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Center of pressure (COP) during a gait cycle indicates crucial information with regard to
fall risk such as balance capacity. The drawbacks of conventional research instruments
include inconvenient use during activities of daily living and expensive costs. The
present study illustrates the promising fall-relevant information predicted by acceleration
and angular velocity data from different placement sensors with machine learning
techniques. This approach is inspired by the emerging machine learning technique,
specifically the long short-term memory (LSTM), which is often used in time series
data and aims to decrease the burden of the user while using the novel wearable
technology. The Jaccard similarity coefficient, which implies the consistency of profile
alignment between prediction and real situation, achieved 94% accuracy in the walking
direction. Furthermore, the number of sensors used and the placement influenced the
feasibility of an application. The outcome revealed that the accuracy could exceed 90%
with only one sensor placed on the foot in the walking direction, and the toe would
be the best location for sensor placement. To examine the performance of machine
learning, the current study employed two parameters from different perspectives. One
is a commonly used parameter, which represented the error, and the other investigated
the similarity between the prediction and ground truth. From a similarity perspective, the
parameter can be used as a metric to assess the consistency of profile alignment.

Keywords: inertial measurement unit, center of pressure, long short-term memory, sensor placement, gait

INTRODUCTION

During a gait cycle, the center of pressure (COP) is essential information from heel strike to toe off
in a walking step. COP is often considered as an indication of balance capacity, and changes in COP
are widely used to differentiate physiological impairments in the fields of medicine, rehabilitation,
etc., for gait analysis (Winter, 1995). For example, the COP trajectory in step-page gait was shown
to be significantly different from normal gait and established a clear relationship with drop foot
(Stornelli, 1990). Moreover, the velocity and displacement in specific sections of COP during gait
initiation have been used to identify improvements after Tai Chi training in the elderly (Hass et al.,
2004). During the stance phase, COP can be further divided into several sub-phases, and changes
in the proportion of each sub-phase were used to reflect different walking speeds (Chiu et al., 2013).
Hence, the parameters derived from COP, such as the velocity in different sub-phases or area ratio
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between medial and lateral directions, were validated, and its
reliability indicates these parameters as useful features for gait
analysis (Cornwall and McPoil, 2000, 2003).

Several instruments, like force plate, pressure mat, or pressure
insoles, are used to measure ground reaction force (GRF) for COP
trajectories during gait (Chen and Bates, 2000; Yao et al., 2010).
Force plate and pressure mat consistently provide accurate GRF
data, but the space of measurement is restricted since they are
fixated on the ground and could only acquire a limited number
of steps (Han et al., 1999). Alternatively, pressure insoles might
be the most suitable among the above instruments for measuring
COP in daily activity. However, being short lived, unavoidable
decline in sensing capacity over time, and the high costs of
pressure insoles make long-term monitoring of COP in real-life
environments challenging (Shahabpoor and Pavic, 2017). On the
other hand, a sensor, Inertial Measurement Units (IMUs), with
an accelerometer for linear acceleration, a gyroscope for angular
velocity, and a magnetometer for magnetic orientation, has
become a popular instrument for gait analysis. IMU sensors were
employed and attached to the body segments for GRF prediction
(Charry et al., 2013; Leporace et al., 2015; Guo et al., 2017).
Among these studies, the accuracy of vertical GRF predictions
ranged from 3.5 to 6.8% body weight via machine learning.

Recently, machine learning emerged as the method of option
for gait analysis. Leporace et al. (2015) used multilayer perceptron
networks to predict tri-axial ground reaction force (GRF) based
on IMU data. Choi et al. (2019a) compared the performance
of the feed-forward artificial neural network (FFANN) and long
short-term memory (LSTM) in the prediction of complete gait
cycle COP based on single-stance COP. Of the various machine
learning algorithms, LSTM is often used in time series data and
showed better performance than others (Gers and Schmidhuber,
2000; Zhao et al., 2018). In addition, when using IMU data for
predictions in gait, these IMU sensors were set from one to six
and the locations ranged from head to foot (Leporace et al.,
2015; Anwary et al., 2018; Shahabpoor and Pavic, 2018). Different
locations of IMU sensors have been reported that could influence
the interpretable information for gait analysis; even when five
sensors were all placed on a foot, only a single IMU was used for
GRF predictions (Anwary et al., 2018). A step further with GRF,
COP trajectories reflect the balance, pathological state, and neural
control of human gait (Winter, 1995) and could be predicted
by IMU data (Leporace et al., 2015). On the other hand, the
IMU sensor acted as a wearable device, which means that it
can only function when worn on the human body. If multiple
sensors are required for acceptable estimations of gait parameters
and the placement locations interfere with daily activities, it
would negatively impact the willingness to use wearable devices.
However, the number and the location of IMU sensors for high-
accuracy COP predictions remain unclear. The current study
aims to predict COP by conducting various combinations of
IMU(s) set at different locations with the LSTM models. Three
locations of foot, toe, lateral, and heel, were selected. From a
biomechanic perspective in gait, the foot would attach to the floor
during the stance phase, and less information acquired from IMU
sensors mounted on the foot. The toe IMU sensor was expected
to receive information slightly after heel strike at the beginning of

the stance phase. At the late stage of the stance phase, movements
could be firstly observed at the heel after heel off occurs. The
lateral sensor could partly cover the information of the beginning
and late stages of the stance phase. An additional location at the
waist level was picked to complement the small acceleration and
gyroscope value during the stance phase.

METHODS

Experimental Procedure
Five healthy participants (age: 25 ± 1.87 years, height:
1.71 ± 0.06 m; weight: 55.2 ± 5.45 kg) participated in the
experiments. All participants were free from any musculoskeletal
disorder and neurologic disease that could affect their
performance of the experimental tasks. The project was
approved by the Institutional Review Board of National Tsing
Hua University, and all participants provided written informed
consent before taking part in the experimental procedures.
The experiment was performed in accordance with relevant
guidelines and regulations.

The experimental setting is shown in Figure 1. Three IMU
sensors (Delsys Inc., United States) with tri-axial accelerometer
and gyroscope, which have a measuring range of ±16g
(accelerometer) and ±2000 degrees per second (gyroscope),
were attached on the left toe, lateral, and heel parts of an
experimental shoe, and an additional IMU sensor was attached
at the level of the waist, while an insole pressure mat (Tekscan,
Inc., United States) consisting of 3.9 resistance-based sensels per
square centimeter, with a sensing range from 75 to 125 psi, was
set beneath both feet measuring COP with regard to ground
truth. This study trimmed the mat according to the size of every
participant, and the insole pressure mat was equilibrated using a
step calibration according to the guidelines of the manufacturer.
The participant stood on one foot for a pre-defined time and then
the measurements would be normalized by the calibration result.
Both IMU and pressure mat sensors were re-sampled at 148 Hz.
In the experiments, the participants were instructed to walk back
and forth along a 70-m-long corridor with their self-selected
comfortable walking speed twice. One trip yielded 80 steps, and
thus, approximately 160 steps were collected. This study also
eliminated the first and last three steps in one trip. Therefore,
the 74 steps of the left foot for each subject were considered to
be the final data.

Data Process
All sensors were synchronized by the first peak signals from heel
IMU and insole pressure mat induced by stomping the floor at
the beginning of each walking trip. COP trajectory could only be
calculated in the standing phase during a gait cycle, and plantar
pressure should be zero during the swing phase. Values above
zero during the swing phase were considered to be noise and
eliminated before inputting them to the machine learning model.
The GRF data were used to extract the standing phase period
measured by the pressure mat to avoid the effect of zero value
received in the swing phase. A threshold of 10 N and 25 N
GRF was used to detect the heel strike and the toe off as the
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FIGURE 1 | The experimental setting includes three IMU sensors attached on the left toe, lateral, and heel parts of an experimental shoe and an additional IMU
sensor attached at the waist level and two pressure mat set beneath both feet.

starting and ending point of the standing phase, which has been
employed for gait event determination via force platform and
insole pressure (Hreljac and Marshall, 2000; Tirosh and Sparrow,
2003; Hunter et al., 2005; Catalfamo et al., 2008). The prediction
of COP using IMU sensor data was a sequential problem such
that temporal information needs to be taken into consideration.
The IMU sensor data including previous swing phase period
would be used to predict the COP trajectory of the following
standing phase (Hua et al., 2019). A three-layered LSTM model
was used and the ground truth COP was divided into anterior–
posterior (Muro-De-La-Herran et al., 2014) and medial–lateral
(ML) directional information. The way of the training LSTM
model is illustrated in Figure 2. A time step period of IMU data
(green shadow) prior to the predicted COP point (red spot) was
taken as input data, and the stance phase COP data were extracted
(red shadow) as ground truth. Subsequently, input IMU data and
the predicted point were moved forward frame by frame to finish
the whole COP prediction. The time step period is defined as the
average of all training step lengths of the participant individually
calculated from heel strike to the next heel strike. Seventy percent
of around 74 steps were randomly selected to be training data,
and the remaining 30% were testing data. The LSTM model
is composed of three hidden layers and another dropout layer.
Three hidden layers of 64/128/64 neurons were used; epoch and
batch size were set to 20 and 148, respectively. The number of
neurons and epoch was determined by trial and error to minimize
the root mean square error values, and the batch size was set to
1 s, which can cover the whole stance phase. Loss function and
optimizer of root mean square error and RMSprop were used,
and the dropout layer was used to avoid over- or underfitting.
The LSTM models would be conducted individually for the 1-
IMU set of heel (H), lateral (L), toe (T), and waist (W); the 2-IMU
set of H+L, H+T, H+W, L+T, L+W, and T+W; the 3-IMU set

of H+L+T, H+L+W, H+T+W, and L+T+W; and the 4-IMU
set of H+L+T+W. The 15 predicted COP trajectories were used
for evaluation of the accuracy.

Evaluation
The normalized root mean square error (NRMSE) shown in the
following equation was calculated to analyze the accuracy of the
COP predication. NRMSE was calculated for the AP and ML
directions separately. The NRMSE equation is as follows:

NRMSE (%) =

√(∑tend
0

[(
COPmeas. (t)− COPpred. (t)

)2
])

/N

maxCOPmeas.(t)−minCOPmeas.(t)
× 100

where N is the sample size being extracted starting from 0 to
end, which is 120 in the current dataset. The larger NRMSE
value indicates the larger deviation between the ground truth
and predicted COP.

The similarity between the ground truth and predicted COP
is determined using the Jaccard similarity coefficient (Hunter
et al., 2005; Anwary et al., 2018; Shahabpoor and Pavic, 2018)
and calculated for the AP and ML directions, respectively. The
Jaccard similarity coefficient is defined as the size of intersection
(green shadow area) divided by the size of union (green shadow
area plus red shadow area). Before the calculation, original points
of both predicted and ground truth COP were shifted to zero. The
Jaccard equation is as follows:

J (A,B) =
A∩ B
A∪ B

where A and B are the ground truth and predicted COP,
respectively. Figure 3 illustrates the ground truth (blue) and
predicted (Markowitz and Herr, 2016) COP in the AP direction
from one participant for one step. The green area represents the
overlap area under both COP trajectories.
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FIGURE 2 | An example illustrates the COP prediction in the long short-term memory model. The green trapezoid shadow is the input feature data. A red rectangle
shadow between two blue vertical dashed lines is the ground truth COP data. The red spot represents the corresponding predicted spot.

RESULTS

Figure 4 shows a typical example of the predicted and measured
COP trajectory for 15 different combinations of IMU set. Black
lines are ground truth values from pressure insole sensors, and
red dashed lines are predicted results from IMU data. The
best prediction for the one-IMU set is the H set, that for
two-IMU set is the H+W set, and that for the three- and
four-IMU set is the H+L+W set based on the visualization in
Figure 4. Take this representative participant as an example.
The ground truth COP length for averaged steps was 17.48
cm in the AP direction and 1.48 cm in the ML direction.
The predicted COP length averaged throughout all IMU
combinations was 18.10 cm in the AP direction and 1.51 cm in
the ML direction.

The NRMSE averaged throughout all IMU combinations was
evaluated for each participant and showed that the NRMSE
was remarkably smaller in the AP direction than in the ML
direction. In the AP direction, the maximum mean NRMSE was

7.30 ± 1.79% observed from participant 5, and the minimum
mean NRMSE was 4.29 ± 1.22% from participant 1. Meanwhile,
the maximum and minimum mean NRMSE in the ML direction
were observed from participant 2 (31.70± 3.80%) and participant
5 (15.52 ± 3.20%). Overall, the mean NRMSE was 5.88 ± 0.96%
in the AP direction and 25.33 ± 2.35% in the ML direction.
Alternatively, the average NRMSE over five participants for
different IMU combinations was also calculated in the AP and
ML directions. In the AP direction, the smallest NRMSE was
4.37± 1.24% from the H+T set, and the largest was 8.02± 1.51%
from the W set. In the ML direction, the smallest NRMSE
was 21.55 ± 4.35% from the L+T+W set, and the largest was
29.05± 8.58% from the H+L+T set.

The mean Jaccard index for each IMU combination was
shown in the AP direction and the ML direction (Figure 5). For
the mean Jaccard index, the lowest was observed from the W
set, and the highest was from the H+T set in both directions.
The highest Jaccard index was the T set when using the 1-IMU
combination, the H+T set when using the 2-IMU combination,
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FIGURE 3 | An example of the Jaccard similarity coefficient is an area under the ground truth and predicted COP in (A) the anteroposterior direction and (B) the
mediolateral direction.

FIGURE 4 | The ground truth (black lines) and predicted (red dashed lines) COP for 15 combinations of IMU sets are from one representative participant. H, heel; L,
lateral; T, toe; W, waist.

and the H+L+T set when using the 3-IMU combination in
the AP direction. In the ML direction, the same 1-IMU and 2-
IMU combinations were observed, but it was the L+T+W set
when using 3-IMU combination. Overall, the mean Jaccard index
averaged throughout all IMU combinations was 0.9269 in the AP
direction and 0.6335 in the ML direction. Moreover, the highest
and lowest Jaccard index was 0.9632 from the H+T set and 0.8694
from the W set in the AP direction. The highest Jaccard index was

0.7952 from the H+L+T+W set, and the lowest was 0.3891 from
the H set in the ML direction.

DISCUSSION

The current study aimed to employ IMU data for COP prediction
in gait and evaluate the estimation of IMU combinations at
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FIGURE 5 | The mean Jaccard index of the ground truth and predicted COP is calculated for each combination of IMU sets in the AP (A) and ML (B) directions. H,
heel; L, lateral; T, toe; W, waist.

different locations. The estimation accuracy was much better in
the AP direction (NRMSE: 6% and Jaccard index: 93%) than
in the ML direction (NRMSE: 25% and Jaccard index: 63%).
According to the Jaccard index, the best combination for COP
prediction was observed at the H+T set while the worst one was
the 1-IMU set at the waist level for both directions.

The more IMU sensors combined set was expected to provide
better COP prediction, however, the best prediction came from
the 2-IMU combination, and even the 1-IMU set was better
than the 4-IMU set, except for the W set. A sensor at the
waist level was originally treated to complement the small
acceleration and gyroscope value during the stance phase, but
the combination containing the waist sensor made the worse
prediction. The sensor attached to the lower extremity has
been reported to provide more information in gait than at the
waist level (Storm et al., 2016). Furthermore, the estimation
accuracy of gait spatiotemporal parameters decreases with the
increase of distance from the IMU sensor to the ground when
compared to the sensors on the trunk, thigh, or shank with
feet (Langley, 1994; Lau and Tong, 2008; Catalfamo et al.,
2010; Mannini and Sabatini, 2012; Mariani et al., 2013). On
the other hand, machine learning aims to address datasets that
are excessively large and complex. Although the more IMU
sensors are used in data acquisition, the more information can
be provided into the prediction algorithm, not all data are
important for the algorithm. If too many irrelevant features
are taken as inputs in the model, they would be treated as
noise and would compromise the relevant information from
the rest of the data. Elimination of irrelevant features would
be crucial for improving the performance of machine learning
(Langley, 1994). The current outcomes confirmed that more IMU
sensors did not provide the higher accuracy of COP prediction;
instead, less is better.

With respect to sensor placements on the foot, the IMU data
of the sensor placed on the toe revealed all the best prediction
combinations for the 1-, 2-, or 3-IMU set. From a kinematic
point of view in gait, the whole foot is dynamic during the swing
phase, and all IMU sensors receive changes in acceleration and
angular velocity regardless of the location of the toe, lateral, or
heel. However, during the stance phase, the heel part of the foot

becomes static after the gait phase of initial contact on the ground
until the gait phase of heel off. Therefore, the IMU on the heel is
relatively silent during this period. Similarly, the lateral part of the
foot and the IMU on the lateral side are static and silent during
the midstance phase. On the contrary, the toe remains dynamic
during the entire stance phase; even the heel starts to leave the
ground while the metatarsophalangeal joints flexed (Miyazaki
and Yamamoto, 1993; Kim et al., 2012). Hence, the movement
of the toe is more abundant than other sets during gait and
comprises more characteristics of individuals. The best location
for placing an IMU to predict the COP trajectory would be the
toe part of the foot.

Machine learning models are widely applied in predicting
gait information, and the LSTM model showed better predicting
results than other artificial neural network methods (Choi et al.,
2019a,b; Hua et al., 2019). In the current study, a three-layered
LSTM model was also built for predicting COP, and the many-
to-one predicting strategy was used, which means only one COP
data would be received in each prediction. The strategy was due
to the measurement mechanism of IMUs (received signal only
in the swing phase) and pressure mat (received signal only in
the stance phase). It allowed the model to finish the prediction
of each step without needing to normalize its time length to
a fixed window in advance. Therefore, the LSTM model could
keep the time length information successfully. For evaluation
of the difference, the NRMSE of the predicted GRF and the
ground truth value were calculated as an indication of accuracy
performance (Shahabpoor and Pavic, 2018), while the Jaccard
index can be used as a metric to assess the consistency of profile
alignment (Charalambous and Bharath, 2016). The present study
employed these two different parameters for appraising each
combination. In COP trajectories, NRMSE represents the error
between prediction and ground truth, however, the Jaccard index
implies how similar the pattern of prediction and ground truth
is. Both showed consistent evaluation in the AP direction, but
not in the ML direction. As the pattern was similar in the AP
direction, the error was small and vice versa, which was not the
case in the ML direction.

Walking is essentially forward progression in the AP direction.
The displacement, velocity, and acceleration in the ML direction
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are relatively small, consistent, and almost negligible compared
to all in the AP direction (Perry and Davids, 1992; De Cock et al.,
2008). Therefore, the information related to the ML direction
that IMU could contribute to COP estimation was considerably
fewer than the AP direction. On the other hand, the conventional
way to calculate the COP trajectory from the force plate includes
force and moment components in both directions (Winter et al.,
1996). IMU data have been widely employed to predict GRF and
show robust performance in the vertical direction (Charry et al.,
2013; Guo et al., 2017; Shahabpoor and Pavic, 2018). However, for
the other directions, it has been reported that the medial/lateral
GRF could result in substantial variation (John et al., 2012) or
overestimation using the IMU approach (Ancillao et al., 2018;
Wu et al., 2020). Indeed, higher error rates of GRF prediction
in the AP and ML directions were observed by using IMU
data when sensors are located beneath the walking surface (Wu
et al., 2020). In the current study, the greater deviation of COP
prediction was also observed in the ML direction compared to the
AP direction. Furthermore, the initial point was aligned to zero
of the predicted and ground truth COP trajectories for Jaccard
calculation. Therefore, the Jaccard index might become an index
for quantifying the performance of COP prediction from the
perspective of profile alignment. Together, it might explain the
bad prediction performance and inconsistency between NRMSE
and the Jaccard index for the ML direction.

The study has some limitations. First, only five subjects
were measured in the study. However, the input matrix had a
size of 38,332 (number of frames: 38,332 = 5 subjects × 74
steps × 148 frames × 70% for training dataset) × 6–24 (number
of input features, which depended on the IMU combination).
The input matrix size might be considered comparable to the
previous study of estimating the inclination angle between
the center of mass and COP (36,000 × 9), which involved
24 subjects (Choi et al., 2019a). However, the input matrix
provided sufficient within-subject variability, but not between-
subject variability, due to the limited number of subjects. Second,
data from young, healthy subjects were only conducted in the
present models. Therefore, generalization to other populations
should be considered with care, and more subjects might be
required for further investigation to verify the consistency of the
prediction outcomes.

CONCLUSION

The current study demonstrated the promising COP prediction
in the AP direction by different combinations from the data of

IMU sensors with LSTM models. Furthermore, the outcomes also
revealed that the irrelevant features would compromise the real
information from the rest of the inputs, for example, the IMU
sensors at the waist level. Finally, based on the kinematics of the
toes during gait, the IMU sensor on the toe could comprise more
characteristics of individuals. If only one IMU could be worn to
predict the COP trajectory, the toe would be the best location
for placing an IMU.
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