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Abstract

Background: We sought to define the clinical and ultrastructure effects of ixab-

epilone (Ix), a microtubule-stabilizing chemotherapy agent on cutaneous sen-

sory nerves and to investigate a potential mitochondrial toxicity mechanism.

Methods: Ten breast cancer patients receiving Ix underwent total neuropathy

score clinical (TNSc) assessment, distal leg skin biopsies at cycle (Cy) 3 (80–
90 mg/m2), Cy5 (160–190 mg/m2), and Cy7 (>200 mg/m2) and were compared

to 5 controls. Skin blocks were processed for EM and ultrastructural morphom-

etry of Remak axons done. Results: At baseline, Ix-treated subjects had higher

TNSc values (4.5 � 0.8 vs. 0.0 � 0.0), greater percentage of empty (dener-

vated) Schwann cells (29% vs. 12%), altered axonal diameter (422.9 � 17 vs.

354.9 � 14.8 nm, P = 0.01), and axon profiles without mitochondria tended to

increase compared to control subjects (71% vs. 70%). With increasing cumula-

tive Ix exposure, an increase in TNSc values (Cy3: 5.4 � 1.2, Cy7: 10 � 4,

P < 0.001), empty Schwann cells (39% by Cy7), and dilated axons (in nm, Cy3:

506.3 � 22.1, Cy5: 534.8 � 33, Cy7: 527.8 � 24.4; P < 0.001) was observed. In

addition, axon profiles without mitochondria (Cy3:74%, Cy7:78%) and mito-

chondria with abnormal morphology (grade 3 or 4) increased from 24% to

79%. Schwann cells with atypical mitochondria and perineuronal macrophage

infiltration in dermis were noted. Interpretation: This study provides func-

tional and structural evidence that Ix exposure induces a dose-dependent toxic-

ity on small sensory fibers with an increase in TNSc scores and progressive

axonal loss. Mitochondria appear to bear the cumulative toxic effect and che-

motherapy-induced toxicity can be monitored through serial skin biopsy-based

analysis.

Introduction

Increases in breast cancer survival can be attributed to

many factors including development of improved chemo-

therapy agents.1,2 Microtubule-stabilizing agents (MTSA)

such as taxanes are the backbone of nearly all early and

later line therapy.3,4 Newer chemotherapy agents such as

the epothilones are a novel class of MTSA with demon-

strated antitumor activity in a broad spectrum of indica-

tions including in taxane-resistant tumors.5–7 Ixabepilone,

an epothilone analogue received FDA approval in 2007

for metastatic and locally advanced breast cancer. As

with all MTSA-based regimens,8 ixabepilone is associated

with chemotherapy-induced peripheral neuropathy

(CIPN) that decreases quality of life and can alter subse-

quent ability to receive additional MTSA-based chemo-

therapy regimens with unknown effects on survival.9

Predominant involvement of small distal sensory nerve

fibers has been observed across clinical studies of ixab-

epilone (phases I–III) in patients with early and meta-

static disease.5,7,10–13 A meta-analysis of six different

clinical studies based on NCI grading reveals that the

incidence of grade 3 or 4 neuropathy increases with

additional cycles of treatment indicating the cumulative
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nature of the toxicity.13 While animal model data have

shown that epothilones induce a dose-limiting neurotox-

icity and recovery after withdrawal of treatment,14 there

is no longitudinal pathological human data to confirm

this finding.

Both taxanes and epothilones interfere with polymeriza-

tion of tubulin dimers and stabilize preformed microtu-

bules against conditions favoring depolymerization.15,16

Epothilones bind to b-tubulin at a molecular epitope dis-

tinct from the one bound by taxanes, suggesting different

neurotoxicity profiles.17,18 Skin biopsies from the distal leg

have been used for diagnostic purposes in patients with

clinically doubtful small fiber neuropathy to evaluate the

loss of the most distal sensory nerve endings, typical of

length-dependent axonal neuropathy.19,20 Preclinical stud-

ies have suggested that mitochondrial toxicity is a shared

mechanism across numerous chemotherapy agents.21 The

goal of this study was to rigorously assess changes in per-

ipheral nerve (PN) function and structure in patients

receiving ixabepilone for breast cancer as part of a phase II

clinical trial.

Materials and Methods

Study subjects

Ten female patients receiving ixabepilone chemotherapy

for three or more cycles (Cy) as part of a phase II clinical

trial for advanced breast cancer were enrolled after Insti-

tutional Review Board approval (IRB# 0707009284,

NCT00627978). Written informed consent was obtained

prior to undergoing any study-specific procedures in

accordance with the Declaration of Helsinki.

Nine subjects were white (7), Hispanic (1), or South

Asian (1) and one subject was African American. No sub-

ject had diabetes while two had controlled hypertension

and five had a history of remote tobacco use. Ixabepilone

(Ix) was provided by Bristol Myers Squibb Oncology.

Four subjects received weekly Ix infusions (16 mg/m2 IV

over 1 h, 3 weeks on, 1 week off), whereas six subjects

received q3-week infusions (40 mg/m2, IV over 3 h, once

every 3 weeks). Four of these six subjects subsequently

converted to the weekly regimen because of toxicity (two

gastrointestinal and two peripheral neuropathy). All sub-

jects underwent clinical evaluation with calculation of a

total neuropathy score clinical (TNSc)22 at baseline and

every two cycles (third, fifth, and seventh Cy) while on

study. The ixabepilone dosing schedule and clinical/skin

biopsy evaluations are given in Table 1.

All patients had skin biopsies at study entry and eight of

10 had a second biopsy. Seven are included in this analysis.

Skin biopsies and electron microscopic
studies

Skin punches (3 mm) were performed 10 cm above the

lateral malleolus on seven patients and five controls. The

biopsies were processed for 48 h in 4% paraformaldehyde

�3% glutaraldehyde fixative and then transferred to

0.1 mol/L Sorensen’s phosphate buffer. Sections were post-

fixed with osmium and embedded in plastic. The samples

were embedded vertically so that the sections went through

epidermis and dermis to a depth of 1500 lm from epider-

mal dermal junction and thin 60- to 70-nm sections were

mounted on Formvar-coated (Sigma-Aldrich, St. Louis,

MO, USA) 50- or 100-mesh grids and stained with uranyl

acetate (2.5% in 50% ethanol) and lead citrate (3%).

Under a digital Zeiss Libra 120 transmission electron

microscope (Carl Zeiss Microscopy, New York, USA) the

outline of the skin sections was traced and by a stepwise

Table 1. Dosage schedule of study patients.

No Age (years)

Initial Ix

study arm

Initial Ix

dose (mg/m2)

Total cumulative

dose at Cy3

(mg/m2)

Total cumulative

dose at Cy5

(mg/m2)

Total cumulative

dose at Cy7

(mg/m2)

Total dose

received

(mg/m2)

Baseline

TNSc

11 54 q1 wk 16 96 192 288 144 2

22 66 q1 wk 16 80 160 232 528 1

31,2 55 q3 wks 40 80 120 204 7

4 39 q3 wks 40 96 144 120 2

52 58 q1 wk 16 80 160 242 400 5

61 70 q3 wks 40 80 160 232 268 5

72 52 q1 wk 16 96 192 288 464 7

81,2 64 q3 wks 40 80 160 192 4

92 36 q3 wks 40 80 160 360 4

101,2 64 q3 wks 40 96 192 272 176 6

TNS, total neuropathy score; Ix, ixabepilone; Cy, cycle.
1History of smoking.
2Biopsies examined for Electron microscopic studies.
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pattern, individual Remak Schwann cell in the subepider-

mis and Remak Schwann cell bundles in small distal cuta-

neous nerves were identified using previously specified

criteria (Fig. 1).23,24 Digital photographs for morphometry

were captured at a magnification of 8000–16,0009 and the

photos were uploaded onto an imaging platform of trans-

mission electron microscope (iTEM) (Olympus, Münster,

Germany). The figures were enlarged by 50%, and an indi-

vidual linear array was used to measure the axonal diame-

ter (cross-sectional area) and the number of unmyelinated

axons per Remak Schwann cell was enumerated according

to the established methodology.24 Also, the number of

mitochondria per axon was counted and the morphology

was graded based on specified criteria, modified from pre-

vious studies: distortion of cristae, electron translucency,

and shape irregularity (Table 2).25,26 All analyses were per-

formed blinded to the clinical data and control/Ix status.

Statistics

All data are expressed as the mean � SEM. Changes in

axon diameter were assessed by Student’s t-test. The distri-

bution of number of axons per Remak Schwann cell was

assessed by chi-square test. Changes in TNS and mitochon-

drial morphology with cumulative ixabepilone exposure

were assessed through a mixed effects model accounting

for longitudinal measurements within individuals. All

analyses were performed using Stata 11.0 (Stata Corp., Col-

lege Station, TX). TNSc results were correlated with various

axonal parameters using Spearman correlation coefficient.

Results

Study subject demographics

For Ix-treated patients, the median age at study entry was

56.5 years (range 36–70 years) and the median stage at

diagnosis was 2. All patients received prior MTSA-based

therapy prior to entry onto this study. Five patients

(50%) received adjuvant taxane, and all received at least

one taxane in the metastatic setting. The median number

of chemotherapy regimens received in the metastatic set-

ting prior to study entry was 4 with a range of 1–8 prior

chemotherapy regimens. Healthy control subjects had no

signs or symptoms of peripheral neuropathy. They had

no history of potential causes of peripheral neuropathy

such as diabetes, vitamin deficiencies, alcohol use, or

toxic exposures including chemotherapy. They had a

median age of 56.6 years (range 38–66 years).

Neurological assessment

Increasing TNSc values were strongly associated with

cumulative Ix exposure (Fig. 2). There was no difference

between weekly or q3-week dose schedules (not shown).

At baseline, Ix-treated subjects had higher TNSc values

Figure 1. Subepidermal Remak Schwann cell and a small cutaneous

nerve in distal leg. (A) Two Remak Schwann cells with unmyelinated

axons (arrows) remaining in the papillary dermis. These have also

been referred to as: subepidermal nerve bundles.23 (B) A small

cutaneous nerve in the deeper dermis containing many Remak

Schwann cells with unmyelinated axons arranged in bundles (arrows)

enclosed by perineurium (slashed arrow) and partly by epineurium

(arrow head). Scale bars A and B = 2 lm.

Table 2. Ultrastructural grading of mitochondria in unmyelinated ax-

ons of Remak Schwann cells.

Grade 0 Normal architecture

Grade 1 Distortion of cristae

Grade 2 Loss of cristae and the matrix is homogenous

Grade 3 Matrix is electron dense and pyknotic with distortion

of outer membranes

Grade 4 Electron dense, vacuolation, pleomorphic, and

fragmentation
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(4.5 � 0.8 vs. controls: 0.0 � 0.0) and with increasing

cumulative Ix exposure we observed an increase in TNSc

values (5.4 � 1.2 at Cy3 and 10 � 4 at Cy7 (P < 0.0001).

Baseline TNSc and age were not associated with neuropa-

thy progression.

Morphometry

A total of 226 axon profiles from controls and 442 pro-

files from Ix-treated patients were analyzed. In control

subjects, Remak Schwann cells were arranged regularly

and predominantly had 1–2 axons (53%) and 10%

remained without axons. In Ix-treated subjects, there was

an increase in denervated Remak Schwann cells from 29%

at baseline to 39% by cycle 7 (mean cumulative dose of

250 mg/m2) (Fig. 3A–C). Overall, there was a clear shift

to the left in axon/Remak Schwann cell distribution

(P < 0.001) with more denervated Schwann cells and

fewer axons/Remak Schwann cell with increasing Ix expo-

sure (Fig. 3B and C). The ratio of axons/Remak Schwann

cell was strongly correlated with increasing chemotherapy

cycles and cumulative dose (R2 = 0.98, P = 0.02, Fig. 3C).

With increasing TNSc scores, the number of axons per

Remak Schwann cells showed a significant negative corre-

lation (Spearman r = �0.97, P = 0.004). Taken together,

these results are consistent with severe progressive axonal

loss (Fig. 2) and corroborate the clinical data.

Axonal diameter

Axons were mildly dilated at baseline among patients

who went on to receive Ix compared to control subjects

(in nm, control: 354.9 � 14.8; Ix-baseline: 422.9 � 17;

P < 0.01). These data are consistent with the Ix subjects

having a mild baseline length-dependent neuropathy and

is consistent with modestly elevated baseline TNS values.

Axonal diameter significantly increased from baseline with

increasing chemotherapy cycles (in nm, Cy3:

506.3 � 22.1, Cy5: 534.8 � 33, Cy7: 527.8 � 24.4;

P < 0.001) (Fig. 4A and B). On EM analysis, axons exhib-

ited varying cytological features of degeneration: axons in

varying sizes showing fragmentation of microtubules and

neurofilaments resulting in granular debris, watery axo-

plasm, absence of axonal content, and accumulation of

distended microvesicles and organelles of the lysosomal

system (Fig. 4A and D). These findings are consistent

with ixabepilone’s described mechanism of action on

microtubules. Distended axons ensheathed by retracted

Schwann cell processes exposing the axons to the sur-

rounding endoneurial collagen were noted, further hasten

the degenerative processes (Fig. 4A), although many

denervated Remak Schwann cells exhibited intact long

mesaxons suggesting the preservation of a pathway for

regeneration (Fig. 4C). In addition, cytological features of

autophagy were seen, with axoplasm exhibiting compart-

mentalization and sequestration of neurofilaments cluster-

ing in the central portion of the axoplasm with lysosomal

vesicles impinging on these degrading cytoplasmic con-

tents (Fig. 4D).

Mitochondrial morphometry

Increasing ixabepilone cumulative exposure was associated

with an increasing percentage of axon profiles with no

mitochondria (R2 = 0.97, Fig. 5A) and TNSc significantly

correlated with the loss of mitochondria (Spearman

r = 0.97, P = 0.004). This finding prompted us to examine

mitochondria morphology using a grading system based

on specific morphological criteria (Table 2).27 In control

subjects, 82% of axons had grade 0 (normal) or grade 1

morphology, whereas <4% had grade 4 morphology

(Fig. 5B and C). Increasing ixabepilone exposure was

strongly associated with an increase in the percentage of

mitochondria with abnormal morphology (grades 3 and 4:

baseline: 24%, Cy7: 79%, P < 0.0001, R2 = 0.94, Figs. 5

and 6) and a corresponding decrease in the percentage

with normal morphology (grades 0–1: baseline: 52%, Cy7:

2%, P < 0.0001, R2 = 0.97, Fig. 5B) and showed a

significant linear relationship with the clinical TNS

scores (grades 3 and 4: r = 0.97, P = 0.004, grade 1–2:
r = �0.97, P = 0.004). The axonal degeneration and

mitochondrial changes were extensive and were observed

both in subepidermal Remak Schwann cells and in small

distal cutaneous nerves (Fig. 6B). Taken together, the

dose-dependent depletion of mitochondria and the

Figure 2. Peripheral neuropathy in ixabepilone-treated subjects. The

total neuropathy score clinical progressively increased (P ≤ 0.0001)

with the total cumulative dose of Ixabepilone.
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corresponding dose-dependent increase in abnormal mor-

phology implicate a mechanism of mitochondrial toxicity.

The observation of atypical large mitochondria of axons

undergoing fragmentation suggests the possibility of ixab-

epilone affecting the fusion/fission dynamics of mitochon-

dria and further studies are needed to confirm these

findings.

Changes in other structures were also noted although

they were less prominent. Occasional deep dermal myelin-

ated axons identified showed degenerative changes with

engulfment by macrophages. Perineuronal dermis

surrounding degenerating Remak Schwann cells was cellu-

lar with stacks of lamellated Schwann cell processes

(Fig. 6C), empty basal lamina, macrophages, and fibro-

blastic proliferation. Additionally, abnormal mitochon-

drial morphologies were observed in Remak Schwann

cells and underscore the impact of Ix toxicity on support-

ing cells of axons with continuation of therapy. This sug-

Figure 3. Remak Schwann cells in ixabepilone (Ix)-treated patients. (A) Electron micrograph of Remak Schwann cells containing normal axons

with predominantly circular profiles (arrows, Ax-boxed) and few oblique profiles of microtubules. A slashed arrow identifies a denervated Remak

Schwann cell. Scale bar = 1 lm. (B) The number of axons per Remak Schwann cells across the treatment group significantly decreased with

increasing cumulative Ix dose, and was consistent with severe progressive axonal loss. In Ix-treated subjects, there was an increase in denervated

Remak Schwann cells from 29% at baseline to 39% by cycle 7. The chi-square distribution for the different chemotherapy groups and the control

group is highly significant (P < 0.001). (C) The number of axons per Schwann cell was linear and decreased with increasing cycle number

(P = 0.02).
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Figure 4. Electron micrographs of axonal changes in Ixabepilone-treated patients. (A) A distended axon (Ax) with part of the axoplasm (slashed

arrow) undergoing degeneration. A large Remak Schwann cell containing degenerating axons in varying sizes (arrows), an axon exhibiting watery

axoplasm with microvesicles (slashed arrow), and an atypical mitochondrion (arrow head). Portions of degenerating axonal membranes (warped

arrows) are exposed to dermal collagen. (B) The axonal diameter in Ix-treated patients are larger and significantly increased from baseline. (C) A

large Remak Schwann cell (Sch) with absence of axons but with preserved mesaxons (arrows). (D) A Remak Schwann cell with an axon (1)

showing partitioned axoplasm with central sequestration (2) of degrading cytoskeletal structures (slashed arrow) and impinged by dilated

lysosomal vesicles (arrows). The adjacent obliquely transected axon showing a long atypical mitochondria undergoing fragmentation (arrow head).

Scale bars: A = 500 nm, C and D = 1 lm.
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gests that loss of Schwann cell support may contribute to

the ixabepilone-induced axonal degeneration that we

observed.

Discussion

Chemotherapy-induced peripheral neuropathy is a signifi-

cant cause of morbidity for cancer patients, the majority

of which are potentially cured by their treatments. In

order to implement improved strategies for identification

of those at risk of PN and to formulate treatment strate-

gies, one needs to understand the underlying biology at

the neuronal level.

We examined the cutaneous nerves at the distal leg to

understand the pathological mechanisms in ixabepilone-

induced peripheral neuropathy. By ultrastructural analysis

of 3-mm skin punches at baseline and at the third, fifth,

and seventh cycle, we observed a distinct pattern of

progressive cytopathological changes in unmyelinated ax-

ons of Remak Schwann cells and mitochondria.

First, we show that with increasing cumulative expo-

sure, Remak Schwann cell-ensheathed axons undergo pro-

gressive degeneration, and after seven cycles nearly 45%

of Remak Schwann cells are denervated. This axonal loss

was paralleled by a corresponding increase in TNSc val-

ues. Second, we observed changes in the cross-sectional

axonal diameter that significantly increased from the

baseline diameter suggesting the action of ixabepilone on

axonal caliber that is maintained by bIII tubulins and

neurofilaments. Thirdly, there was active clearance of axo-

nal debris by autophagosomes in Remak Schwann cells as

well as by dermal macrophages and the preserved mesax-

ons indicate cytological features favoring a pathway for

regeneration. Finally, we provide morphological evidence

Figure 5. Effect of Ixabepilone on axonal mitochondria of Remak Schwann cells. (A) In patients with increasing chemotherapy cycles, axons

trended toward progressive loss of mitochondria. (B) 82% of mitochondria from control subjects (baseline only) had normal (grade 0 or 1)

morphology. Among Ix-treated subjects, there was a dose-dependent decrease in the percentage of mitochondria with normal (grade 0 or 1)

morphology (P < 0.001). The thick black line represents the regression line for Ix-treated subjects. (C) After seven cycles of Ix (>200 mg/m2), 79%

of mitochondria exhibited severe atypical morphology (grade 3 or 4) compared to 15.5% of mitochondria from control subjects. Increasing

cumulative ixabepilone exposure was strongly associated with an increase in the percentage of mitochondria with dysmorphic morphology

(P < 0.001). The thick black line represents the regression line for Ix-treated subjects.
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that Ix targets mitochondria with a dose-dependent

reduction in mitochondria and a dose-dependent increase

in abnormal mitochondrial morphology.

Ix-induced neuropathy is accompanied by
unmyelinated axonal loss

Both taxanes and epothilones exert antineoplastic effects

through microtubule stabilization which impairs cell cycle

progression.28,29 The effect of taxane on peripheral nerves

has been extensively investigated; however, the primary

target of taxane on peripheral nerves is still debatable.

Disruption of protein and axonal flow in the nerves is

considered generally as a possible mechanism for

taxane-induced neuropathy.30,31 It has been shown that a

cumulative intraperitoneal dose of 8–80 mg/kg paclitaxel

produces various degrees of degeneration in the sciatic

nerve, peroneal nerve, and dorsal roots32 and decrease in

intraepidermal nerve fiber density with intravenous

dose.33 But low intraperitoneal doses of 2–18 mg/kg pac-

litaxel did not cause degeneration in sciatic and sural

nerves suggesting differential effect of drug on peripheral

nerves.21,34 In our study, Ix administration induced

degenerative changes with axonal loss in a dose-depen-

dent fashion that involved the distal unmyelinated axons

of Remak Schwann cells. This pattern of cumulative tox-

icity with Ix follows the pattern defined in rodent models

of Taxol-induced peripheral neuropathy.35

Ix on cytoskeletal structures of
unmyelinated axons

One would anticipate that binding and stabilization of

cellular microtubules by epothilone B and taxanes would

result in increased microtubule density and clustering. In

fact, we observed that cumulative Ix exposure altered the

cytoskeletal architecture and significantly increased the

axonal diameter from baseline to swollen at cumulative

doses of 80–90 mg/m2. This is consistent with the known

effects of bIII tubulins and neurofilaments on axonal cali-

ber.36,37 While axonal caliber increased, the cytoskeletal

architecture was abnormal and was associated with axonal

loss suggesting that Ix had effects beyond those on cyto-

skeletal elements.

Toxicity to unmyelinated axonal
mitochondria

A striking finding of this study was the progressive loss of

mitochondria in unmyelinated axons of Remak Schwann

cells combined with a dose-dependent mitochondrial

morphological derangement. It is generally presumed that

new mitochondria are generated in the cell body, trans-

ported down to distal locations, and appropriate distribu-

tion of functional mitochondria at the distal axons are

maintained by fusion and fission dynamics.38 Further-

more, neuronal mitochondria provide energy by generat-

ing adenosine triphosphate (ATP) that is required for

axonal transport.36,39,40 Microtubules play a critical role

in axonal flow in peripheral nerves. Axonal transport dis-

ruption has been reported in b,b-iminodipropionitrile

(IDPN), acrylamide as well as in taxoid-induced toxic

neuropathies.41,42 Most peripheral neuropathies including

HIV-SN, diabetic, and toxic neuropathies present as a

length-dependent, “dying back” axonopathy, in which

Figure 6. Electron micrographs of axonal mitochondrial changes of

Remak Schwann cells in Ixabepilone-treated patients. (A) Axons of

Remak Schwann cell exhibiting atypical mitochondria with loss

of cristae and homogenous matrix (arrows). An autophagosome

(arrow head) is seen adjacent to a degenerating axon with atypical

mitochondria. (B) A subepidermal (epidermis-slashed arrows) Remak

Schwann cell with the axonal mitochondria showing vacuolization

(arrow), and stacking of lamellated Schwann cell processes (arrow

head). (C) A small cutaneous nerve bundle (* perineurium) with the

axons exhibiting atypical mitochondria undergoing fragmentation

(arrows). Scale bars: A = 1 lm, B and C = 500 nm.
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axonal degeneration starts in the distal terminals and

continues in a centripetal direction. The long unmyeli-

nated axons of distal limbs that project to the skin have a

high density of mitochondria relative to their large mye-

linated counterparts and studies have demonstrated the

accumulation of abnormal mitochondria in distal unmy-

elinated axons and higher mtDNA deletion mutations in

distal nerve segments in patients affected by HIV-

SN.24,43,44 In painful peripheral neuropathy induced by

2030-dideoxycytidine (ddC) and paclitaxel21,45 swollen and

vacuolated mitochondria have been reported.

In our study, 79% of axonal mitochondria from sub-

jects with cumulative exposures above 200 mg/m2 showed

abnormal morphology that ranged from complete efface-

ment of cristae to abnormally large mitochondria with

vacuolation and fragmentation of mitochondria. Similarly,

although less pronounced, changes were observed in the

mitochondria of ensheathing Remak Schwann cells, sug-

gesting that disruption of Remak Schwann cell support

may also contribute to axon loss. Tubulin is an integral

protein of the mitochondrial membranes, and plays a role

in the transport of mitochondria along microtubules.46,47

Therefore, we postulate that Ix binds to the mitochondrial

membranes inducing a dose-dependent mitochondrial

injury, fragmentation and death, which, in turn, induces

axonal necrosis secondary to energy failure.

We observed active lysosomal vesicles and autophagoso-

mal changes in degenerating axons as well as macrophages

in proximity to Remak Schwann cells. This appearance is

typical of macrophage activation and recruitment to the

site of nerve injury. These macrophages may remove axo-

nal debris, induce Remak Schwann cell proliferation, and

stimulate nerve growth factor release which sets the stage

for future nerve regeneration.48–50 The presence of macro-

phages combined with the preserved mesaxons in Remak

Schwann cells suggests that there is active clearance of

axonal debris providing a foundation for axonal recovery

and regeneration. These pathological features support the

clinical impression that ixabepilone-induced CIPN has a

reversible component and toxicity can be mitigated

through dose reduction and delays.51

Conclusion

Our study demonstrates complimentary ultrastructural

and clinical evidence that ixabepilone induces dose-

dependent toxicity to distal unmyelinated nerve fibers.

Toxicity was observed in the form of mitochondrial loss,

disruption of normal mitochondrial structure, disintegra-

tion of axonal content, and progressive axon loss. As sim-

ilar, although less pronounced, changes were seen among

Schwann cell mitochondria, these observations suggest

mitochondrial dysfunction and oxidative stress as a mech-

anism of toxicity. Serial skin biopsy-based analyses are

well suited to monitor the neurotoxicity of chemothera-

peutic agents.
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