkage

hierarchical clustering. Lastly, the dynamic tree cut method

was used to determine module eigengenes, at least 30 coex-

pressed genes.

Functional enrichment and pathway enrichment

analysis

Gene Ontology (GO) enrichment analysis and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway analysis

Table 2. The clinical information of four datasets.

Characteristics

TCGA

set

Training

set

P

value

GSE57495

set

ICGC

set

Age (years)

<65 78 71 1.00 – 103

≥65 93 83 – 154

Progression-free survival

Alive 80 69 1.00 21 151

Dead 91 85 41 106

Sex

Female 78 72 1.00 – 120

Male 93 82 – 137

pathologic_T

T1 7 7 0.09 – –

T2 21 19 – –

T3 138 123 – –

T4/TX 4 4 – –

pathologic_N

N1 119 106 0.21 – –

N0/NX 51 47 – –

pathologic_M

MX 90 81 0.199 – –

M0/M1 81 72 – –

Tumor stage

Stage I 19 18 0.125 – –

Stage II 142 127 – –

Stage III 3 3 – –

Stage IV 3 3 – –

pathologic_G

G1 28 33324 0.241 – –

G2 92 84 – –

G3 47 43 – –

G4 2 2 – –

Total 171 154 – 62 257
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Fig. 1. Workflow chart. FC, fold change.
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were performed for DEG based on ‘WebGestaltR’ [31] in

R. FDR < 0.05 was defined as significant.

Construction of a prognostic risk model based on

differentially coexpressed genes

First, 90% of samples were randomly selected from the

preprocessed 171 TCGA samples as the training set for

model construction. To avoid the random allocation bias

affecting the stability of subsequent modeling, we repeat-

edly sampled 100 samples with replacement in advance to

ensure that the randomly selected samples were consistent

with all samples in age, stage and TNM staging. Univariate

Cox regression analysis for OS was performed to identify

prognostic DEGs with P < 0.05 using survival coxph func-

tion in R. Lasso (least absolute shrinkage and selection

operator) Cox regression analysis was performed to find

characteristic genes using R package glmnet. Subsequently,

the multivariate Cox proportional hazards regression model

was used to build a prognostic model in the training group.

The risk formula was as follows: RiskScore4
= �0.0666 9 CA8 + 0.0413 9 CEP55 � 0.2189 9 GNB3

� 0.0339 9 SGSM2. Next, the Kaplan–Meier (KM) sur-

vival curve was used to compare prognosis between the

low- and high-risk groups, which were classified by the

median risk score as the cutoff value in all patients. The

receiver operating characteristic (ROC) curve was applied

to assess diagnostic accuracy through comparing the areas

under the ROC curves (AUCs) using timeROC package in

the training and validation groups.

Gene set enrichment analysis

The R software package Gene Set Variation Analysis

(GSVA) [32] was used for single-sample gene set enrich-

ment analysis (ssGSEA), and the function with correlation

>0.45 was selected.

Advantages of genetic signatures

To identify the independence of four gene signatures, we

used univariate and multivariate Cox regression to analyze

the relationship among age, sex, pathological stage T,

stage N, stage M, tumor stage, grade and RiskScore with

prognosis. Next, by referring to the literature, we selected

four prognostic risk models, 15-gene signature (Chen) [33],

7-gene signature (Cheng) [34], 5-gene signature (Raman)

[35] and 9-gene signature (Wu) [36], for comparison with

our 4-gene model. ROC curve and KM survival curve of

four models were drawn in TCGA dataset. Furthermore,

we compared the four models with the restricted mean

survival (RMS) using R language RMS [37] and standard-

ized net benefit between four models and four gene

signatures.

Results

Identification of four molecular subtypes of

pancreatic cancer

Univariate Cox survival analysis of lipid metabolism

genes using coxph revealed 189 genes associated with

the prognosis of pancreatic cancer. Pancreatic cancer

samples were clustered by NMF algorithm, and the

optimal number of clusters was determined to be

four based on cophenetic, dispersion and silhouette

metrics (Fig. 2A,B). The expression of lipid

metabolism-related genes showed that the expression

of C2 genes was lower than that of C1, C3 and C4

genes (Fig. 2C). Analysis of the prognostic relation-

ship among the four subtypes showed that C1 had

the worst prognosis and a significant difference

[P < 0.0001; hazard ratio (HR), 2.264 (1.582–4.352)],
and C2 had the best prognosis (Figs 2D and S1).

Subsequently, we compared the clinical characteristics

of the four subtypes and found significant differences

in T, TNM, cancer grade and age (Fig. S2). The

immune evaluation of the four subtypes showed sig-

nificant differences in immune scores and stroma

(Fig. S3).

Identification of differential expression genes and

functional analysis

DESeq2 was conducted to calculate the DEGs between

C1 and C2, C3 and C4 molecular subtypes; a total of

4249 were obtained (Fig. 3). Next, according to the

expression profile of coding genes, the WGCNA coex-

pression algorithm was used to mine the coexpressed

coding genes and coexpression modules, and hierarchi-

cal clustering analysis was performed on the samples to

show that there were no outlier samples (Fig. 4A). A

soft threshold of 10 was selected (Fig. 4B,C). Genes

were clustered using the averages-linkage hierarchy clus-

tering method, and 14 modules were obtained by setting

height = 0.25, deepSplit = 2 and minModuleSize = 30

(Fig. 4D). The correlation of each module with sex, age,

ethnicity and clusters 1, 2, 3 and 4 was further analyzed.

The results showed that the modules significantly related

to clusters 1, 2, 3 and 4 were magenta, green, brown and

turquoise, respectively (Fig. 4E–H). Finally, 4249

DEGs and genes with significant coexpression modules

were intersected to obtain 1340 differentially expressed

cogenes. To determine whether differential genes are

related to pancreatic cancer function, we performed GO

molecular function and KEGG function enrichment

analysis of 1340 differential genes using R software

package WebGestaltR (https://www.r-project.org/help.
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html). The significant pathways enriched by KEGG are

related to insulin secretion and dopaminergic synapse

pathways (Fig. 5A). GO enriched 233 GO cellular com-

ponent (CC) (Fig. 5B), 195 GO molecular function

(MF) (Fig. 5C) and 977 GO biological process (BP)

(Fig. 5D).

Construction and risk prediction of Gene

Signature four-gene signature

Ninety percent of the 171 TCGA samples were ran-

domly selected as the training set for model construc-

tion. Univariate Cox proportional hazard analysis was

Fig. 2. Identification of molecular subtypes of pancreatic cancer. (A) Consensus map of NMF clustering. (B) The distribution of cophenetic,

rss and dispersion with rank = 2–1. (C) Cluster heatmap of 740 lipid metabolism genes. (D) KM prognostic survival curve of molecular

subtype.
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conducted for the expression profile of each differen-

tially expressed cogene, and R package survival coxph

function was used to obtain 369 genes with significant

prognostic differences. To further narrow the range of

genes and construct the prognostic model with high

accuracy, we used R software package glmnet for Lasso

Cox regression analysis. First, the analysis of the change

trajectory of each independent variable shows that as

the lambda gradually increases, the number of indepen-

dent variable coefficients tending to zero also gradually

increases (Fig. 6A). Then the confidence interval (CI)

under each lambda is analyzed, and the model reaches

the optimal value when lambda = 0.1753479 (Fig. 6B).

Four genes were selected at lambda = 0.1753479 as tar-

get genes (Table 3). The four-mRNA signature formula

is as follows:\def\mybox{\vrule depth -0.5mm height

4mm width 8mm}

RiskScore4 = �0.0666 9 CA8 + 0.0413 9

CEP55 � 0.2189 9 GNB3 � 0.0339 9 SGSM2.

The RiskScore of each sample is calculated accord-

ing to the expression level of the sample, and the

RiskScore of the sample is plotted. The survival time

of the samples with high RiskScore was significantly

lower than that with low RiskScore. The gene expres-

sion changes with the increase of risk value showed

that CEP55 was a risk factor, whereas CA8, GNB3

and SGSM2 were protective factors (Fig. 6C). ROC

analysis of RiskScore by R software package timeROC

showed that AUC of 1, 3 and 5 years was >0.70
(Fig. 6D). Finally, we carried out z-score for RiskS-

core and divided the samples with z-score-based

RiskScore greater than zero into the high-risk group

and the samples with less than zero into the low-risk

group. KM prognostic analysis showed a significant

difference between the two groups (Fig. 6E).

Robustness of four-gene signature

To determine the robustness of the model, we used the

whole TCGA dataset, GSE57495 dataset and ICGC

verification set as the verification dataset, and the same

model and coefficient as the training set were adopted.

Similarly, the high RiskScore sample had a worse

prognostic capability, CEP55 was a risk factor, and

CA8, GNB3 and SGSM2 were protective factors

(Fig. 7A,D,G). ROC analysis showed that the model

had high AUC (Fig. 7B,E,H). The results of the KM

curve showed that there were significant marginal dif-

ferences between the two groups (Fig. 7C,F,I). More-

over, we obtained three additional pancreatic cancer

datasets from the GEO database, GSE28735,

Fig. 3. Identification of DEG. (A) Volcano

diagram of DEG in C1 subtype. (B)

Volcano diagram of DEG in C2 subtype.

(C) Volcano diagram of DEG in C3

subtype. (D) Volcano diagram of DEG in

C4 subtype.
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GSE62452, and GSE85916, and we used the same

method to score the risk for each patient in these three

cohorts. First, we performed ROC analysis on the

GSE28735 dataset. Because of the short follow-up per-

iod, it was not possible to calculate the 5-year AUC,

in which the AUC of 1 and 3 years reached more than

0.78 (Fig. S4A), and there was a significant prognostic

difference between the high- and low-risk groups

(Fig. S4D). ROC analysis in the GSE62452 dataset

showed the highest AUC of 0.77 for 3 years

Fig. 4. WGCNA. (A) Cluster analysis of samples. (B) Analysis of network topology for various soft-thresholding powers. (C) Gene

dendrogram and module colors. (D) Correlation between 14 modules and clinical phenotype. (E) Gene significance (y axis) versus module

membership (x axis) plotted for magenta module in TCGA dataset. (F) Gene significance (y axis) versus module membership (x axis) plotted

for green module in TCGA dataset. (G) Gene significance (y axis) versus module membership (x axis) plotted for brown module in TCGA

dataset. (H) Gene significance (y axis) versus module membership (x axis) plotted for turquoise module in TCGA dataset.
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(Fig. S4B), with significant prognostic differences

between the high- and low-risk groups (Fig. S4E).

ROC analysis in the GSE85916 dataset showed the

highest 5-year AUC of 0.84 (Fig. S4C), with a signifi-

cant prognostic difference between the high- and low-

risk groups (Fig. S4F).

Prognostic analysis of risk models and clinical

features

Survival analysis showed that only age, N stage and

OS were significantly correlated in the TCGA training

set sample (P < 0.05), and TNM stage presented sig-

nificant margin (P = 0.05464; Fig. 8). It was further

found that four-mRNA signature could distinguish the

young and old groups, female, stage I + II, T1 + T2

and T3 + T4 patients from high- and low-risk groups

(P < 0.05; Fig. 9). These data further illustrate that

our model still has good predictive ability in different

clinical signs.

Clinical independence and regulatory pathway of

four-mRNA signature

To identify the independence of the four-mRNA sig-

nature model in clinical applications, we used univari-

ate and multivariate Cox regression analysis to

analyze relevant HR, 95% CI of HR and P value in

the clinical information carried by the whole TCGA

data. In TCGA dataset, the univariate COX regres-

sion analysis found that sex, T3, T4 versus T1/T2,

stage III versus stage I, II and IV, and RiskScore are

significantly associated with survival, but the corre-

sponding multivariate Cox regression analysis found

that age, stage of N and risk score (HR, 3.606; 95%

CI: 1.659–7.839; P = 0.007) were significantly associ-

ated with survival (Fig. 10A,B). The earlier conditions

indicate that our model four-mRNA signature has

good predictive performance in clinical application

value. To observe the relationship between risk scores

of different samples and biological function, we used

the R software package GSVA for ssGSEA analysis.

The function with a correlation >0.45 was selected,

from which it can be seen that most of them are neg-

atively correlated with the risk score of the sample,

while a few are positively correlated with the risk

score of the sample (Fig. 10C). Cluster analysis results

showed that among the 17 pathways, KEGG_P53_-

SIGNALING_PATHWAY, KEGG_SYSTEMIC_LU-

PUS_ERYTHE MATOSUS, KEGG_CELL_CYCLE

and other metabolic-related pathways increased with

the increase of RiskScore, and KEGG_pentose_phos-

phoate_pathway declined with the increase of RiskS-

core (Fig. 10D). This also suggests that the

dysfunction of these pathways is closely related to

tumor development.

Fig. 5. Functional analysis of differentially coexpressed genes. (A) The DEGs were enriched to the top 20 enriched by KEGG. (B) The DEGs

were enriched to the top 20 enriched by GO CC. (C) The DEGs were enriched to the top 20 enriched by GO MF. (D) The DEGs were

enriched to the top 20 enriched by GO BP. The color from red to blue represents the significance of P value; the darker the red the smaller

is the P value, and the dot size represents the number of genes enriched into the pathway (the higher the number, the larger the dot).
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Advantages of risk models

Four prognosis-related risk models, 15-gene signature

(Chen), 7-gene signature (Cheng), 5-gene signature

(Raman) and 9-gene signature (Wu), were selected and

compared with our four-gene model. To make the mod-

els comparable, we calculated the risk scores of each

pancreatic cancer sample in TCGA using the same

Fig. 6. Construction of risk model. (A) The

CI for each lambda. (B) The trajectory of

each independent variable, the log of

lambda on the horizontal axis and the

coefficient on the vertical axis. (C) Risk

score, survival time and survival status,

and expression of four genes in the

training set. (D) ROC curve and AUC of

four-gene signature in the training set. (E)

KM survival curve of four-gene signature

in the training set.

Table 3. Four-mRNA signature.

Symbol Coefficient HR z-score P value Low 95% CI High 95% CI

CA8 �0.06663 �2 0.045465 0.9355 0.8764 0.9987

CEP55 0.04133 3.639 0.000274 1.0422 1.0193 1.0657

GNB3 �0.21887 �1.397 0.162309 0.8034 0.591 1.0921

SGSM2 �0.03386 �1.6 0.10963 0.9667 0.9274 1.0077

Fig. 7. Robustness of risk model. (A, D, G) Risk score, survival time and survival status, and expression of four genes in whole TCGA

dataset, GSE57495 dataset and ICGC verification set. (B, E, H) ROC curve and AUC of four-gene signature in whole TCGA dataset,

GSE57495 dataset and ICGC verification set. (C, F, I) KM survival curve of four-gene signature in whole TCGA dataset, GSE57495 dataset

and ICGC verification set.
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method. Samples were divided into the risk-H and risk-

L groups according to the median risk score, and the

KM prognosis curve showed that there were significant

differences in OS prognosis of samples from the four

models in the risk-H and risk-L groups (P < 0.05;

Fig. 11A–D). The ROC analysis results of the model

showed that the prediction effect of the four models was

worse than that of the four-gene signature models

(Fig. 11E–H). The RMS curve was further drawn using

the R language RMS package, indicating that the AUC

of the four gene models was higher than that of the four

models (Fig. 11I). Curves of risk coefficients also show

that the model is relatively high (Fig. 11J).

Discussion

Pancreatic cancer is by default the king of all cancers,

placing a heavy burden on families and the world [38].

Fig. 8. Prognostic analysis of clinical characteristics and risk models. (A) KM prognosis curve in age samples. (B) KM prognosis curve in sex

samples. (C) KM prognosis curve in T stage samples. (D) KM prognosis curve in N stage samples. (E) KM prognosis curve in M stage

samples. (F) KM prognosis curve in grade samples. (G) KM prognosis curve in TNM stage samples.
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Accurate prediction of the prognosis of pancreatic can-

cer is important for the choice of treatment and the

improvement of the prognosis. In this study, four inde-

pendent datasets were used to identify DEGs associ-

ated with lipid metabolism between pancreatic cancer

and normal cervical tissue. A total of 189 DEGs were

identified, and four molecular isoforms were identified

based on lipid metabolism genes combined with

WGCNA to finally identify four gene signatures.

The prognostic value of various gene expression pro-

files has been studied in pancreatic cancer over the

past decade. For example, Demirkol Canli et al. [39]

Fig. 9. Prognostic analysis of clinical characteristics and risk models. (A) KM prognosis curve in young samples (age ≤ 65 years). (B) KM

prognosis curve in old samples (age > 65 years). (C) KM prognosis curve in female samples. (D) KM prognosis curve in male samples. (E)

KM prognosis curve in T3 stage samples. (F) KM prognosis curve in T1 + T2 + T4 stage samples. (G) KM prognosis curve in N1 stage

samples. (H) KM prognosis curve in N0 + NX stage samples. (I) KM prognosis curve in MX stage samples. (J) KM prognosis curve in

M0 + M1 stage samples. (K) KM prognosis curve in stage II samples. (L) KM prognosis curve in stage I + II + IV samples. (M) KM

prognosis curve in G1 + G2 stage samples. (N) KM prognosis curve in G3 + G4 + G5 stage samples. (O) KM prognosis curve in C1 + C2

samples. (P) KM prognosis curve in C3 + C4 samples.
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identified a gene signature composed of 20 prognostic

genes (PPS20), indicating OS and event-free survival

of pancreatic cancer. Wolfe et al. [40] developed a

four-miRNA molecular signature that is associated

with risk for local-regional recurrence and OS after

pancreatic cancer resection. Meng et al. [41] con-

structed a novel eight-mRNA signature to predict the

prognosis of PAAD patients by applying ESTIMATE

scoring to RNA-seq-based transcriptome data. Chen

et al. [33] developed a prognostic 15-gene signature to

know OS by analyzing microarray data from 63

patients with early pancreatic ductal adenocarcinoma

(PDAC) (stages IB, IIA and IIB) in the Moffitt cohort.

Although these reports are promising, the proposed

genome is either too large or traditionally genetically

composed. Therefore, focusing on key biological

Fig. 10. Clinical independence and regulatory pathway of four-mRNA signature. (A) Univariate Cox regression analysis of four-mRNA

signature. (B) Multivariate Cox regression analysis of four-mRNA signature. (C) Clustering of correlation coefficients between KEGG

pathways and RiskScore with a correlation >0.45. (D) The change of ssGSEA score in each sample with the increase of risk score in the

KEGG pathway. The horizontal axis represents the sample, and the risk score increases from left to right.
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processes, such as lipid metabolism, which have a sig-

nificant impact on cancer occurrence and progression,

may introduce potential biomarkers for pancreatic

cancer screening, as well as new treatment strategies

and targets.

Abnormalities in signaling pathways are one of the

important advances in cancer. With this in mind, abnor-

mal activity of energy metabolism, such as lipid metabo-

lism, has a unique role in cancer development, and its

expression and active state have become of interest to

researchers for screening and therapeutic inventions

[42,43]. Based on this, we used a bioinformatics

approach to mine the correlation between lipid gene sta-

tus and prognostic prediction in patients with pancreatic

cancer. We found significant aberrant expression of

CEP55, CA8, GNB3 and SGSM2 as the key dysregu-

lated metabolic factors within the study population.

Overexpression of CEP55 activates p21 and enhances

the cell-cycle transition. Also, CEP55 upregulation pro-

motes PANC cell aggressiveness via activating pancre-

atic cancer [44]. Many studies have shown that CA8 is

associated with poor prognosis in a variety of tumors,

[45–47], but it has not been reported in pancreatic can-

cer. GNB3 was reported to influence development of

Fig. 11. The superiority of the risk model. (A–D) KM prognosis curve of four models. (E–H) AUC of 1, 3, 5 and 3 years in four models. (I)

RMS curves of five models. (J) Risk coefficient curves of five models.
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metastasis in low-grade tumors [48]. SGSM2 downregu-

lation promoted estrogen receptor-positive breast can-

cer cell migration via modulating cell adhesion and

cytoskeleton dynamics [49]. These published reports

reinforce the potential of these genes as a comprehensive

prognosis. We screened prognostic genes from lipid

metabolism-related genes and divided four molecular

subtypes to select four genes that are likely to be

involved in lipid metabolic processes, although these

genes have not been studied in depth in lipid metabolism

studies. On this basis, we suggest that four gene signa-

tures are likely to serve as prognostic biological indica-

tors of pancreatic cancer, and that these genes may be

involved in important lipid metabolism processes.

Inevitably, there are some limitations in the

research, and we hope to address these in future work.

First, although three study cohorts were included in

this study, our findings should be confirmed in a sepa-

rate cohort. Second, the prognostic value of lipid

metabolism genes was studied using gene microarrays,

and this single assay should also be validated by other

methods, such as real-time quantitative RT-PCR.

Third, the majority of genes in our prognostic model

have not been reported in studies related to lipid meta-

bolism. Their specific clinical significance, biological

function and potential mechanism of action should be

studied in further experiments. In conclusion, more

experimental evidence is needed to determine the func-

tion of these genes in pancreatic cancer.

Conclusions

Our study found that four lipid metabolism-related genes

were significantly associated with prognosis in patients

with pancreatic cancer; therefore, the four-gene signature

with some clinicopathological characteristics could be a

useful biomarker for the prognosis of pancreatic cancer.
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Fig. S1. KM prognosis curves of four molecular sub-

types. (A) KM curve between C1 and C2 molecular

subtypes. (B) KM curve between C1 and C3 molecular

subtypes. (C) KM curve between C1 and C4 molecular

subtypes. (D) KM curve between C2 and C3 molecular

subtypes. (E) KM curve between C2 and C4 molecular

subtypes. (F) KM curve between C3 and C4 molecular

subtypes.

Fig. S2. Comparison of clinical characteristics of

molecular subtypes. (A) Sample distribution of T

stages in four subtypes. (B) Sample distribution of N

stages in four subtypes. (C) Sample distribution of M

stages in four subtypes. (D) Sample distribution of

TNM stages in four subtypes. (E) Sample distribution

of tumor stages in four subtypes. (F) Sample distribu-

tion of sex stages in four subtypes. (G) Sample distri-

bution of age stages in four subtypes.

Fig. S3. Comparison of immune characteristics in

molecular subtypes. (A) B cell score between molecular

subtypes. (B) CD4 cell score between molecular sub-

types. (C) CD8 cell score between molecular subtypes.

(D) Neutrophil cell score between molecular subtypes.

(E) Macrophage cell score between molecular sub-

types. (F) Dendritic cell score between molecular sub-

types. (G) Stromal score between molecular subtypes.

(H) Est_Immune score between molecular subtypes. (I)

ESTIMATE score between molecular subtypes.

Fig. S4. Prognostic ability of four-gene signature. (A,

D) ROC curve and KM curve of RiskScore in

GSE28735 dataset. (B, E) ROC curve and KM curve

of RiskScore in GSE62452 dataset. (C, F) ROC curve

and KM curve of RiskScore in GSE85916 dataset.
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