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genome for identification of SVs.

FaNDOMutilizes a novel filtering strategy,

vastly reducing the search space of the

alignment process, enabling rapid

discovery of biologically interesting

events.
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THE BIGGER PICTURE Optical mapping (OM) is a rapidly maturing strategy for detecting large-scale rear-
rangements in genomes, leveraging ultra-long fragments of DNA imaged at very high depth of coverage
(>1003). OM data reflect an orthogonal strategy to DNA sequencing, instead utilizing image-based detec-
tion of fluorescent tags associated with specific DNA motifs. The resulting data can be aligned back to the
reference genome for discovery of genomic rearrangements and karyotypic abnormalities. Existing
methods, however, are computationally demanding, making discovery harder. We present a novel method,
FaNDOM, for alignment of OM data to the reference genome, and the additional discovery of structural var-
iants. FaNDOMutilizes fast filtering algorithmsbased on constructing graph-based chains of seedmatches,
achieving orders of magnitude speedup, while maintaining high sensitivity, enabling amore comprehensive
search of complex structural variations involving hundreds of kbp.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long
fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies
for analysis of DNA molecules, it is possible to inexpensively generate long OM data (>150 kbp) at high
coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome
for identification of genomic structural variants.We introduce FaNDOM (Fast NestedDistance Seeding of Op-
tical Maps)—an optical map alignment tool that greatly reduces the search space of the alignment process.
On four benchmark human datasets, FaNDOM was significantly (4–143) faster than competing tools while
maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell
lines and identified many biologically interesting structural variants, including deletions, duplications, gene
fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/
jluebeck/FaNDOM.
INTRODUCTION

Optical mapping (OM) is a rapidly maturing genome-mapping

technology whose historical antecedents are at least a few de-

cades old.1 In the much older restriction-mapping technique,

the use of sequence-specific restriction sites in a genome

enabled unique ‘‘fingerprints’’ of the DNA. The initial restriction

site maps were used to compare and position clones (genetic

linkage maps) before sequencing.2 Now, OM provides single-
This is an open access article under the CC BY-N
molecule readouts of the locations of fluorescently labeled

sequence motifs on long fragments of DNA, resolved to nucleo-

tide-level coordinates.3 Despite the development of competing

capillary sequencing and next-generation sequencing methods,

optical maps continue to play an important role in scaffolding

and assembly. With the advent of microfluidic technologies for

high throughput of individual molecules and fluorescence-based

visualization of covalently marked sites (labels), it is possible to

generate high coverage (>1003 of the human genome) with
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long OMmolecules (>150 kbp) for $500–1,000. For instance, the

OM datasets analyzed in this paper had a median length of

191 kbp.

As the optical mapping technology evolves, the error profiles

found in OM data also change. Bionano optical mapping (Bio-

nano Genomics, San Diego, CA) uses direct covalent labeling

of fluorescent molecules onto DNA fragments, as opposed to

previous generations of OM, which used nickases. Its sources

of error are orthogonal to DNA sequencing technologies,4 and

currently include incomplete labeling of donor sequences,

false-positive labels, and imprecise resolution about exact loca-

tions of imaged labels. Other technology-specific phenomena,

such as possible molecular chimerism or molecular stretching,

also contribute to error. Computational methods, which handle

OM data, must capture these various errors.

Given its uses for scaffold construction in de novo assembly

projects,5–7 optical mapping has matured to becoming a routine

part of assembly pipelines for complex and/or large genomes.

As a first step of this process, the OM fragments themselves

are assembled into much larger (and error-corrected) OM con-

tigs. The samples considered by our study had a median OM

contig N50 of 38.4 Mbp. To achieve this, a computationally chal-

lenging problem of identifying overlapping OM fragments must

be addressed. Much of the previous work about that problem

uses dynamic programming algorithms to compare and align

restriction maps,8 and now extends to optical maps.9,10 Newer

methods, such as Kohdista11 and MalignerIX,12 tackle the over-

lapping fragment identification problems. Indexing and align-

ment-based methods have also been developed to map a

sequence contig to a reference optical map genome, a require-

ment for scaffolding.13,14

Here, we consider the slightly different problem of mapping

optical maps to a reference human genome for the purposes

of identifying structural variants (SVs).15,16 Such methods have

been effective in identifying genomic abnormalities in Mendelian

disease17,18 as well as cancer.19–21 Due to similar algorithmics,

general methods for pairwise alignment or scaffolding, including

Valouev,22 SOMA,23 TWIN,13 and MalignerDP,12 could be used

in principle for mapping optical maps to an in-silico-digested

reference genomic sequence. However, most of these methods

do not repurpose well in practice, especially on data from the lat-

est Bionano platform. Moreover, they do not call SVs. In

contrast, OMBlast24 and RefAligner25 have previously demon-

strated superior performance on Bionano data.24,26 RefAligner

specifically has been configured to call SVs. A new software,

OMSV,27 now combines RefAligner and OMBlast output to call

SVs. Notably, RefAligner is a closed-source proprietary method,

available only as pre-compiled binaries for specific hardware,

and is very resource intensive, as described in the Results.

We introduce FaNDOM (Fast Nested Distance Seeding of Op-

tical Maps)—an optical map alignment tool that introduces a

novel method for seeding optical map alignments, greatly

reducing the search space of the alignment process. FaNDOM

is specifically optimized to handle data from the Bionano Saphyr

optical mapping technology. The algorithmic and technology-

specific improvements allow us to be significantly (4–143) faster

than competing tools while maintaining sensitivity and speci-

ficity.We used FaNDOM tomap variants in three cancer cell lines

and identifiedmany structural variations, including deletion of tu-
2 Patterns 2, 100248, May 14, 2021
mor suppressor genes, duplications, gene fusions, and gene-

disrupting rearrangements. FaNDOM is publicly available at

https://github.com/jluebeck/FaNDOM.

RESULTS

As OMBlast24,28 and RefAligner25 were the best-performing pre-

existing methods for mapping Bionano optical maps to a refer-

ence genome, we compared the performance of FaNDOM

against Bionano RefAligner (Solve3.5.1) and OMBlast (OMTools

v.1.4a). We also attempted to benchmark TWIN and Kohdista,

but they are not specifically designed for this problem and did

not perform as well (Methods S8).

Saphyr optical map data are publicly available for samples

NA12878, GM09888, GM08331, and GM24143. We collected

270,000 raw molecules from each sample, where more than

85% of each molecule aligned to reference, as reported by Bio-

nano, using their own RefAligner tool. We then ran FaNDOM,

OMBlast, and RefAligner on this testing set.

Running time
We note that RefAligner is already highly optimized for the Sa-

phyr technology, and is only provided as pre-compiled binary

code, which runs on specific machine architectures. All experi-

ments were conducted on an Intel(R) Core(TM) i9-9900 CPU

@3.10GHz with 32 GB of main memory running Ubuntu

18.04.3 LTS (Bionic Beaver), using 10 threads. The results (Fig-

ure 1A) showed that FaNDOM was 4–63 faster than OMBlast

and 13–143 faster than RefAligner on all datasets, highlighting

the speedups created by our filtering methods. FaNDOM

required approximately 2–2.5 GB of RAM for each thread

(Methods S6).While OMBlast required lessmemory, thememory

usage increasedwith increase inmolecule size, and did not scale

well for Saphyr-assembled contigs. The OMBlast documenta-

tion suggests 200 Gb RAM for mapping assembled contigs.

Mapping accuracy
We compared the accuracy FaNDOM, RefAligner, and OMBlast

reported mappings on simulated and real data. Unlike DNA

sequencing read mapping, which has discrete character

matches and mismatches, it is not trivial to designate an OM

molecule alignment as correct or incorrect on real data. Instead,

we treated a mapping as correct if it was supported by at least

two of the three methods.

We simulated datasets with ‘‘high’’ and ‘‘low’’ error (Methods

S7), where high (H) corresponded to a false-positive label rate

of 4 per 100 kbp, and stretch factor with standard deviation

0.02, which matched the Saphyr technology (Methods S7).

Low (L) corresponded to a false-positive label rate of 1 per 100

kbp and stretch factor with standard deviation 0.01. All tools per-

formed well on low-error. On high-error data, the three methods

had very similar recall, with FaNDOM marginally higher, while

FaNDOM precision lay between RefAligner and OMBlast (Fig-

ure 1B). On the cell lines, RefAligner had the highest precision

and recall followed by FaNDOM and OMBlast. We note that

RefAligner is better positioned to incorporate specifics of the Sa-

phyr technology. The lower recall for FaNDOM relative to RefA-

ligner can be partially attributed to the occasional removal of

true maps during the filtering step. The precision can be

https://github.com/jluebeck/FaNDOM


Figure 1. FaNDOM performance

(Left) Running time; (right) accuracy. The set of true

positives (TP) were all mappings identified by at

least two of the three methods. Recall = TP/(TP +

FN), Precision = TP/(TP + FP).
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improved by post-alignment filtering, and will be part of future

release of FaNDOM after more datasets have been analyzed.

FaNDOMwas 53 and 153 faster that OMBlast and RefAligner

on cell lines (Figure 1A) as well as simulations (Figure S7; note

different scale). As expected, simulations show that the running

time increases with higher error rate for all methods.

SV detection
SV analysis continues to be a challenging problem requiring

consensus from different methods and technologies. We

compared the three methods using a benchmark of SV deletion

calls of length >2,000bp on the genome NA12878. The bench-

mark was created previously using a multitude of technologies.29

Figure 2A compares the performance of FaNDOM and RefAligner

using assembledOMcontigs. FaNDOMand RefAligner had com-

parable recall identifying 77% and 79% of the high-confidence

calls, respectively, despite FaNDOM using filtering strategies to

make the runtime faster by an order of magnitude. FaNDOM

was much more aggressive in calling deletions compared with

RefAligner. Spot checking, many of the FaNDOM-specific dele-

tion calls appeared to be accurate (e.g., see Figure 2F).

OMSV27 is another recent method for detecting SVs with OM

data. It is an integrative tool that combines the output of RefA-

ligner and OMBlast together, and is therefore even more

compute intensive. As we could not run OMBLast on Saphyr

contig data, we compared FaNDOM calls against pre-computed

OMSV calls on NA12878 mapped to the hg38 reference and

compared the calls with a benchmark deletion call set15 on the

hg38 reference (Figure 2B). The FaNDOM recall was 84%

compared with the 70% recall of OMSV.

Detecting genomic insertions is one of the advantages of long-

read technologies. FaNDOM predicted 719 insertions (Fig-

ure 2C). While there is no established call set of insertions for

NA12878, 73% of the FaNDOM calls were previously reported

as insertion polymorphisms in the Database of (human) Genomic

Variants.31 FaNDOM also identified a few ultra-long insertions in

OM contigs (Figure 2D) that would be challenging with any

competing technology due to the insertion size.

We investigated the FaNDOM-specific SV calls for possible er-

ror. The high-confidence dataset29 has been collected by inte-

grating a number of technologies, and is likely to be accurate.

Nevertheless,many of its callswere discovered using short reads,

while many of the FaNDOM-specific calls were >15 kbp (e.g., see

Figure 2E). In addition, some of the FaNDOM-specific calls are in
regions of low mappability (typically low

complexity or repetitive sequence). Those

breakpoints typically cannot be captured

by short reads, but can be captured by

long OM contigs (e.g., chr19:37,760K–

37,795K; Figure 2F), demonstrating the

complementarity of OMdata to sequencing
technologies. Moreover, assembled optical map contigs enable

the detection of multiple breakpoints in one contig. As an

example, Figure 2G represents an assembled OM contig from

the K562 cell line that covers translocation from chr9 to chr13

and multiple breakpoints in chr13 spanning 500 kbp.

SVs in cancer cell lines
We ran FaNDOM on assembled OM contigs as well as OM mol-

ecules for cancer cell lines K562, CAKI-2, and H460—all of which

are known to carry extensive rearrangements. Table1 summa-

rizes some of the rearrangements identified by FaNDOM on

assembled OM contigs. The rearrangements identified by

FaNDOM, which included 1,800 large (>2 kbp) indels, 133 inter-

chromosomal translocations, 28 fold-back reads, and 223 break-

points that disrupted an existing gene, among other rearrange-

ments. In this study, we focused specifically on genes that were

deleted, and on translocations that disrupted or fused two genes.

The lung cancer cell line NCI-H460 has previously been docu-

mented to bear a focal amplification of the MYC/PVT1 region due

to extrachromosomal DNA (ecDNA) and it has also been found to

show evidence for intrachromosomal amplification in a homoge-

neously staining region (HSR).32 Previous reconstruction of the

MYC amplified region revealed a complex duplicated structure,

which suggested that the ecDNA element containing MYC/

PVT1 had reintegrated as an HSR in a non-native location.20

The FaNDOM analysis identified a translocation from within the

amplified ecDNA structure (chr8: 128,745, kbp) to a non-native

location (chr12:7, 665k; Figure 3A) revealing chr12 to be the site

of the HSR. Figure 3A also supports an inverted duplication at

chromosome 8 as part of the amplified structure. In addition to

recapitulating the breakpoints of the ecDNA, the FaNDOM anal-

ysis identified many partial or complete deletions of tumor sup-

pressor genes, including LRP1B33 (chr2: 141,735K–142,155K),

TUSC7A34 (non-coding; chr3: 116,295K–116,775K), FHIT35

(chr3: 60,405K–60,735K), LSAMP36 (chr3: 115,545K–116,145K).

Notably, many of these deletions were on chr3. Many other rear-

rangements were identified providing a scenario of complex rear-

rangements in the cell line.

In the renal cancer cell line CAKI-2, we observed deletions or

disruptions involving tumor suppressor genes, including

CFHR137 (chr1: 196,665K–197,295K), RNF217 (chr6: 125,265K–

125,505K),38 RBFOX1 (chr16: 6,585K–7,155K),39 FBXL7 (chr5:

15,825K–15,945K).40 We also observed two fusions: TECRL1/

GRIP1 (chr4: 65,205K, -, chr12: 66,975K, -) and RACGAP1/
Patterns 2, 100248, May 14, 2021 3



Figure 2. SV calling performance

(A) Comparison of FaNDOM and RefAligner deletion

calls on NA12878 against a benchmark dataset

from Parikh et al.,29 using the hg19 reference.

(B) Comparison of FaNDOM and OMSV deletion

calls on NA12878 against a benchmark created

using multiple sequencing technologies published

in Dixon et al.15 using the hg38 reference.

(C) Insertions identified by FaNDOM for NA12878.

The blue region signifies insertion polymorphisms

identified by FaNDOM also in the Database of

Genomic Variants.

(D) Length distribution of FaNDOM insertion calls for

NA12878.

(E) Length distribution of FaNDOM and benchmark

deletion calls (Parikh et al.29).

(F) A FaNDOM deletion not in the Parikh et al.29

benchmark dataset likely due to its presence in a

low mappability region.

(G) A FaNDOM alignment using assembled OM

contigs that chains multiple breakpoints across 400

kbp on the K562 cell line. OM alignment visualiza-

tions were generated with MapOptics.30
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AKAP6 (Figure 3B, chr12: 50,385K, -, chr14: 33,255K, +). RAC-

GAP1 displays tumor malignancy potential41 and is known to

fuse with other genes, such as CERS5 and RAB34.42

K562 is a chronic myelogenous leukemia cell line with the Phil-

adelphia chromosome. It was comprehensively analyzed recently

using a multitude of technologies, including whole-genome

sequencing and Hi-C.43 FaNDOM confirmed some of the rear-

rangements of the previous study, such as the BCR-ABL1 fusion

(Figure 3C), between chr22 and chr9. Among other rearrange-

ments, we also observed an atypical microdeletion in 22q11,

almost identical to a deletion previously associated with a

congenital syndrome,44 and a subset of a larger deletion reported

for DiGeorge syndrome. The deletion encompasses the genes

GSTT1, GSTT2, and GSTT2B, and deletions in these genes

have previously been associated with esophageal cancer.45

While our results often matched the previously reported SVs,43

therewere a fewnotabledifferences. For example, in contrastwith

the previous finding of an inversion involving ORC6, MYLK3 on
4 Patterns 2, 100248, May 14, 2021
chr16, we observed a deletion (16:46,

725K–46,845K; Figure 3D) that partially

removed ORC6 as well as a microinversion

involving MYLK3. In a second example, the

Zhou et al. study also identified a fusion of

CDC25A/GRID1.43 While we observe the

same translocation, the directionality pro-

vided by the long reads suggests the

disruption of the two genes, but not a fusion

product (Figure 3E).We could confirmother

chromosome 16 rearrangements, including

an invertedduplication (88,605K–88,785K),

and another inverted duplication at chr13:

92,475K (Figure 3F).

DISCUSSION

Improvements to the optical mapping
technology in terms of accuracy and cost has made it competi-

tive for SV detection. At the same time, the raw data are harder to

interpret and motivate the development of public domain tools

for interpretation. In this paper, we focus on speeding up the

mapping by relying on a novel filtering strategy that greatly

improved speed without a significant loss of accuracy. The

filtering relies on two ideas: (1) for most high-quality optical

maps, it is relatively easy to find seeds that locate the reference

target region for a query, and (2), by merging distances, thou-

sands of queries can identify their target seeds in a single

search-and-merge strategy. The results demonstrate the

viability of this trade-off, leading to high speedup over other tools

with only a small loss of sensitivity.

We recognize that our proposed method uses many parame-

ters and, for the most part, the parameters are empirically deter-

mined to work for Saphyr. The optimal parameter values will be

determined only after a large number of datasets have been

analyzed, and will need to be retrained for newer technologies.



Table 1. Rearrangements in cancer cell lines

Cell

lines Indels

Interchromosomal

translocations

Fold-

back

reads

Gene-

disrupting

breakpoints

CAKI-

2

626 56 7 95

H-460 571 26 4 62

K562 603 21 17 66
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In addition, non-human genomes, such as plants, may also

require some significant recalibration of parameters and low-

complexity annotations, which we have not yet explored. Never-

theless, because we have used FaNDOM to analyze many tens

of thousands of molecules, the current choice of parameters ap-

pears to be robust for the current technology. Taken together,

our results point to the value of using OM as a complementary

technology for structural variation identification.

The detection of SVs is a key benefit of the OM technology, but

it is harder to benchmark given the lack of large-scale, robust

truth datasets. Our results suggest that FaNDOM can identify

discordant alignments and breakpoints with high sensitivity. As

many of the calls are based on cutoffs that can be adjusted,

the results do not reveal any fundamental limitation of the

filtering, but indicate a lack of additional calibration against a

true gold standard. Additional analysis will be needed to identify

systemic sources of false-positive calls.

We note that calling the structural variation mechanism itself is

a secondary process that will require integration with other infor-

mation, including copy-number changes, and this will be a topic

of ongoing research. For example, one possible improvement in-

cludes pruning deletion calls by limiting results to the regions

with a decrease in copy number consistent with heterozygous

or homozygous deletion. With further improvements and

methods development, OM technologies could be used to

replace cytogenetics as a method of choice for revealing large-

scale genetic abnormalities in Mendelian diseases and

cancer.17,20,21

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Siavash Raeisi Dehkordi is the lead contact for this study and can be contacted

by email at sraeisid@ucsd.edu.

Materials availability

This study did not generate any materials.

Data and code availability

The code for FaNDOM is available on GitHub at https://github.com/jluebeck/

FaNDOM.

We used optical map data from the following individuals, and these data

were obtained from the publicly available Bionano Saphyr datasets (https://

bionanogenomics.com/library/datasets/)—NA12878, GM09888, GM08331,

and GM24143. For cancer SV detection, we used previously published20 Bio-

nano Saphyr data from cancer cell lines K562, CAKI-2, and NCI-H460.

Method details

Conceptually, define an optical map as a sorted list of numeric values, repre-

senting the relative positions of labels on a fragment of DNA (Figure S1A).

These numeric lists can be generated for any collection of individual OM mol-

ecules, assembled OM molecules, or from in-silico-predicted label positions
on the reference genome. FaNDOM utilizes standard optical map data formats

(.bnx or .cmap), where each imaged DNA fragment has been pre-converted to

label position lists specified in base pair coordinates. An overview of the struc-

ture of the FaNDOM software is available in Figure S1B.

Pre-processing

Query fragments with length <25 kbp or containing less than 10 labels were

filtered out from mapping. Similarly, queries containing consecutive labels

with distance >250 kbp were removed (Methods S2).

Scaling refers to a systematic translation of physical inter-label distances

into nucleotide distances. The Saphyr instrument performs a calibration to

scale distances, estimating the number of base pairs present per image pixel.

The process can on occasion be erroneous.46 To recalibrate, FaNDOM

randomly selects 250 molecules and estimates a corrected scaling factor us-

ing a grid search in a range of values between 0.96 and 1.2. The range was

determined by experimenting from a set of 38 human samples (Methods

S3). The rescaled molecules in each iteration are aligned to the reference.

The scaling factor that achieves the highest total alignment score is selected

for rescaling molecules before alignment.

Assembled OM contigs can be very large, often exceeding thousands of la-

bels. As the alignment time grows quadratically with length, FaNDOMpre-pro-

cesses assembled OM contigs by splitting them into smaller fragments, each

containing 75 labels, with an overlap of 50 labels between endpoints of

consecutive fragments. When alignment is completed, FaNDOM merges the

alignments from overlapping fragments from assembled OM contigs to pro-

duce a complete alignment for the OM contig. In the case of conflicting align-

ments between overlapping contig fragments, FaNDOMmaintains both partial

alignments.

We convert the reference genome into a collection of expected label loca-

tions based on the in silico presence of the labeling motif throughout the refer-

ence. If the distance between two consecutive reference labels is less than

800 bp, they are replaced with the average of the two locations to account

for the potential inability of resolving nearby OM labels (Methods S2). We

also adapted a Bionanomethod25 to identify andmask low-complexity regions

in the human genome. Formally, denote a low-complexity region as containing

at least five consecutive labels where the distance between adjacent labels is

identical within 10% tolerance. Those could result in spurious alignments and

are masked out. Specifically, in reference genome build hg19, 1.5 Mbp, which

(0.04% of total reference genome) was masked out, while in hg38, 2.8 Mbp

(0.09% of the total reference genome) was masked out (see Table S1 for

masked regions).

Optical map alignment

The crux of a mapping procedure is an alignment of an optical map query to an

in silico optical map of a reference sequence interval. The alignment maps

query labels to the reference labels so that the inter-label distances between

the query and reference are preserved (Figure S1).

The alignment of optical maps is a well-studied problem.1,22 FaNDOM’s

scoring function follows previous methodologies, but diverges slightly.

Consider reference R of length m and reference Q of length n labels. For

j%m and q%n, define S½j�½q� as the optimum score of aligning a subsequence

(local alignment) ending at label j on Rwith a subsequence ending at label q on

query Q. S can be computed using the following banded dynamic program-

ming recurrence, where the band size is d:

S½j�½q�= max
maxf0;j�dg%i<j;
maxf0;q�dg%p<q

S½i�½p�+Score_regionðR; i; j;Q;p;qÞ; (Equation 1)

where, Score_region scores a match after penalizing for discrepancies in the

match. Specifically, for i<j;p<q, let fn = ðq � p � 1Þ, fp = ðj�i�1Þ denote the

number of unmatched labels in the query and reference, respectively. Then,

Score_regionðR; i; j;Q;p;qÞ= L� cðfn + fpÞ � jðR½j� � R½i� Þ � ðQ½q� �Q½p� Þjk :

We set L= 10; 000 to represent a perfect match score. Empirical tests

(Methods S4) indicated that a wide range of k;c showed identical

performance. Increasing k; c resulted in the same alignments but with tighter

boundaries. We chose the distance scale parameter k = 1:15 and false-label

parameter c= 3;000 (Figure S4). After computing initial alignments for

molecules, FaNDOM then identifies molecules, which are candidates for

local/partial alignment discovery, as a prelude to SV analysis. In this partial
Patterns 2, 100248, May 14, 2021 5
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Figure 3. Examples of detected structural variants in cancer cell lines

(A) The chr8-chr12 translocation shows the integration of an Myc carrying ecDNA molecule onto chr12 in H460.

(B) A RACGAP1-AKAP6 fusion on CAKI-2.

(C) The BCR-ABL1 fusion on K562.

(D) Deletion of the genes ORC6 and MYLK3 with a partial inversion.

(E) A translocation that disrupts CDC25A and GRID1 but the direction is inconsistent with a fusion event.

(F) A ‘‘fold-back’’ inversion that duplicates and inverts GPC5 in K562.
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alignment mode (see computing partial alignments for SV detection section

below), where split-molecule alignments are allowed, FaNDOM computes

more stringent partial alignments (c = 7; 500, k = 1:4).

Alignment running time suggests the necessity of filtering.

The ungapped alignment algorithm has complexity Oðmnd2Þ. Despite algo-

rithmic improvements and optimizations, our empirical results suggested that

aligning a collection of two million OM fragments representing (1003) whole-

genome coverage against every position on the human genome would take
6 Patterns 2, 100248, May 14, 2021
� 700; 000 cpu-h. While assembly of OM fragments into contigs reduces the

number of query sequences, the OM contigs are longer and the estimated

time remains � 15; 000 cpu-h. Therefore, similar to the Bionano RefAligner25

and OMBlast,24,28 we deploy a filtering strategy, where, for each query mole-

cule, the goal is to identify a small collection of reference intervals to align the

query with. The filter must be fast, sensitive (defined by the probability of the

true reference location being included in the filtered reference intervals), and

efficient (defined by the number of filtered regions per query—smaller being



Figure 4. The FaNDOM workflow

(A) Search-and-merge filtering step in which

genomic distances extracted from windows (Wa,

Wb) and added to lists LM and LN. The lists LM and

LN are merged and seeds are identified.

(B) Packing seeds into bands step, in which for each

band B seeds inside it are formed into a directed

acyclic graph, G, and the band is scored by finding

the shortest path from s to t.

(C) Different score threshold possibilities for the

band score distribution of bands for a single query.

The best score is denoted as ‘‘BS.’’

(D) Dynamic programming for the alignment module

in FaNDOM.

(E) Seed selection for partial alignment, which

scores bands based on the shortest path between

each pair of seeds inside the band B.

(F) SV detection module, which finds breakpoints

based on multiple partial alignments. The alignment

on top shows a breakpoint from A to B, the lower

alignment visualizes an inversion, or ‘‘fold-back.’’
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better). The filtered regions, or seeds are used to compute alignments and re-

turn the full or partial mappings of each query OM fragment or contig.

Search-and-merge filtering for optical maps

The key idea of filtering is that in a correct alignment there are some parts

of query and reference, which are highly similar to each other, or that all in-

ter-label distances in those regions are practically equivalent. Let R½i; j�
(respectively, Q½i; j�), denote the genomic distance between labels i; j in R

(respectively, Q). Denote a window Wa in the reference as a collection of dis-

tances R½i; j� for all a%i<j<a+ 3. Windows Wb, in the query OMs are defined

similarly. Let

Wb/
match

Wa5cx ˛Wb; dy˛Wa : jx� yj%T:

A default value of T =350 was chosen empirically (Methods S4). In the

search-and-merge procedure, we sort all genomic distances from every win-

dow of the reference (typically a chromosome) to a list Lm (Figure 4A). Similarly,

for a collection of query OMs, we merge all sorted distances from all windows

of each query in the collection into list Ln. Each distance x˛Lm (respectively, y˛
Ln) is associated with all reference windows (respectively, query windows)

containing distance x (respectively, y).

Next, the sorted lists Lm; Ln are ‘‘search-merged’’ (Figure 4A). For each

element x˛Ln we perform two binary searches to identify the smallest and

largest distances y1; y2˛Lm such that x� y1GT ; y2 � xGT . For all ‘‘matches’’
(x;y) where y1GyGy2, we increment thematch score

of all windowpairs associatedwith x and y. Finally, for

all reference labels a, query labels b, such that

Wb /
match

Wa, a seed ða; b; oÞ, is generated, with

o˛f + ;�g representing direction of match.

Packing seeds into bands

For each reference label a, and each query OM,

FaNDOM explores a diagonal band Ba around a of

width Bw (default value Bw = 12; 000; Methods

S4). Label a is filtered out if Ba contains fewer than

Th = 4 seeds (Methods S4). For retained bands, an

edge-weighted directed acyclic graph G is con-

structed as follows: each node u in G corresponds

to a pair of (query, reference) labels Cuq;ur D, where

uq (respectively, ur ) represents the nucleotide dis-

tance of the query label (respectively, reference la-

bel) from the first query (reference) label. Also, add

nodes s= C0; 0D and t = Cl; lD corresponding to the

start and end of band Ba. For each seed u in the

band, designate nodes u1; u2; u3 corresponding to

start, middle, and end of the seed. With few excep-
tions, we use Euclidean distances for edge weights so thatwðu;vÞ = jjv � ujj =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr � urÞ2 + ðvq � uqÞ2

q
. Specifically,

1. For each seed u, add edges ðu1; u2Þ and ðu2; u3Þ with weights 0 each;

edge ðs;u1Þ with weight
ffiffiffi
2

p
u1q, and edge ðu3; tÞ with weightffiffiffi

2
p ð[ � u3qÞ.

2. For each pair of seeds u; v such that u3qGv1q and u3rGv1r , add edge

u3; v1 with weight jjv1 � u3jj.
3. For each pair of seeds u; v such that u2q = v1q and u2rGv1r , add edge

u2; v1 with weight jjv1 � u2jj.

We use dynamic programming to compute the weight wst of the shortest

(least-weight) path from s to t in G. The score of band Ba is given by

scoreðBaÞ= 1� wst

kt � sk

A similar process is used for seeds in the reverse direction, with s = C0;lD, t =
Cl;0D. For each query OM, we save the highest scoring 150 bands.

As a first idea, we could align the query map with the reference region for

each of the 150 bands, and still achieve high speed and sensitivity. However,

we observed that, in some cases, the top-scoring bands were significantly

more likely to yield true alignments than other high-scoring bands, and that
Patterns 2, 100248, May 14, 2021 7
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the correct region was near the tail of the band score distribution and could be

identified without aligning every candidate. We empirically fit the band scores

to an exponential distribution with parameter l and used the following empir-

ical guidelines for scoring (Methods S4). For each query

max
a

scoreðBaÞ

8>><
>>:

>2:2l 0Align top 10 bands
>1:7l 0Align top 50 bands
>1:5l 0Align top 100 bands
otherwise 0Align top 150 bands

A band that is selected for alignment is converted to reference alignment

boundaries by using the reference coordinate sr of the source node s, and

the query molecule Q of length jQj. Specifically, for a padding factor p (default

p = 1000), the region sr � p to sr + jQj+p on the reference is used to align to

the query molecule.

Computing partial alignments for SV detection

We identify SVs in two steps. First, queries that are either (1) unaligned, (2) have

amean alignment score less than 5,000/label, (3) the alignment does not cover

80% of the query length, or (4) has a total alignment length G25 kbp, are tar-

geted for partial alignments. The banding procedure is identical. For partial

alignments, we compute local shortest paths between all pairs of seeds u; v

as long as jjv3 �u1jjs20 kbp and the path contains at least four labels. If the

corresponding band score

�
1� wu1 ;v3

jjv3 � u1jj
�
s0:4;

then the region gets a score of ðv3q � u1qÞ
�
1 � wu1;v3

kv3�u1k
�
, and the top 300 candi-

date regions, each designated by a pair of nodes, are selected for alignment

and re-ranking. A gapped alignment module is used and, if the score exceeds

a threshold, the partial or gapped alignment is reported.

FaNDOMcurrently identifies discordant alignments (defined below) and break-

points, which form the core of any SVdiscovery strategy, anddefers the calling of

actual SVs to a subsequent script that can be customized by the user. Recall that

analignment isa chainofmatches ðq0;r0Þ;ðq1;r1Þ;.;ðqt ;rtÞ. For alignmentsbelow

a threshold score, if there exists 0Gi<t such that (1) jðqi + 1 � qiÞ � ðri + 1 � riÞj>
2000, (2) jðqi +1 � q0ÞjRmaxf10000;0:25 , querylengthg, and (3) jðqt �
qi +1ÞjRmax f10000; 0:25 , querylengthg, thenadiscordantalignment iscalled.

Discordant alignments typically represent insertions/deletions, but may also

represent small inversions flanked by high-quality alignments on both sides.

Breakpoints refer to a pair of coordinates that are non-adjacent on the refer-

ence, but are together on the query. Consider two partial alignments that

involve the same query molecule, described by A1 : ðq0; r0Þ;.; ðqi ; riÞ and

A2 :
�
qj ; rj

�
;:::;ðqt ;rtÞ. Note that r0;.; ri could potentially be on a different chro-

mosome than rj ;.rt. Define oi ;oj˛f + ;�g using oi = sgnðri � r0Þ, and oj =

sgnðrt � rjÞ. FaNDOM calls a breakpoint (ri ;oi ; rj ;oj ) if there is no partial align-

ment involving the labels between qi and qj. Breakpoints are clustered if their

endpoints are within 30 kbp, and each breakpoint is listed along with its ‘‘sup-

port,’’ or the number of alignments consistent with the breakpoint. Subsequent

scripts are used to describe the rearrangement that creates the breakpoint.

For example, ðri ; + ; rj ; + Þ describes a homozygous (respectively, heterozy-

gous) deletion if ri and rj are on the same chromosome and the fragment

coverage in the interval ½ri ; rj � is 0 (respectively, half of normal coverage).
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